Properties

 Label 43.2.e.b.4.1 Level $43$ Weight $2$ Character 43.4 Analytic conductor $0.343$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$43$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 43.e (of order $$7$$, degree $$6$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$0.343356728692$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{14})$$ Defining polynomial: $$x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

 Embedding label 4.1 Root $$0.222521 - 0.974928i$$ of defining polynomial Character $$\chi$$ $$=$$ 43.4 Dual form 43.2.e.b.11.1

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.626980i) q^{2} +(-2.02446 - 2.53859i) q^{3} +(0.301938 + 1.32288i) q^{4} +(1.80194 + 0.867767i) q^{5} -2.60388 q^{6} -1.19806 q^{7} +(2.42543 + 1.16802i) q^{8} +(-1.67845 + 7.35376i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.626980i) q^{2} +(-2.02446 - 2.53859i) q^{3} +(0.301938 + 1.32288i) q^{4} +(1.80194 + 0.867767i) q^{5} -2.60388 q^{6} -1.19806 q^{7} +(2.42543 + 1.16802i) q^{8} +(-1.67845 + 7.35376i) q^{9} +(1.44504 - 0.695895i) q^{10} +(0.0745725 - 0.326723i) q^{11} +(2.74698 - 3.44460i) q^{12} +(-4.54892 - 2.19064i) q^{13} +(-0.599031 + 0.751161i) q^{14} +(-1.44504 - 6.33114i) q^{15} +(-0.500000 + 0.240787i) q^{16} +(1.44504 - 0.695895i) q^{17} +(3.77144 + 4.72923i) q^{18} +(-0.211636 - 0.927237i) q^{19} +(-0.603875 + 2.64575i) q^{20} +(2.42543 + 3.04139i) q^{21} +(-0.167563 - 0.210117i) q^{22} +(-0.791053 + 3.46583i) q^{23} +(-1.94504 - 8.52179i) q^{24} +(-0.623490 - 0.781831i) q^{25} +(-3.64795 + 1.75676i) q^{26} +(13.2899 - 6.40006i) q^{27} +(-0.361740 - 1.58489i) q^{28} +(3.02446 - 3.79255i) q^{29} +(-4.69202 - 2.25956i) q^{30} +(-2.83244 + 3.55176i) q^{31} +(-1.29709 + 5.68294i) q^{32} +(-0.980386 + 0.472129i) q^{33} +(0.286208 - 1.25396i) q^{34} +(-2.15883 - 1.03964i) q^{35} -10.2349 q^{36} +4.52111 q^{37} +(-0.687177 - 0.330927i) q^{38} +(3.64795 + 15.9827i) q^{39} +(3.35690 + 4.20941i) q^{40} +(3.60992 - 4.52669i) q^{41} +3.11960 q^{42} +(-2.57457 - 6.03089i) q^{43} +0.454731 q^{44} +(-9.40581 + 11.7945i) q^{45} +(1.77748 + 2.22889i) q^{46} +(0.222521 + 0.974928i) q^{47} +(1.62349 + 0.781831i) q^{48} -5.56465 q^{49} -0.801938 q^{50} +(-4.69202 - 2.25956i) q^{51} +(1.52446 - 6.67909i) q^{52} +(-2.40097 + 1.15625i) q^{53} +(2.63222 - 11.5325i) q^{54} +(0.417895 - 0.524023i) q^{55} +(-2.90581 - 1.39937i) q^{56} +(-1.92543 + 2.41441i) q^{57} +(-0.865625 - 3.79255i) q^{58} +(11.1773 - 5.38268i) q^{59} +(7.93900 - 3.82322i) q^{60} +(2.88740 + 3.62068i) q^{61} +(0.810667 + 3.55176i) q^{62} +(2.01089 - 8.81026i) q^{63} +(2.22252 + 2.78695i) q^{64} +(-6.29590 - 7.89481i) q^{65} +(-0.194177 + 0.850747i) q^{66} +(1.48039 + 6.48599i) q^{67} +(1.35690 + 1.70149i) q^{68} +(10.3998 - 5.00827i) q^{69} +(-1.73125 + 0.833726i) q^{70} +(0.149145 + 0.653447i) q^{71} +(-12.6603 + 15.8755i) q^{72} +(5.02446 + 2.41965i) q^{73} +(2.26055 - 2.83464i) q^{74} +(-0.722521 + 3.16557i) q^{75} +(1.16272 - 0.559936i) q^{76} +(-0.0893425 + 0.391435i) q^{77} +(11.8448 + 5.70416i) q^{78} +4.38404 q^{79} -1.10992 q^{80} +(-22.7642 - 10.9627i) q^{81} +(-1.03319 - 4.52669i) q^{82} +(-3.79440 - 4.75803i) q^{83} +(-3.29105 + 4.12685i) q^{84} +3.20775 q^{85} +(-5.06853 - 1.40124i) q^{86} -15.7506 q^{87} +(0.562491 - 0.705341i) q^{88} +(-8.71797 - 10.9320i) q^{89} +(2.69202 + 11.7945i) q^{90} +(5.44989 + 2.62453i) q^{91} -4.82371 q^{92} +14.7506 q^{93} +(0.722521 + 0.347948i) q^{94} +(0.423272 - 1.85447i) q^{95} +(17.0526 - 8.21208i) q^{96} +(-3.38189 + 14.8170i) q^{97} +(-2.78232 + 3.48892i) q^{98} +(2.27748 + 1.09678i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q + 3q^{2} - 3q^{3} - 7q^{4} + 2q^{5} + 2q^{6} - 16q^{7} + q^{8} - 6q^{9} + O(q^{10})$$ $$6q + 3q^{2} - 3q^{3} - 7q^{4} + 2q^{5} + 2q^{6} - 16q^{7} + q^{8} - 6q^{9} + 8q^{10} + 14q^{11} + 7q^{12} - 9q^{13} - 8q^{14} - 8q^{15} - 3q^{16} + 8q^{17} + 4q^{18} - 4q^{19} + 14q^{20} + q^{21} + q^{23} - 11q^{24} + q^{25} - 8q^{26} + 33q^{27} + 28q^{28} + 9q^{29} - 18q^{30} - 18q^{31} - 21q^{32} + 7q^{33} + 18q^{34} + 4q^{35} - 14q^{36} - 4q^{37} - 16q^{38} + 8q^{39} + 12q^{40} + 23q^{41} - 24q^{42} - 29q^{43} - 42q^{44} - 30q^{45} + 11q^{46} + q^{47} + 5q^{48} + 10q^{49} + 4q^{50} - 18q^{51} - 10q^{53} + 27q^{54} + 14q^{55} + 9q^{56} + 2q^{57} - 13q^{58} + 22q^{59} + 28q^{60} + 19q^{61} + 12q^{62} + 9q^{63} + 13q^{64} - 10q^{65} + 28q^{66} - 4q^{67} + 17q^{69} - 26q^{70} + 28q^{71} - 15q^{72} + 21q^{73} - 2q^{74} - 4q^{75} + 28q^{76} - 49q^{77} + 25q^{78} + 6q^{79} - 8q^{80} - 58q^{81} - 13q^{82} - 39q^{83} - 14q^{84} - 16q^{85} - 25q^{86} - 22q^{87} - 21q^{88} + 11q^{89} + 6q^{90} + 10q^{91} - 14q^{92} + 16q^{93} + 4q^{94} + 8q^{95} + 21q^{96} - 19q^{97} + 5q^{98} + 14q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/43\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$e\left(\frac{2}{7}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.626980i 0.353553 0.443342i −0.572972 0.819575i $$-0.694209\pi$$
0.926525 + 0.376233i $$0.122781\pi$$
$$3$$ −2.02446 2.53859i −1.16882 1.46566i −0.856851 0.515564i $$-0.827582\pi$$
−0.311971 0.950092i $$-0.600989\pi$$
$$4$$ 0.301938 + 1.32288i 0.150969 + 0.661438i
$$5$$ 1.80194 + 0.867767i 0.805851 + 0.388077i 0.791003 0.611812i $$-0.209559\pi$$
0.0148481 + 0.999890i $$0.495274\pi$$
$$6$$ −2.60388 −1.06303
$$7$$ −1.19806 −0.452825 −0.226412 0.974032i $$-0.572700\pi$$
−0.226412 + 0.974032i $$0.572700\pi$$
$$8$$ 2.42543 + 1.16802i 0.857518 + 0.412959i
$$9$$ −1.67845 + 7.35376i −0.559483 + 2.45125i
$$10$$ 1.44504 0.695895i 0.456962 0.220061i
$$11$$ 0.0745725 0.326723i 0.0224844 0.0985108i −0.962441 0.271492i $$-0.912483\pi$$
0.984925 + 0.172981i $$0.0553400\pi$$
$$12$$ 2.74698 3.44460i 0.792985 0.994371i
$$13$$ −4.54892 2.19064i −1.26164 0.607575i −0.321034 0.947068i $$-0.604030\pi$$
−0.940609 + 0.339493i $$0.889745\pi$$
$$14$$ −0.599031 + 0.751161i −0.160098 + 0.200756i
$$15$$ −1.44504 6.33114i −0.373108 1.63469i
$$16$$ −0.500000 + 0.240787i −0.125000 + 0.0601968i
$$17$$ 1.44504 0.695895i 0.350474 0.168779i −0.250361 0.968153i $$-0.580549\pi$$
0.600835 + 0.799373i $$0.294835\pi$$
$$18$$ 3.77144 + 4.72923i 0.888937 + 1.11469i
$$19$$ −0.211636 0.927237i −0.0485526 0.212723i 0.944832 0.327554i $$-0.106224\pi$$
−0.993385 + 0.114831i $$0.963367\pi$$
$$20$$ −0.603875 + 2.64575i −0.135031 + 0.591608i
$$21$$ 2.42543 + 3.04139i 0.529272 + 0.663686i
$$22$$ −0.167563 0.210117i −0.0357245 0.0447971i
$$23$$ −0.791053 + 3.46583i −0.164946 + 0.722675i 0.823021 + 0.568011i $$0.192287\pi$$
−0.987967 + 0.154664i $$0.950570\pi$$
$$24$$ −1.94504 8.52179i −0.397030 1.73950i
$$25$$ −0.623490 0.781831i −0.124698 0.156366i
$$26$$ −3.64795 + 1.75676i −0.715422 + 0.344529i
$$27$$ 13.2899 6.40006i 2.55763 1.23169i
$$28$$ −0.361740 1.58489i −0.0683625 0.299516i
$$29$$ 3.02446 3.79255i 0.561628 0.704259i −0.417230 0.908801i $$-0.636999\pi$$
0.978858 + 0.204542i $$0.0655705\pi$$
$$30$$ −4.69202 2.25956i −0.856642 0.412537i
$$31$$ −2.83244 + 3.55176i −0.508721 + 0.637916i −0.968172 0.250288i $$-0.919475\pi$$
0.459451 + 0.888203i $$0.348046\pi$$
$$32$$ −1.29709 + 5.68294i −0.229296 + 1.00461i
$$33$$ −0.980386 + 0.472129i −0.170663 + 0.0821871i
$$34$$ 0.286208 1.25396i 0.0490843 0.215052i
$$35$$ −2.15883 1.03964i −0.364909 0.175731i
$$36$$ −10.2349 −1.70582
$$37$$ 4.52111 0.743265 0.371633 0.928380i $$-0.378798\pi$$
0.371633 + 0.928380i $$0.378798\pi$$
$$38$$ −0.687177 0.330927i −0.111475 0.0536835i
$$39$$ 3.64795 + 15.9827i 0.584139 + 2.55928i
$$40$$ 3.35690 + 4.20941i 0.530772 + 0.665567i
$$41$$ 3.60992 4.52669i 0.563774 0.706950i −0.415476 0.909604i $$-0.636385\pi$$
0.979251 + 0.202654i $$0.0649565\pi$$
$$42$$ 3.11960 0.481365
$$43$$ −2.57457 6.03089i −0.392619 0.919701i
$$44$$ 0.454731 0.0685532
$$45$$ −9.40581 + 11.7945i −1.40214 + 1.75822i
$$46$$ 1.77748 + 2.22889i 0.262075 + 0.328632i
$$47$$ 0.222521 + 0.974928i 0.0324580 + 0.142208i 0.988561 0.150824i $$-0.0481928\pi$$
−0.956103 + 0.293032i $$0.905336\pi$$
$$48$$ 1.62349 + 0.781831i 0.234331 + 0.112848i
$$49$$ −5.56465 −0.794950
$$50$$ −0.801938 −0.113411
$$51$$ −4.69202 2.25956i −0.657014 0.316401i
$$52$$ 1.52446 6.67909i 0.211404 0.926223i
$$53$$ −2.40097 + 1.15625i −0.329798 + 0.158823i −0.591454 0.806339i $$-0.701446\pi$$
0.261656 + 0.965161i $$0.415732\pi$$
$$54$$ 2.63222 11.5325i 0.358200 1.56938i
$$55$$ 0.417895 0.524023i 0.0563489 0.0706593i
$$56$$ −2.90581 1.39937i −0.388306 0.186998i
$$57$$ −1.92543 + 2.41441i −0.255029 + 0.319796i
$$58$$ −0.865625 3.79255i −0.113662 0.497986i
$$59$$ 11.1773 5.38268i 1.45515 0.700765i 0.471673 0.881774i $$-0.343650\pi$$
0.983482 + 0.181008i $$0.0579361\pi$$
$$60$$ 7.93900 3.82322i 1.02492 0.493576i
$$61$$ 2.88740 + 3.62068i 0.369693 + 0.463580i 0.931528 0.363669i $$-0.118476\pi$$
−0.561835 + 0.827249i $$0.689905\pi$$
$$62$$ 0.810667 + 3.55176i 0.102955 + 0.451074i
$$63$$ 2.01089 8.81026i 0.253348 1.10999i
$$64$$ 2.22252 + 2.78695i 0.277815 + 0.348369i
$$65$$ −6.29590 7.89481i −0.780910 0.979230i
$$66$$ −0.194177 + 0.850747i −0.0239016 + 0.104720i
$$67$$ 1.48039 + 6.48599i 0.180858 + 0.792390i 0.981223 + 0.192877i $$0.0617819\pi$$
−0.800365 + 0.599513i $$0.795361\pi$$
$$68$$ 1.35690 + 1.70149i 0.164548 + 0.206336i
$$69$$ 10.3998 5.00827i 1.25199 0.602924i
$$70$$ −1.73125 + 0.833726i −0.206924 + 0.0996493i
$$71$$ 0.149145 + 0.653447i 0.0177002 + 0.0775498i 0.983007 0.183570i $$-0.0587654\pi$$
−0.965306 + 0.261120i $$0.915908\pi$$
$$72$$ −12.6603 + 15.8755i −1.49203 + 1.87095i
$$73$$ 5.02446 + 2.41965i 0.588068 + 0.283199i 0.704162 0.710039i $$-0.251323\pi$$
−0.116093 + 0.993238i $$0.537037\pi$$
$$74$$ 2.26055 2.83464i 0.262784 0.329521i
$$75$$ −0.722521 + 3.16557i −0.0834295 + 0.365529i
$$76$$ 1.16272 0.559936i 0.133373 0.0642290i
$$77$$ −0.0893425 + 0.391435i −0.0101815 + 0.0446081i
$$78$$ 11.8448 + 5.70416i 1.34116 + 0.645869i
$$79$$ 4.38404 0.493243 0.246622 0.969112i $$-0.420679\pi$$
0.246622 + 0.969112i $$0.420679\pi$$
$$80$$ −1.10992 −0.124092
$$81$$ −22.7642 10.9627i −2.52936 1.21807i
$$82$$ −1.03319 4.52669i −0.114097 0.499889i
$$83$$ −3.79440 4.75803i −0.416490 0.522262i 0.528689 0.848816i $$-0.322684\pi$$
−0.945179 + 0.326554i $$0.894113\pi$$
$$84$$ −3.29105 + 4.12685i −0.359083 + 0.450276i
$$85$$ 3.20775 0.347929
$$86$$ −5.06853 1.40124i −0.546554 0.151099i
$$87$$ −15.7506 −1.68864
$$88$$ 0.562491 0.705341i 0.0599617 0.0751896i
$$89$$ −8.71797 10.9320i −0.924103 1.15879i −0.986992 0.160768i $$-0.948603\pi$$
0.0628890 0.998021i $$-0.479969\pi$$
$$90$$ 2.69202 + 11.7945i 0.283764 + 1.24325i
$$91$$ 5.44989 + 2.62453i 0.571303 + 0.275125i
$$92$$ −4.82371 −0.502906
$$93$$ 14.7506 1.52957
$$94$$ 0.722521 + 0.347948i 0.0745223 + 0.0358881i
$$95$$ 0.423272 1.85447i 0.0434268 0.190265i
$$96$$ 17.0526 8.21208i 1.74042 0.838142i
$$97$$ −3.38189 + 14.8170i −0.343379 + 1.50444i 0.448512 + 0.893777i $$0.351954\pi$$
−0.791891 + 0.610663i $$0.790903\pi$$
$$98$$ −2.78232 + 3.48892i −0.281057 + 0.352434i
$$99$$ 2.27748 + 1.09678i 0.228895 + 0.110230i
$$100$$ 0.846011 1.06086i 0.0846011 0.106086i
$$101$$ 3.55765 + 15.5871i 0.353999 + 1.55097i 0.767852 + 0.640627i $$0.221326\pi$$
−0.413853 + 0.910344i $$0.635817\pi$$
$$102$$ −3.76271 + 1.81203i −0.372564 + 0.179417i
$$103$$ −13.5918 + 6.54546i −1.33924 + 0.644944i −0.959907 0.280317i $$-0.909560\pi$$
−0.379332 + 0.925261i $$0.623846\pi$$
$$104$$ −8.47434 10.6265i −0.830978 1.04201i
$$105$$ 1.73125 + 7.58510i 0.168953 + 0.740230i
$$106$$ −0.475541 + 2.08348i −0.0461887 + 0.202366i
$$107$$ 2.29105 + 2.87289i 0.221484 + 0.277733i 0.880142 0.474710i $$-0.157447\pi$$
−0.658658 + 0.752442i $$0.728876\pi$$
$$108$$ 12.4792 + 15.6484i 1.20081 + 1.50577i
$$109$$ 1.25182 5.48460i 0.119903 0.525329i −0.878926 0.476957i $$-0.841740\pi$$
0.998829 0.0483719i $$-0.0154033\pi$$
$$110$$ −0.119605 0.524023i −0.0114039 0.0499637i
$$111$$ −9.15279 11.4772i −0.868745 1.08937i
$$112$$ 0.599031 0.288478i 0.0566031 0.0272586i
$$113$$ 2.26659 1.09153i 0.213223 0.102683i −0.324224 0.945980i $$-0.605103\pi$$
0.537447 + 0.843298i $$0.319389\pi$$
$$114$$ 0.551073 + 2.41441i 0.0516127 + 0.226130i
$$115$$ −4.43296 + 5.55876i −0.413376 + 0.518357i
$$116$$ 5.93027 + 2.85587i 0.550612 + 0.265161i
$$117$$ 23.7446 29.7748i 2.19519 2.75268i
$$118$$ 2.21379 9.69926i 0.203796 0.892889i
$$119$$ −1.73125 + 0.833726i −0.158703 + 0.0764275i
$$120$$ 3.89008 17.0436i 0.355114 1.55586i
$$121$$ 9.80947 + 4.72399i 0.891770 + 0.429454i
$$122$$ 3.71379 0.336231
$$123$$ −18.7995 −1.69510
$$124$$ −5.55376 2.67455i −0.498743 0.240182i
$$125$$ −2.67025 11.6991i −0.238835 1.04640i
$$126$$ −4.51842 5.66592i −0.402533 0.504760i
$$127$$ 2.91454 3.65472i 0.258624 0.324304i −0.635520 0.772085i $$-0.719214\pi$$
0.894143 + 0.447781i $$0.147785\pi$$
$$128$$ −8.79954 −0.777777
$$129$$ −10.0978 + 18.7451i −0.889065 + 1.65041i
$$130$$ −8.09783 −0.710227
$$131$$ −2.74094 + 3.43703i −0.239477 + 0.300295i −0.887017 0.461737i $$-0.847226\pi$$
0.647540 + 0.762031i $$0.275798\pi$$
$$132$$ −0.920583 1.15437i −0.0801265 0.100475i
$$133$$ 0.253553 + 1.11089i 0.0219858 + 0.0963262i
$$134$$ 4.80678 + 2.31482i 0.415243 + 0.199970i
$$135$$ 29.5013 2.53906
$$136$$ 4.31767 0.370237
$$137$$ −5.06853 2.44088i −0.433034 0.208538i 0.204652 0.978835i $$-0.434394\pi$$
−0.637686 + 0.770297i $$0.720108\pi$$
$$138$$ 2.05980 9.02458i 0.175342 0.768224i
$$139$$ −14.9046 + 7.17769i −1.26419 + 0.608803i −0.941281 0.337625i $$-0.890376\pi$$
−0.322913 + 0.946429i $$0.604662\pi$$
$$140$$ 0.723480 3.16977i 0.0611453 0.267895i
$$141$$ 2.02446 2.53859i 0.170490 0.213788i
$$142$$ 0.484271 + 0.233212i 0.0406391 + 0.0195707i
$$143$$ −1.05496 + 1.32288i −0.0882200 + 0.110624i
$$144$$ −0.931468 4.08103i −0.0776224 0.340086i
$$145$$ 8.74094 4.20941i 0.725895 0.349573i
$$146$$ 4.02930 1.94041i 0.333467 0.160589i
$$147$$ 11.2654 + 14.1264i 0.929154 + 1.16512i
$$148$$ 1.36509 + 5.98086i 0.112210 + 0.491624i
$$149$$ −2.00484 + 8.78380i −0.164243 + 0.719597i 0.823985 + 0.566611i $$0.191746\pi$$
−0.988228 + 0.152985i $$0.951111\pi$$
$$150$$ 1.62349 + 2.03579i 0.132557 + 0.166222i
$$151$$ −1.80194 2.25956i −0.146640 0.183880i 0.703087 0.711104i $$-0.251804\pi$$
−0.849727 + 0.527224i $$0.823233\pi$$
$$152$$ 0.569728 2.49614i 0.0462111 0.202464i
$$153$$ 2.69202 + 11.7945i 0.217637 + 0.953530i
$$154$$ 0.200751 + 0.251733i 0.0161769 + 0.0202853i
$$155$$ −8.18598 + 3.94216i −0.657514 + 0.316642i
$$156$$ −20.0417 + 9.65156i −1.60462 + 0.772744i
$$157$$ −5.14310 22.5334i −0.410464 1.79836i −0.582005 0.813185i $$-0.697732\pi$$
0.171541 0.985177i $$-0.445125\pi$$
$$158$$ 2.19202 2.74871i 0.174388 0.218675i
$$159$$ 7.79590 + 3.75431i 0.618255 + 0.297736i
$$160$$ −7.26875 + 9.11472i −0.574645 + 0.720582i
$$161$$ 0.947730 4.15228i 0.0746916 0.327245i
$$162$$ −18.2555 + 8.79137i −1.43429 + 0.690715i
$$163$$ 2.79494 12.2454i 0.218916 0.959135i −0.739364 0.673306i $$-0.764874\pi$$
0.958280 0.285830i $$-0.0922691\pi$$
$$164$$ 7.07822 + 3.40869i 0.552716 + 0.266174i
$$165$$ −2.17629 −0.169424
$$166$$ −4.88040 −0.378792
$$167$$ 20.0613 + 9.66101i 1.55239 + 0.747591i 0.996494 0.0836609i $$-0.0266613\pi$$
0.555895 + 0.831252i $$0.312376\pi$$
$$168$$ 2.33028 + 10.2096i 0.179785 + 0.787690i
$$169$$ 7.78836 + 9.76630i 0.599105 + 0.751254i
$$170$$ 1.60388 2.01120i 0.123012 0.154252i
$$171$$ 7.17390 0.548602
$$172$$ 7.20075 5.22679i 0.549052 0.398539i
$$173$$ 2.18598 0.166197 0.0830985 0.996541i $$-0.473518\pi$$
0.0830985 + 0.996541i $$0.473518\pi$$
$$174$$ −7.87531 + 9.87533i −0.597026 + 0.748647i
$$175$$ 0.746980 + 0.936683i 0.0564664 + 0.0708066i
$$176$$ 0.0413846 + 0.181318i 0.00311948 + 0.0136673i
$$177$$ −36.2923 17.4775i −2.72790 1.31369i
$$178$$ −11.2131 −0.840459
$$179$$ 10.2174 0.763687 0.381844 0.924227i $$-0.375289\pi$$
0.381844 + 0.924227i $$0.375289\pi$$
$$180$$ −18.4426 8.88151i −1.37463 0.661989i
$$181$$ 2.95473 12.9455i 0.219623 0.962233i −0.738134 0.674654i $$-0.764293\pi$$
0.957757 0.287578i $$-0.0928502\pi$$
$$182$$ 4.37047 2.10471i 0.323961 0.156011i
$$183$$ 3.34601 14.6598i 0.247344 1.08369i
$$184$$ −5.96681 + 7.48215i −0.439879 + 0.551591i
$$185$$ 8.14675 + 3.92327i 0.598961 + 0.288444i
$$186$$ 7.37531 9.24835i 0.540784 0.678122i
$$187$$ −0.119605 0.524023i −0.00874638 0.0383204i
$$188$$ −1.22252 + 0.588735i −0.0891615 + 0.0429379i
$$189$$ −15.9221 + 7.66767i −1.15816 + 0.557741i
$$190$$ −0.951083 1.19262i −0.0689988 0.0865217i
$$191$$ 4.76928 + 20.8956i 0.345093 + 1.51195i 0.788164 + 0.615465i $$0.211032\pi$$
−0.443071 + 0.896487i $$0.646111\pi$$
$$192$$ 2.57553 11.2841i 0.185873 0.814363i
$$193$$ −5.45257 6.83731i −0.392485 0.492161i 0.545853 0.837881i $$-0.316206\pi$$
−0.938337 + 0.345721i $$0.887634\pi$$
$$194$$ 7.59903 + 9.52888i 0.545579 + 0.684134i
$$195$$ −7.29590 + 31.9654i −0.522470 + 2.28909i
$$196$$ −1.68018 7.36134i −0.120013 0.525810i
$$197$$ 11.5571 + 14.4922i 0.823410 + 1.03252i 0.998846 + 0.0480329i $$0.0152952\pi$$
−0.175435 + 0.984491i $$0.556133\pi$$
$$198$$ 1.82640 0.879546i 0.129796 0.0625066i
$$199$$ 3.08211 1.48426i 0.218485 0.105217i −0.321440 0.946930i $$-0.604167\pi$$
0.539925 + 0.841713i $$0.318453\pi$$
$$200$$ −0.599031 2.62453i −0.0423579 0.185582i
$$201$$ 13.4683 16.8887i 0.949981 1.19124i
$$202$$ 11.5516 + 5.56296i 0.812768 + 0.391409i
$$203$$ −3.62349 + 4.54371i −0.254319 + 0.318906i
$$204$$ 1.57242 6.88921i 0.110091 0.482341i
$$205$$ 10.4330 5.02425i 0.728670 0.350909i
$$206$$ −2.69202 + 11.7945i −0.187562 + 0.821763i
$$207$$ −24.1591 11.6344i −1.67918 0.808648i
$$208$$ 2.80194 0.194279
$$209$$ −0.318732 −0.0220472
$$210$$ 5.62133 + 2.70709i 0.387909 + 0.186807i
$$211$$ −1.98158 8.68188i −0.136418 0.597685i −0.996205 0.0870334i $$-0.972261\pi$$
0.859788 0.510652i $$-0.170596\pi$$
$$212$$ −2.25451 2.82707i −0.154841 0.194164i
$$213$$ 1.35690 1.70149i 0.0929730 0.116584i
$$214$$ 2.94677 0.201437
$$215$$ 0.594187 13.1014i 0.0405232 0.893509i
$$216$$ 39.7090 2.70186
$$217$$ 3.39344 4.25523i 0.230361 0.288864i
$$218$$ −2.81282 3.52717i −0.190508 0.238890i
$$219$$ −4.02930 17.6535i −0.272275 1.19292i
$$220$$ 0.819396 + 0.394600i 0.0552437 + 0.0266040i
$$221$$ −8.09783 −0.544719
$$222$$ −11.7724 −0.790112
$$223$$ 4.40581 + 2.12173i 0.295035 + 0.142081i 0.575546 0.817769i $$-0.304790\pi$$
−0.280511 + 0.959851i $$0.590504\pi$$
$$224$$ 1.55400 6.80851i 0.103831 0.454913i
$$225$$ 6.79590 3.27273i 0.453060 0.218182i
$$226$$ 0.448927 1.96688i 0.0298622 0.130835i
$$227$$ −2.58964 + 3.24730i −0.171880 + 0.215531i −0.860309 0.509773i $$-0.829729\pi$$
0.688429 + 0.725304i $$0.258301\pi$$
$$228$$ −3.77532 1.81810i −0.250027 0.120407i
$$229$$ −12.1881 + 15.2834i −0.805415 + 1.00996i 0.194165 + 0.980969i $$0.437800\pi$$
−0.999580 + 0.0289892i $$0.990771\pi$$
$$230$$ 1.26875 + 5.55876i 0.0836589 + 0.366534i
$$231$$ 1.17456 0.565640i 0.0772806 0.0372164i
$$232$$ 11.7654 5.66592i 0.772436 0.371986i
$$233$$ −4.83728 6.06576i −0.316901 0.397381i 0.597713 0.801710i $$-0.296076\pi$$
−0.914613 + 0.404329i $$0.867505\pi$$
$$234$$ −6.79590 29.7748i −0.444262 1.94644i
$$235$$ −0.445042 + 1.94986i −0.0290313 + 0.127195i
$$236$$ 10.4955 + 13.1609i 0.683196 + 0.856700i
$$237$$ −8.87531 11.1293i −0.576514 0.722925i
$$238$$ −0.342895 + 1.50232i −0.0222266 + 0.0973811i
$$239$$ −3.48254 15.2580i −0.225267 0.986959i −0.953444 0.301570i $$-0.902489\pi$$
0.728177 0.685389i $$-0.240368\pi$$
$$240$$ 2.24698 + 2.81762i 0.145042 + 0.181877i
$$241$$ 8.63975 4.16069i 0.556535 0.268013i −0.134403 0.990927i $$-0.542912\pi$$
0.690939 + 0.722913i $$0.257197\pi$$
$$242$$ 7.86658 3.78835i 0.505683 0.243524i
$$243$$ 8.40850 + 36.8401i 0.539406 + 2.36329i
$$244$$ −3.91789 + 4.91288i −0.250818 + 0.314515i
$$245$$ −10.0271 4.82882i −0.640611 0.308502i
$$246$$ −9.39977 + 11.7869i −0.599308 + 0.751508i
$$247$$ −1.06853 + 4.68154i −0.0679890 + 0.297879i
$$248$$ −11.0184 + 5.30619i −0.699670 + 0.336943i
$$249$$ −4.39708 + 19.2649i −0.278654 + 1.22086i
$$250$$ −8.67025 4.17537i −0.548355 0.264074i
$$251$$ −13.1317 −0.828865 −0.414432 0.910080i $$-0.636020\pi$$
−0.414432 + 0.910080i $$0.636020\pi$$
$$252$$ 12.2620 0.772436
$$253$$ 1.07338 + 0.516911i 0.0674826 + 0.0324979i
$$254$$ −0.834166 3.65472i −0.0523402 0.229318i
$$255$$ −6.49396 8.14317i −0.406668 0.509945i
$$256$$ −8.84481 + 11.0910i −0.552801 + 0.693190i
$$257$$ −17.8213 −1.11166 −0.555832 0.831295i $$-0.687600\pi$$
−0.555832 + 0.831295i $$0.687600\pi$$
$$258$$ 6.70387 + 15.7037i 0.417364 + 0.977668i
$$259$$ −5.41657 −0.336569
$$260$$ 8.54288 10.7124i 0.529807 0.664357i
$$261$$ 22.8131 + 28.6067i 1.41210 + 1.77071i
$$262$$ 0.784479 + 3.43703i 0.0484653 + 0.212340i
$$263$$ 28.7848 + 13.8620i 1.77495 + 0.854769i 0.962291 + 0.272023i $$0.0876926\pi$$
0.812654 + 0.582746i $$0.198022\pi$$
$$264$$ −2.92931 −0.180287
$$265$$ −5.32975 −0.327404
$$266$$ 0.823281 + 0.396471i 0.0504786 + 0.0243092i
$$267$$ −10.1027 + 44.2627i −0.618274 + 2.70884i
$$268$$ −8.13318 + 3.91673i −0.496813 + 0.239253i
$$269$$ 0.189866 0.831855i 0.0115763 0.0507191i −0.968810 0.247805i $$-0.920291\pi$$
0.980386 + 0.197086i $$0.0631478\pi$$
$$270$$ 14.7506 18.4967i 0.897695 1.12567i
$$271$$ −2.05280 0.988577i −0.124699 0.0600518i 0.370494 0.928835i $$-0.379188\pi$$
−0.495193 + 0.868783i $$0.664903\pi$$
$$272$$ −0.554958 + 0.695895i −0.0336493 + 0.0421949i
$$273$$ −4.37047 19.1483i −0.264513 1.15891i
$$274$$ −4.06465 + 1.95743i −0.245554 + 0.118253i
$$275$$ −0.301938 + 0.145406i −0.0182075 + 0.00876828i
$$276$$ 9.76540 + 12.2454i 0.587808 + 0.737088i
$$277$$ −0.773831 3.39038i −0.0464950 0.203708i 0.946345 0.323157i $$-0.104744\pi$$
−0.992840 + 0.119449i $$0.961887\pi$$
$$278$$ −2.95204 + 12.9337i −0.177052 + 0.775714i
$$279$$ −21.3647 26.7905i −1.27907 1.60391i
$$280$$ −4.02177 5.04314i −0.240347 0.301385i
$$281$$ 4.02811 17.6483i 0.240297 1.05281i −0.700451 0.713701i $$-0.747018\pi$$
0.940747 0.339108i $$-0.110125\pi$$
$$282$$ −0.579417 2.53859i −0.0345038 0.151171i
$$283$$ −14.8802 18.6591i −0.884534 1.10917i −0.993353 0.115108i $$-0.963278\pi$$
0.108819 0.994062i $$-0.465293\pi$$
$$284$$ −0.819396 + 0.394600i −0.0486222 + 0.0234152i
$$285$$ −5.56465 + 2.67979i −0.329621 + 0.158737i
$$286$$ 0.301938 + 1.32288i 0.0178540 + 0.0782233i
$$287$$ −4.32490 + 5.42326i −0.255291 + 0.320125i
$$288$$ −39.6139 19.0770i −2.33427 1.12412i
$$289$$ −8.99545 + 11.2799i −0.529144 + 0.663526i
$$290$$ 1.73125 7.58510i 0.101663 0.445413i
$$291$$ 44.4608 21.4112i 2.60634 1.25515i
$$292$$ −1.68382 + 7.37732i −0.0985384 + 0.431725i
$$293$$ −24.7787 11.9328i −1.44759 0.697122i −0.465414 0.885093i $$-0.654095\pi$$
−0.982175 + 0.187971i $$0.939809\pi$$
$$294$$ 14.4896 0.845053
$$295$$ 24.8116 1.44459
$$296$$ 10.9656 + 5.28076i 0.637363 + 0.306938i
$$297$$ −1.09999 4.81937i −0.0638279 0.279648i
$$298$$ 4.50484 + 5.64890i 0.260959 + 0.327232i
$$299$$ 11.1908 14.0329i 0.647182 0.811541i
$$300$$ −4.40581 −0.254370
$$301$$ 3.08450 + 7.22538i 0.177788 + 0.416464i
$$302$$ −2.31767 −0.133367
$$303$$ 32.3669 40.5868i 1.85943 2.33165i
$$304$$ 0.329085 + 0.412659i 0.0188743 + 0.0236676i
$$305$$ 2.06100 + 9.02983i 0.118012 + 0.517046i
$$306$$ 8.74094 + 4.20941i 0.499686 + 0.240636i
$$307$$ −20.2838 −1.15766 −0.578829 0.815449i $$-0.696490\pi$$
−0.578829 + 0.815449i $$0.696490\pi$$
$$308$$ −0.544796 −0.0310426
$$309$$ 44.1323 + 21.2530i 2.51060 + 1.20904i
$$310$$ −1.62133 + 7.10353i −0.0920856 + 0.403453i
$$311$$ 5.15010 2.48016i 0.292036 0.140637i −0.282130 0.959376i $$-0.591041\pi$$
0.574165 + 0.818739i $$0.305327\pi$$
$$312$$ −9.82036 + 43.0258i −0.555968 + 2.43586i
$$313$$ −15.1746 + 19.0283i −0.857717 + 1.07554i 0.138647 + 0.990342i $$0.455725\pi$$
−0.996364 + 0.0852012i $$0.972847\pi$$
$$314$$ −16.6996 8.04208i −0.942410 0.453841i
$$315$$ 11.2687 14.1306i 0.634922 0.796167i
$$316$$ 1.32371 + 5.79954i 0.0744644 + 0.326250i
$$317$$ −13.6555 + 6.57613i −0.766968 + 0.369352i −0.776103 0.630606i $$-0.782806\pi$$
0.00913503 + 0.999958i $$0.497092\pi$$
$$318$$ 6.25182 3.01072i 0.350585 0.168833i
$$319$$ −1.01357 1.27098i −0.0567492 0.0711613i
$$320$$ 1.58642 + 6.95055i 0.0886834 + 0.388547i
$$321$$ 2.65495 11.6321i 0.148185 0.649240i
$$322$$ −2.12953 2.67035i −0.118674 0.148813i
$$323$$ −0.951083 1.19262i −0.0529197 0.0663591i
$$324$$ 7.62887 33.4242i 0.423826 1.85690i
$$325$$ 1.12349 + 4.92233i 0.0623200 + 0.273042i
$$326$$ −6.28017 7.87508i −0.347826 0.436160i
$$327$$ −16.4574 + 7.92548i −0.910097 + 0.438280i
$$328$$ 14.0429 6.76269i 0.775388 0.373407i
$$329$$ −0.266594 1.16802i −0.0146978 0.0643953i
$$330$$ −1.08815 + 1.36449i −0.0599005 + 0.0751128i
$$331$$ −20.8898 10.0600i −1.14821 0.552949i −0.239714 0.970843i $$-0.577054\pi$$
−0.908495 + 0.417895i $$0.862768\pi$$
$$332$$ 5.14861 6.45616i 0.282567 0.354328i
$$333$$ −7.58844 + 33.2471i −0.415844 + 1.82193i
$$334$$ 16.0879 7.74753i 0.880291 0.423926i
$$335$$ −2.96077 + 12.9720i −0.161764 + 0.708735i
$$336$$ −1.94504 0.936683i −0.106111 0.0511002i
$$337$$ 21.4644 1.16924 0.584621 0.811307i $$-0.301243\pi$$
0.584621 + 0.811307i $$0.301243\pi$$
$$338$$ 10.0175 0.544878
$$339$$ −7.35958 3.54419i −0.399718 0.192494i
$$340$$ 0.968541 + 4.24346i 0.0525265 + 0.230134i
$$341$$ 0.949222 + 1.19029i 0.0514033 + 0.0644577i
$$342$$ 3.58695 4.49789i 0.193960 0.243218i
$$343$$ 15.0532 0.812798
$$344$$ 0.799782 17.6346i 0.0431213 0.950796i
$$345$$ 23.0858 1.24290
$$346$$ 1.09299 1.37057i 0.0587595 0.0736821i
$$347$$ −15.9717 20.0278i −0.857403 1.07515i −0.996393 0.0848561i $$-0.972957\pi$$
0.138990 0.990294i $$-0.455614\pi$$
$$348$$ −4.75571 20.8361i −0.254933 1.11693i
$$349$$ 8.72132 + 4.19997i 0.466842 + 0.224819i 0.652490 0.757797i $$-0.273724\pi$$
−0.185649 + 0.982616i $$0.559439\pi$$
$$350$$ 0.960771 0.0513554
$$351$$ −74.4747 −3.97517
$$352$$ 1.76002 + 0.847581i 0.0938094 + 0.0451762i
$$353$$ 0.0924579 0.405084i 0.00492104 0.0215605i −0.972408 0.233288i $$-0.925052\pi$$
0.977329 + 0.211727i $$0.0679088\pi$$
$$354$$ −29.1042 + 14.0158i −1.54687 + 0.744933i
$$355$$ −0.298290 + 1.30689i −0.0158316 + 0.0693627i
$$356$$ 11.8294 14.8336i 0.626956 0.786178i
$$357$$ 5.62133 + 2.70709i 0.297513 + 0.143274i
$$358$$ 5.10872 6.40613i 0.270004 0.338575i
$$359$$ 1.58964 + 6.96466i 0.0838979 + 0.367581i 0.999396 0.0347408i $$-0.0110606\pi$$
−0.915498 + 0.402321i $$0.868203\pi$$
$$360$$ −36.5894 + 17.6205i −1.92843 + 0.928683i
$$361$$ 16.3034 7.85132i 0.858075 0.413227i
$$362$$ −6.63922 8.32532i −0.348950 0.437569i
$$363$$ −7.86658 34.4658i −0.412889 1.80898i
$$364$$ −1.82640 + 8.00197i −0.0957292 + 0.419417i
$$365$$ 6.95407 + 8.72012i 0.363992 + 0.456432i
$$366$$ −7.51842 9.42780i −0.392994 0.492799i
$$367$$ −1.78113 + 7.80363i −0.0929741 + 0.407346i −0.999903 0.0139379i $$-0.995563\pi$$
0.906929 + 0.421284i $$0.138420\pi$$
$$368$$ −0.439001 1.92339i −0.0228845 0.100264i
$$369$$ 27.2292 + 34.1443i 1.41749 + 1.77748i
$$370$$ 6.53319 3.14622i 0.339644 0.163564i
$$371$$ 2.87651 1.38525i 0.149341 0.0719188i
$$372$$ 4.45377 + 19.5132i 0.230917 + 1.01171i
$$373$$ 12.2823 15.4015i 0.635955 0.797462i −0.354536 0.935042i $$-0.615361\pi$$
0.990491 + 0.137581i $$0.0439326\pi$$
$$374$$ −0.388355 0.187022i −0.0200813 0.00967067i
$$375$$ −24.2935 + 30.4631i −1.25451 + 1.57311i
$$376$$ −0.599031 + 2.62453i −0.0308927 + 0.135350i
$$377$$ −22.0661 + 10.6265i −1.13646 + 0.547292i
$$378$$ −3.15356 + 13.8167i −0.162202 + 0.710652i
$$379$$ 11.8204 + 5.69238i 0.607171 + 0.292398i 0.712096 0.702082i $$-0.247746\pi$$
−0.104925 + 0.994480i $$0.533460\pi$$
$$380$$ 2.58104 0.132405
$$381$$ −15.1782 −0.777603
$$382$$ 15.4858 + 7.45755i 0.792321 + 0.381561i
$$383$$ 1.34266 + 5.88257i 0.0686066 + 0.300585i 0.997577 0.0695683i $$-0.0221622\pi$$
−0.928971 + 0.370154i $$0.879305\pi$$
$$384$$ 17.8143 + 22.3384i 0.909083 + 1.13995i
$$385$$ −0.500664 + 0.627813i −0.0255162 + 0.0319963i
$$386$$ −7.01315 −0.356960
$$387$$ 48.6710 8.81026i 2.47408 0.447851i
$$388$$ −20.6222 −1.04693
$$389$$ −0.502688 + 0.630351i −0.0254873 + 0.0319601i −0.794412 0.607380i $$-0.792221\pi$$
0.768924 + 0.639340i $$0.220792\pi$$
$$390$$ 16.3937 + 20.5571i 0.830129 + 1.04095i
$$391$$ 1.26875 + 5.55876i 0.0641634 + 0.281118i
$$392$$ −13.4966 6.49964i −0.681684 0.328282i
$$393$$ 14.2741 0.720034
$$394$$ 14.8649 0.748881
$$395$$ 7.89977 + 3.80433i 0.397481 + 0.191417i
$$396$$ −0.763242 + 3.34398i −0.0383543 + 0.168041i
$$397$$ −8.36927 + 4.03043i −0.420042 + 0.202281i −0.631952 0.775008i $$-0.717746\pi$$
0.211910 + 0.977289i $$0.432032\pi$$
$$398$$ 0.610449 2.67455i 0.0305990 0.134063i
$$399$$ 2.30678 2.89261i 0.115484 0.144812i
$$400$$ 0.500000 + 0.240787i 0.0250000 + 0.0120394i
$$401$$ −17.0553 + 21.3866i −0.851699 + 1.06800i 0.145208 + 0.989401i $$0.453615\pi$$
−0.996907 + 0.0785953i $$0.974957\pi$$
$$402$$ −3.85474 16.8887i −0.192257 0.842333i
$$403$$ 20.6652 9.95182i 1.02941 0.495736i
$$404$$ −19.5456 + 9.41265i −0.972428 + 0.468297i
$$405$$ −31.5066 39.5081i −1.56558 1.96317i
$$406$$ 1.03707 + 4.54371i 0.0514691 + 0.225501i
$$407$$ 0.337150 1.47715i 0.0167119 0.0732196i
$$408$$ −8.74094 10.9608i −0.432741 0.542640i
$$409$$ −2.29440 2.87709i −0.113451 0.142263i 0.721863 0.692036i $$-0.243286\pi$$
−0.835314 + 0.549772i $$0.814714\pi$$
$$410$$ 2.06638 9.05338i 0.102051 0.447115i
$$411$$ 4.06465 + 17.8084i 0.200494 + 0.878423i
$$412$$ −12.7627 16.0039i −0.628774 0.788457i
$$413$$ −13.3910 + 6.44879i −0.658930 + 0.317324i
$$414$$ −19.3741 + 9.33008i −0.952186 + 0.458549i
$$415$$ −2.70841 11.8663i −0.132951 0.582496i
$$416$$ 18.3497 23.0097i 0.899666 1.12815i
$$417$$ 48.3950 + 23.3058i 2.36991 + 1.14129i
$$418$$ −0.159366 + 0.199839i −0.00779485 + 0.00977443i
$$419$$ 5.62833 24.6593i 0.274962 1.20469i −0.629113 0.777314i $$-0.716582\pi$$
0.904075 0.427374i $$-0.140561\pi$$
$$420$$ −9.51142 + 4.58046i −0.464110 + 0.223503i
$$421$$ −3.82813 + 16.7721i −0.186571 + 0.817423i 0.791835 + 0.610735i $$0.209126\pi$$
−0.978407 + 0.206688i $$0.933731\pi$$
$$422$$ −6.43416 3.09853i −0.313210 0.150834i
$$423$$ −7.54288 −0.366747
$$424$$ −7.17390 −0.348395
$$425$$ −1.44504 0.695895i −0.0700948 0.0337559i
$$426$$ −0.388355 1.70149i −0.0188159 0.0824376i
$$427$$ −3.45928 4.33780i −0.167406 0.209921i
$$428$$ −3.10872 + 3.89821i −0.150266 + 0.188427i
$$429$$ 5.49396 0.265251
$$430$$ −7.91723 6.92325i −0.381803 0.333869i
$$431$$ 3.73364 0.179843 0.0899216 0.995949i $$-0.471338\pi$$
0.0899216 + 0.995949i $$0.471338\pi$$
$$432$$ −5.10388 + 6.40006i −0.245560 + 0.307923i
$$433$$ 13.3877 + 16.7876i 0.643371 + 0.806762i 0.991420 0.130714i $$-0.0417271\pi$$
−0.348049 + 0.937476i $$0.613156\pi$$
$$434$$ −0.971229 4.25523i −0.0466205 0.204258i
$$435$$ −28.3817 13.6679i −1.36080 0.655325i
$$436$$ 7.63342 0.365574
$$437$$ 3.38106 0.161738
$$438$$ −13.0831 6.30047i −0.625133 0.301048i
$$439$$ 2.93458 12.8573i 0.140060 0.613643i −0.855359 0.518036i $$-0.826663\pi$$
0.995419 0.0956075i $$-0.0304794\pi$$
$$440$$ 1.62565 0.782870i 0.0774996 0.0373218i
$$441$$ 9.33997 40.9211i 0.444760 1.94862i
$$442$$ −4.04892 + 5.07718i −0.192587 + 0.241497i
$$443$$ 25.4148 + 12.2391i 1.20750 + 0.581499i 0.925803 0.378006i $$-0.123390\pi$$
0.281692 + 0.959505i $$0.409104\pi$$
$$444$$ 12.4194 15.5734i 0.589398 0.739082i
$$445$$ −6.22282 27.2639i −0.294990 1.29243i
$$446$$ 3.53319 1.70149i 0.167301 0.0805681i
$$447$$ 26.3572 12.6930i 1.24665 0.600356i
$$448$$ −2.66272 3.33894i −0.125802 0.157750i
$$449$$ −5.38955 23.6132i −0.254349 1.11437i −0.927191 0.374589i $$-0.877784\pi$$
0.672843 0.739786i $$-0.265073\pi$$
$$450$$ 1.34601 5.89726i 0.0634516 0.277999i
$$451$$ −1.20978 1.51701i −0.0569661 0.0714332i
$$452$$ 2.12833 + 2.66885i 0.100108 + 0.125532i
$$453$$ −2.08815 + 9.14877i −0.0981097 + 0.429846i
$$454$$ 0.741176 + 3.24730i 0.0347851 + 0.152403i
$$455$$ 7.54288 + 9.45847i 0.353616 + 0.443420i
$$456$$ −7.49007 + 3.60703i −0.350755 + 0.168915i
$$457$$ −21.1250 + 10.1733i −0.988185 + 0.475885i −0.856913 0.515462i $$-0.827620\pi$$
−0.131272 + 0.991346i $$0.541906\pi$$
$$458$$ 3.48835 + 15.2834i 0.163000 + 0.714148i
$$459$$ 14.7506 18.4967i 0.688500 0.863352i
$$460$$ −8.69202 4.18586i −0.405268 0.195167i
$$461$$ −10.3626 + 12.9942i −0.482633 + 0.605203i −0.962214 0.272295i $$-0.912217\pi$$
0.479581 + 0.877498i $$0.340789\pi$$
$$462$$ 0.232637 1.01925i 0.0108232 0.0474197i
$$463$$ 5.18114 2.49510i 0.240788 0.115957i −0.309599 0.950867i $$-0.600195\pi$$
0.550386 + 0.834910i $$0.314480\pi$$
$$464$$ −0.599031 + 2.62453i −0.0278093 + 0.121841i
$$465$$ 26.5797 + 12.8001i 1.23260 + 0.593591i
$$466$$ −6.22175 −0.288217
$$467$$ 23.4547 1.08536 0.542678 0.839941i $$-0.317410\pi$$
0.542678 + 0.839941i $$0.317410\pi$$
$$468$$ 46.5577 + 22.4210i 2.15213 + 1.03641i
$$469$$ −1.77359 7.77062i −0.0818970 0.358814i
$$470$$ 1.00000 + 1.25396i 0.0461266 + 0.0578409i
$$471$$ −46.7911 + 58.6742i −2.15602 + 2.70356i
$$472$$ 33.3967 1.53721
$$473$$ −2.16242 + 0.391435i −0.0994283 + 0.0179982i
$$474$$ −11.4155 −0.524331
$$475$$ −0.592990 + 0.743586i −0.0272083 + 0.0341181i
$$476$$ −1.62565 2.03850i −0.0745114 0.0934343i
$$477$$ −4.47285 19.5968i −0.204798 0.897278i
$$478$$ −11.3077 5.44552i −0.517204 0.249072i
$$479$$ 26.7278 1.22122 0.610612 0.791930i $$-0.290924\pi$$
0.610612 + 0.791930i $$0.290924\pi$$
$$480$$ 37.8538 1.72778
$$481$$ −20.5661 9.90413i −0.937735 0.451589i
$$482$$ 1.71121 7.49730i 0.0779434 0.341492i
$$483$$ −12.4596 + 6.00022i −0.566930 + 0.273019i
$$484$$ −3.28740 + 14.4031i −0.149427 + 0.654685i
$$485$$ −18.9517 + 23.7646i −0.860551 + 1.07910i
$$486$$ 27.3022 + 13.1481i 1.23845 + 0.596408i
$$487$$ −6.25116 + 7.83871i −0.283267 + 0.355206i −0.903025 0.429587i $$-0.858659\pi$$
0.619758 + 0.784793i $$0.287231\pi$$
$$488$$ 2.77413 + 12.1542i 0.125579 + 0.550197i
$$489$$ −36.7443 + 17.6951i −1.66164 + 0.800202i
$$490$$ −8.04115 + 3.87241i −0.363262 + 0.174938i
$$491$$ −13.1114 16.4412i −0.591710 0.741980i 0.392351 0.919816i $$-0.371662\pi$$
−0.984060 + 0.177835i $$0.943091\pi$$
$$492$$ −5.67629 24.8695i −0.255907 1.12120i
$$493$$ 1.73125 7.58510i 0.0779716 0.341616i
$$494$$ 2.40097 + 3.01072i 0.108025 + 0.135459i
$$495$$ 3.15213 + 3.95264i 0.141678 + 0.177658i
$$496$$ 0.560999 2.45790i 0.0251896 0.110363i
$$497$$ −0.178685 0.782870i −0.00801511 0.0351165i
$$498$$ 9.88016 + 12.3893i 0.442740 + 0.555179i
$$499$$ −27.8279 + 13.4012i −1.24575 + 0.599920i −0.936369 0.351019i $$-0.885835\pi$$
−0.309379 + 0.950939i $$0.600121\pi$$
$$500$$ 14.6703 7.06482i 0.656074 0.315948i
$$501$$ −16.0879 70.4857i −0.718755 3.14907i
$$502$$ −6.56584 + 8.23331i −0.293048 + 0.367470i
$$503$$ 27.8751 + 13.4239i 1.24289 + 0.598543i 0.935596 0.353072i $$-0.114863\pi$$
0.307292 + 0.951615i $$0.400577\pi$$
$$504$$ 15.1679 19.0199i 0.675630 0.847213i
$$505$$ −7.11529 + 31.1741i −0.316626 + 1.38723i
$$506$$ 0.860781 0.414530i 0.0382664 0.0184281i
$$507$$ 9.02542 39.5429i 0.400833 1.75616i
$$508$$ 5.71475 + 2.75208i 0.253551 + 0.122104i
$$509$$ −22.4494 −0.995050 −0.497525 0.867450i $$-0.665758\pi$$
−0.497525 + 0.867450i $$0.665758\pi$$
$$510$$ −8.35258 −0.369859
$$511$$ −6.01961 2.89889i −0.266292 0.128239i
$$512$$ −1.38471 6.06680i −0.0611960 0.268117i
$$513$$ −8.74698 10.9684i −0.386189 0.484265i
$$514$$ −8.91066 + 11.1736i −0.393032 + 0.492847i
$$515$$ −30.1715 −1.32952
$$516$$ −27.8463 7.69834i −1.22587 0.338900i
$$517$$ 0.335126 0.0147388
$$518$$ −2.70828 + 3.39608i −0.118995 + 0.149215i
$$519$$ −4.42543 5.54931i −0.194255 0.243588i
$$520$$ −6.04892 26.5020i −0.265263 1.16219i
$$521$$ 14.7066 + 7.08230i 0.644306 + 0.310281i 0.727352 0.686264i $$-0.240751\pi$$
−0.0830464 + 0.996546i $$0.526465\pi$$
$$522$$ 29.3424 1.28428
$$523$$ 4.42626 0.193547 0.0967733 0.995306i $$-0.469148\pi$$
0.0967733 + 0.995306i $$0.469148\pi$$
$$524$$ −5.37435 2.58815i −0.234780 0.113064i
$$525$$ 0.865625 3.79255i 0.0377790 0.165521i
$$526$$ 23.0836 11.1165i 1.00649 0.484701i
$$527$$ −1.62133 + 7.10353i −0.0706264 + 0.309435i
$$528$$ 0.376510 0.472129i 0.0163855 0.0205468i
$$529$$ 9.33609 + 4.49602i 0.405917 + 0.195479i
$$530$$ −2.66487 + 3.34165i −0.115755 + 0.145152i
$$531$$ 20.8225 + 91.2294i 0.903620 + 3.95902i
$$532$$ −1.39301 + 0.670838i −0.0603946 + 0.0290845i
$$533$$ −26.3376 + 12.6835i −1.14081 + 0.549384i
$$534$$ 22.7005 + 28.4655i 0.982347 + 1.23182i
$$535$$ 1.63533 + 7.16487i 0.0707017 + 0.309764i
$$536$$ −3.98523 + 17.4604i −0.172136 + 0.754176i
$$537$$ −20.6848 25.9379i −0.892614 1.11930i
$$538$$ −0.426624 0.534970i −0.0183931 0.0230642i
$$539$$ −0.414969 + 1.81810i −0.0178740 + 0.0783111i
$$540$$ 8.90754 + 39.0265i 0.383320 + 1.67943i
$$541$$ −3.52595 4.42140i −0.151592 0.190091i 0.700237 0.713911i $$-0.253078\pi$$
−0.851829 + 0.523820i $$0.824506\pi$$
$$542$$ −1.64622 + 0.792778i −0.0707112 + 0.0340527i
$$543$$ −38.8451 + 18.7068i −1.66700 + 0.802786i
$$544$$ 2.08038 + 9.11472i 0.0891954 + 0.390791i
$$545$$ 7.01507 8.79661i 0.300492 0.376806i
$$546$$ −14.1908 6.83394i −0.607311 0.292466i
$$547$$ 11.7424 14.7245i 0.502070 0.629576i −0.464625 0.885508i $$-0.653811\pi$$
0.966695 + 0.255932i $$0.0823822\pi$$
$$548$$ 1.69859 7.44203i 0.0725604 0.317908i
$$549$$ −31.4720 + 15.1561i −1.34319 + 0.646846i
$$550$$ −0.0598025 + 0.262012i −0.00254999 + 0.0111722i
$$551$$ −4.15668 2.00175i −0.177080 0.0852774i
$$552$$ 31.0737 1.32258
$$553$$ −5.25236 −0.223353
$$554$$ −2.51261 1.21001i −0.106751 0.0514084i
$$555$$ −6.53319 28.6238i −0.277318 1.21501i
$$556$$ −13.9955 17.5497i −0.593539 0.744275i
$$557$$ 23.7032 29.7229i 1.00434 1.25940i 0.0387688 0.999248i $$-0.487656\pi$$
0.965568 0.260150i $$-0.0837722\pi$$
$$558$$ −27.4795 −1.16330
$$559$$ −1.50000 + 33.0740i −0.0634432 + 1.39888i
$$560$$ 1.32975 0.0561921
$$561$$ −1.08815 + 1.36449i −0.0459416 + 0.0576089i
$$562$$ −9.05107 11.3497i −0.381796 0.478758i
$$563$$ 9.62684 + 42.1780i 0.405723 + 1.77759i 0.603522 + 0.797346i $$0.293763\pi$$
−0.197799 + 0.980243i $$0.563379\pi$$
$$564$$ 3.96950 + 1.91161i 0.167146 + 0.0804933i
$$565$$ 5.03146 0.211675
$$566$$ −19.1390 −0.804471
$$567$$ 27.2729 + 13.1340i 1.14536 + 0.551574i
$$568$$ −0.401501 + 1.75909i −0.0168466 + 0.0738099i
$$569$$ 31.9288 15.3761i 1.33853 0.644600i 0.378785 0.925485i $$-0.376342\pi$$
0.959742 + 0.280884i $$0.0906277\pi$$
$$570$$ −1.10215 + 4.82882i −0.0461638 + 0.202257i
$$571$$ 26.8391 33.6551i 1.12318 1.40842i 0.221963 0.975055i $$-0.428754\pi$$
0.901217 0.433368i $$-0.142675\pi$$
$$572$$ −2.06853 0.996152i −0.0864897 0.0416512i
$$573$$ 43.3901 54.4095i 1.81265 2.27299i
$$574$$ 1.23782 + 5.42326i 0.0516658 + 0.226362i
$$575$$ 3.20291 1.54244i 0.133570 0.0643241i
$$576$$ −24.2250 + 11.6661i −1.00937 + 0.486089i
$$577$$ −9.76002 12.2387i −0.406315 0.509503i 0.536006 0.844214i $$-0.319933\pi$$
−0.942321 + 0.334712i $$0.891361\pi$$
$$578$$ 2.57457 + 11.2799i 0.107088 + 0.469184i
$$579$$ −6.31863 + 27.6837i −0.262593 + 1.15050i
$$580$$ 8.20775 + 10.2922i 0.340808 + 0.427360i
$$581$$ 4.54593 + 5.70042i 0.188597 + 0.236493i
$$582$$ 8.80601 38.5817i 0.365021 1.59926i
$$583$$ 0.198726 + 0.870677i 0.00823040 + 0.0360597i
$$584$$ 9.36025 + 11.7374i 0.387330 + 0.485696i
$$585$$ 68.6238 33.0475i 2.83725 1.36635i
$$586$$ −19.8710 + 9.56937i −0.820864 + 0.395307i
$$587$$ 4.35258 + 19.0699i 0.179650 + 0.787100i 0.981791 + 0.189964i $$0.0608373\pi$$
−0.802141 + 0.597135i $$0.796306\pi$$
$$588$$ −15.2860 + 19.1680i −0.630383 + 0.790475i
$$589$$ 3.89277 + 1.87466i 0.160399 + 0.0772440i
$$590$$ 12.4058 15.5564i 0.510739 0.640447i
$$591$$ 13.3928 58.6776i 0.550905 2.41367i
$$592$$ −2.26055 + 1.08863i −0.0929082 + 0.0447422i
$$593$$ 9.01424 39.4940i 0.370170 1.62182i −0.356124 0.934439i $$-0.615902\pi$$
0.726294 0.687384i $$-0.241241\pi$$
$$594$$ −3.57165 1.72001i −0.146546 0.0705731i
$$595$$ −3.84309 −0.157551
$$596$$ −12.2252 −0.500764
$$597$$ −10.0075 4.81937i −0.409581 0.197244i
$$598$$ −3.20291 14.0329i −0.130977 0.573846i
$$599$$ −22.5371 28.2607i −0.920842 1.15470i −0.987610 0.156931i $$-0.949840\pi$$
0.0667673 0.997769i $$-0.478731\pi$$
$$600$$ −5.44989 + 6.83394i −0.222491 + 0.278994i
$$601$$ −23.5743 −0.961617 −0.480809 0.876826i $$-0.659657\pi$$
−0.480809 + 0.876826i $$0.659657\pi$$
$$602$$ 6.07242 + 1.67877i 0.247493 + 0.0684215i
$$603$$ −50.1812 −2.04354
$$604$$ 2.44504 3.06599i 0.0994873 0.124753i
$$605$$ 13.5767 + 17.0247i 0.551973 + 0.692152i
$$606$$ −9.26367 40.5868i −0.376311 1.64873i
$$607$$ 4.54407 + 2.18831i 0.184438 + 0.0888208i 0.523824 0.851826i $$-0.324505\pi$$
−0.339386 + 0.940647i $$0.610219\pi$$
$$608$$ 5.54394 0.224837
$$609$$ 18.8702 0.764660
$$610$$ 6.69202 + 3.22271i 0.270952 + 0.130484i
$$611$$ 1.12349 4.92233i 0.0454515 0.199136i
$$612$$ −14.7899 + 7.12242i −0.597845 + 0.287907i
$$613$$ −6.06398 + 26.5680i −0.244922 + 1.07307i 0.691549 + 0.722329i $$0.256928\pi$$
−0.936471 + 0.350744i $$0.885929\pi$$
$$614$$ −10.1419 + 12.7175i −0.409294 + 0.513239i
$$615$$ −33.8756 16.3136i −1.36600 0.657829i
$$616$$ −0.673899 + 0.845043i −0.0271522 + 0.0340477i
$$617$$ 5.25076 + 23.0051i 0.211388 + 0.926150i 0.963625 + 0.267258i $$0.0861174\pi$$
−0.752238 + 0.658892i $$0.771025\pi$$
$$618$$ 35.3913 17.0436i 1.42365 0.685593i
$$619$$ 37.9686 18.2847i 1.52609 0.734925i 0.532335 0.846534i $$-0.321315\pi$$
0.993752 + 0.111609i $$0.0356005\pi$$
$$620$$ −7.68664 9.63875i −0.308703 0.387101i
$$621$$ 11.6685 + 51.1231i 0.468242 + 2.05150i
$$622$$ 1.02004 4.46909i 0.0408999 0.179194i
$$623$$ 10.4447 + 13.0972i 0.418457 + 0.524728i
$$624$$ −5.67241 7.11297i −0.227078 0.284747i
$$625$$ 4.22790 18.5236i 0.169116 0.740945i
$$626$$ 4.34309 + 19.0283i 0.173585 + 0.760524i
$$627$$ 0.645260 + 0.809131i 0.0257692 + 0.0323136i
$$628$$ 28.2560 13.6074i 1.12754 0.542993i
$$629$$ 6.53319 3.14622i 0.260495 0.125448i
$$630$$ −3.22521 14.1306i −0.128495 0.562975i
$$631$$ −14.5070 + 18.1912i −0.577515 + 0.724180i −0.981687 0.190503i $$-0.938988\pi$$
0.404172 + 0.914683i $$0.367560\pi$$
$$632$$ 10.6332 + 5.12067i 0.422965 + 0.203689i
$$633$$ −18.0281 + 22.6065i −0.716553 + 0.898529i
$$634$$ −2.70464 + 11.8498i −0.107415 + 0.470615i
$$635$$ 8.42327 4.05643i 0.334267 0.160975i
$$636$$ −2.61260 + 11.4466i −0.103597 + 0.453886i
$$637$$ 25.3131 + 12.1902i 1.00294 + 0.482992i
$$638$$ −1.30367 −0.0516127
$$639$$ −5.05562 −0.199997
$$640$$ −15.8562 7.63596i −0.626773 0.301838i
$$641$$ −2.50700 10.9839i −0.0990206 0.433837i 0.900979 0.433862i $$-0.142849\pi$$
−1.00000 2.43722e-5i $$0.999992\pi$$
$$642$$ −5.96562 7.48065i −0.235444 0.295238i
$$643$$ −5.65817 + 7.09512i −0.223136 + 0.279804i −0.880781 0.473524i $$-0.842982\pi$$
0.657644 + 0.753329i $$0.271553\pi$$
$$644$$ 5.77910 0.227729
$$645$$ −34.4620 + 25.0149i −1.35694 + 0.984959i
$$646$$ −1.22329 −0.0481297
$$647$$ −3.99462 + 5.00910i −0.157045 + 0.196928i −0.854129 0.520061i $$-0.825909\pi$$
0.697084 + 0.716989i $$0.254480\pi$$
$$648$$ −42.4083 53.1783i −1.66595 2.08904i
$$649$$ −0.925132 4.05327i −0.0363146 0.159105i
$$650$$ 3.64795 + 1.75676i 0.143084 + 0.0689058i
$$651$$ −17.6722 −0.692627
$$652$$ 17.0431 0.667458
$$653$$ 25.8315 + 12.4398i 1.01087 + 0.486807i 0.864612 0.502440i $$-0.167564\pi$$
0.146254 + 0.989247i $$0.453278\pi$$
$$654$$ −3.25959 + 14.2812i −0.127460 + 0.558440i
$$655$$ −7.92154 + 3.81481i −0.309520 + 0.149057i
$$656$$ −0.714988 + 3.13257i −0.0279156 + 0.122306i
$$657$$ −26.2268 + 32.8874i −1.02321 + 1.28306i
$$658$$ −0.865625 0.416863i −0.0337456 0.0162510i
$$659$$ 5.82118 7.29953i 0.226761 0.284349i −0.655415 0.755269i $$-0.727506\pi$$
0.882176 + 0.470919i $$0.156078\pi$$
$$660$$ −0.657105 2.87896i −0.0255778 0.112064i
$$661$$ −6.33901 + 3.05271i −0.246559 + 0.118737i −0.553082 0.833127i $$-0.686549\pi$$
0.306523 + 0.951863i $$0.400834\pi$$
$$662$$ −16.7524 + 8.06751i −0.651099 + 0.313553i
$$663$$ 16.3937 + 20.5571i 0.636680 + 0.798371i
$$664$$ −3.64556 15.9722i −0.141475 0.619842i
$$665$$ −0.507106 + 2.22178i −0.0196647 + 0.0861568i
$$666$$ 17.0511 + 21.3814i 0.660716 + 0.828511i
$$667$$ 10.7518 + 13.4824i 0.416312 + 0.522039i
$$668$$ −6.72305 + 29.4556i −0.260123 + 1.13967i
$$669$$ −3.53319 15.4799i −0.136601 0.598488i
$$670$$ 6.65279 + 8.34234i 0.257020 + 0.322293i
$$671$$ 1.39828 0.673376i 0.0539800 0.0259954i
$$672$$ −20.4300 + 9.83859i −0.788106 + 0.379532i
$$673$$ 0.0866540 + 0.379656i 0.00334027 + 0.0146347i 0.976571 0.215197i $$-0.0690395\pi$$
−0.973230 + 0.229832i $$0.926182\pi$$
$$674$$ 10.7322 13.4578i 0.413389 0.518374i
$$675$$ −13.2899 6.40006i −0.511527 0.246338i
$$676$$ −10.5680 + 13.2519i −0.406462 + 0.509687i
$$677$$ −0.809602 + 3.54710i −0.0311155 + 0.136326i −0.988100 0.153813i $$-0.950845\pi$$
0.956984 + 0.290139i $$0.0937017\pi$$
$$678$$ −5.90193 + 2.84222i −0.226662 + 0.109155i
$$679$$ 4.05171 17.7517i 0.155490 0.681248i
$$680$$ 7.78017 + 3.74673i 0.298356 + 0.143681i
$$681$$ 13.4862 0.516792
$$682$$ 1.22090 0.0467506
$$683$$ −25.1797 12.1259i −0.963475 0.463985i −0.115084 0.993356i $$-0.536714\pi$$
−0.848391 + 0.529371i $$0.822428\pi$$
$$684$$ 2.16607 + 9.49018i 0.0828218 + 0.362866i
$$685$$ −7.01507 8.79661i −0.268032 0.336101i
$$686$$ 7.52661 9.43808i 0.287367 0.360347i
$$687$$ 63.4728 2.42164
$$688$$ 2.73945 + 2.39552i 0.104440 + 0.0913283i
$$689$$ 13.4547 0.512584
$$690$$ 11.5429 14.4743i 0.439430 0.551028i
$$691$$ 16.1848 + 20.2951i 0.615698 + 0.772061i 0.987732 0.156158i $$-0.0499109\pi$$
−0.372034 + 0.928219i $$0.621339\pi$$
$$692$$ 0.660030 + 2.89178i 0.0250906 + 0.109929i
$$693$$ −2.72856 1.31401i −0.103649 0.0499150i
$$694$$ −20.5429 −0.779797
$$695$$ −33.0858 −1.25501
$$696$$ −38.2020 18.3971i −1.44804 0.697341i
$$697$$ 2.06638 9.05338i 0.0782696 0.342921i
$$698$$ 6.99396 3.36811i 0.264725 0.127485i
$$699$$ −5.60560 + 24.5598i −0.212023 + 0.928935i
$$700$$ −1.01357 + 1.27098i −0.0383095 + 0.0480386i
$$701$$ 38.4529 + 18.5179i 1.45234 + 0.699412i 0.983001 0.183603i $$-0.0587760\pi$$
0.469344 + 0.883015i $$0.344490\pi$$
$$702$$ −37.2373 + 46.6942i −1.40543 + 1.76236i
$$703$$ −0.956828 4.19214i −0.0360874 0.158109i
$$704$$ 1.07630 0.518319i 0.0405646 0.0195349i
$$705$$ 5.85086 2.81762i 0.220356 0.106118i
$$706$$ −0.207751 0.260511i −0.00781881 0.00980448i
$$707$$ −4.26228 18.6743i −0.160300 0.702319i
$$708$$ 12.1625 53.2873i 0.457094 2.00266i
$$709$$ −17.4400 21.8690i −0.654971 0.821308i 0.337814 0.941213i $$-0.390313\pi$$
−0.992785 + 0.119905i $$0.961741\pi$$
$$710$$ 0.670251 + 0.840468i 0.0251541 + 0.0315422i
$$711$$ −7.35839 + 32.2392i −0.275961 + 1.20906i
$$712$$ −8.37598 36.6976i −0.313903 1.37530i
$$713$$ −10.0692 12.6264i −0.377094 0.472861i
$$714$$ 4.50796 2.17092i 0.168706 0.0812446i
$$715$$ −3.04892 + 1.46828i −0.114023 + 0.0549106i
$$716$$ 3.08503 + 13.5164i 0.115293 + 0.505132i
$$717$$ −31.6836 + 39.7300i −1.18325 + 1.48374i
$$718$$ 5.16152 + 2.48566i 0.192626 + 0.0927639i
$$719$$ 23.7969 29.8403i 0.887473 1.11286i −0.105489 0.994420i $$-0.533641\pi$$
0.992962 0.118435i $$-0.0377879\pi$$
$$720$$ 1.86294 8.16206i 0.0694276 0.304182i
$$721$$ 16.2838 7.84187i 0.606441 0.292047i
$$722$$ 3.22909 14.1476i 0.120174 0.526519i
$$723$$ −28.0531 13.5097i −1.04331 0.502430i
$$724$$ 18.0175 0.669614
$$725$$ −4.85086 −0.180156
$$726$$ −25.5426 12.3007i −0.947976 0.456521i
$$727$$ 6.28687 + 27.5446i 0.233167 + 1.02157i 0.946994 + 0.321250i $$0.104103\pi$$
−0.713827 + 0.700322i $$0.753040\pi$$
$$728$$ 10.1528 + 12.7312i 0.376288 + 0.471850i
$$729$$ 29.2392 36.6648i 1.08293 1.35796i
$$730$$ 8.94438 0.331046
$$731$$ −7.91723 6.92325i −0.292829 0.256066i
$$732$$ 20.4034 0.754132
$$733$$ −5.51775 + 6.91904i −0.203803 + 0.255561i −0.873220 0.487326i $$-0.837972\pi$$
0.669417 + 0.742887i $$0.266544\pi$$
$$734$$ 4.00216 + 5.01854i 0.147722 + 0.185238i
$$735$$ 8.04115 + 35.2306i 0.296602 + 1.29950i
$$736$$ −18.6700 8.99100i −0.688186 0.331413i
$$737$$ 2.22952 0.0821255
$$738$$ 35.0224 1.28919
$$739$$ −33.9729 16.3605i −1.24971 0.601830i −0.312279 0.949991i $$-0.601092\pi$$
−0.937435 + 0.348160i $$0.886807\pi$$
$$740$$ −2.73019 + 11.9617i −0.100364 + 0.439722i
$$741$$ 14.0477 6.76503i 0.516056 0.248519i
$$742$$ 0.569728 2.49614i 0.0209154 0.0916363i
$$743$$ 3.45779 4.33593i 0.126854 0.159070i −0.714349 0.699790i $$-0.753277\pi$$
0.841202 + 0.540720i $$0.181848\pi$$
$$744$$ 35.7766 + 17.2291i 1.31163 + 0.631649i
$$745$$ −11.2349 + 14.0881i −0.411615 + 0.516149i
$$746$$ −3.51530 15.4015i −0.128704 0.563891i
$$747$$ 41.3582 19.9170i 1.51322 0.728726i
$$748$$ 0.657105 0.316445i 0.0240261 0.0115704i
$$749$$ −2.74482 3.44190i −0.100294 0.125764i
$$750$$ 6.95300 + 30.4631i 0.253888 + 1.11235i
$$751$$ 7.78621 34.1136i 0.284123 1.24482i −0.608331 0.793684i $$-0.708161\pi$$
0.892453 0.451140i $$-0.148982\pi$$
$$752$$ −0.346011 0.433884i −0.0126177 0.0158221i
$$753$$ 26.5846 + 33.3360i 0.968795 + 1.21483i
$$754$$ −4.37047 + 19.1483i −0.159163 + 0.697339i
$$755$$ −1.28621 5.63525i −0.0468099 0.205088i
$$756$$ −14.9508 18.7478i −0.543757 0.681850i
$$757$$ −39.1764 + 18.8663i −1.42389 + 0.685709i −0.977850 0.209305i $$-0.932880\pi$$
−0.446038 + 0.895014i $$0.647165\pi$$
$$758$$ 9.47919 4.56494i 0.344300 0.165806i
$$759$$ −0.860781 3.77133i −0.0312444 0.136890i
$$760$$ 3.19269 4.00350i 0.115811 0.145222i
$$761$$ −23.5846 11.3577i −0.854940 0.411717i −0.0455308 0.998963i $$-0.514498\pi$$
−0.809409 + 0.587246i $$0.800212\pi$$
$$762$$ −7.58911 + 9.51644i −0.274924 + 0.344744i
$$763$$ −1.49976 + 6.57089i −0.0542951 + 0.237882i
$$764$$ −26.2022 + 12.6183i −0.947964 + 0.456515i
$$765$$ −5.38404 + 23.5890i −0.194660 + 0.852863i
$$766$$ 4.35958 + 2.09947i 0.157518 + 0.0758568i
$$767$$ −62.6359 −2.26165
$$768$$ 46.0616 1.66210
$$769$$ 32.1836 + 15.4988i 1.16057 + 0.558901i 0.912192 0.409762i $$-0.134388\pi$$
0.248378 + 0.968663i $$0.420103\pi$$
$$770$$ 0.143294 + 0.627813i 0.00516396 + 0.0226248i
$$771$$ 36.0785 + 45.2410i 1.29934 + 1.62932i