# Properties

 Label 43.2.c.b Level $43$ Weight $2$ Character orbit 43.c Analytic conductor $0.343$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$43$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 43.c (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.343356728692$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{5})$$ Defining polynomial: $$x^{4} - x^{3} + 2 x^{2} + x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -2 - \beta_{2} ) q^{2} + ( 1 + \beta_{1} + \beta_{3} ) q^{3} + ( 3 + 3 \beta_{2} ) q^{4} + ( 2 - 2 \beta_{1} + 2 \beta_{3} ) q^{5} + ( -1 - \beta_{3} ) q^{6} + ( -2 \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{7} + ( -5 - 4 \beta_{2} ) q^{8} + ( 3 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})$$ $$q + ( -2 - \beta_{2} ) q^{2} + ( 1 + \beta_{1} + \beta_{3} ) q^{3} + ( 3 + 3 \beta_{2} ) q^{4} + ( 2 - 2 \beta_{1} + 2 \beta_{3} ) q^{5} + ( -1 - \beta_{3} ) q^{6} + ( -2 \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{7} + ( -5 - 4 \beta_{2} ) q^{8} + ( 3 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{9} + ( -6 + 4 \beta_{1} - 6 \beta_{3} ) q^{10} + ( -2 + \beta_{2} ) q^{11} -3 \beta_{1} q^{12} + ( -\beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{13} + ( \beta_{1} + \beta_{2} ) q^{14} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{15} + ( 8 + 3 \beta_{2} ) q^{16} + ( 5 \beta_{1} + 5 \beta_{2} - 2 \beta_{3} ) q^{17} + ( -4 \beta_{1} - 4 \beta_{2} + 5 \beta_{3} ) q^{18} + ( -2 + 2 \beta_{1} - 2 \beta_{3} ) q^{19} + ( 12 - 6 \beta_{1} + 12 \beta_{3} ) q^{20} + ( 3 - 5 \beta_{2} ) q^{21} + ( 3 + \beta_{2} ) q^{22} + ( -6 + \beta_{1} - 6 \beta_{3} ) q^{23} + ( -1 + 3 \beta_{1} - \beta_{3} ) q^{24} + ( -4 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} ) q^{25} + ( 4 \beta_{1} + 4 \beta_{2} - 7 \beta_{3} ) q^{26} + ( 1 + 2 \beta_{2} ) q^{27} + ( 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{28} + 3 \beta_{3} q^{29} + ( 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{30} + ( -9 - 3 \beta_{2} ) q^{32} + ( -3 - 4 \beta_{1} - 3 \beta_{3} ) q^{33} + ( -7 \beta_{1} - 7 \beta_{2} + 9 \beta_{3} ) q^{34} + ( -2 + 2 \beta_{2} ) q^{35} + ( 3 \beta_{1} + 3 \beta_{2} - 12 \beta_{3} ) q^{36} + 3 \beta_{1} q^{37} + ( 6 - 4 \beta_{1} + 6 \beta_{3} ) q^{38} + ( -2 + \beta_{2} ) q^{39} + ( -18 + 10 \beta_{1} - 18 \beta_{3} ) q^{40} + ( 3 - 4 \beta_{2} ) q^{41} + ( -1 + 2 \beta_{2} ) q^{42} + ( -7 - \beta_{3} ) q^{43} + ( -3 - 6 \beta_{2} ) q^{44} + ( 8 + 2 \beta_{2} ) q^{45} + ( 13 - 7 \beta_{1} + 13 \beta_{3} ) q^{46} + ( 6 + 3 \beta_{2} ) q^{47} + ( 5 + 2 \beta_{1} + 5 \beta_{3} ) q^{48} + ( 2 - 8 \beta_{1} + 2 \beta_{3} ) q^{49} + ( 7 \beta_{1} + 7 \beta_{2} - 10 \beta_{3} ) q^{50} + ( -3 + 8 \beta_{2} ) q^{51} + ( -9 \beta_{1} - 9 \beta_{2} + 12 \beta_{3} ) q^{52} + ( 3 - \beta_{1} + 3 \beta_{3} ) q^{53} + ( -4 - 3 \beta_{2} ) q^{54} + ( -2 + 4 \beta_{1} - 2 \beta_{3} ) q^{55} + ( -2 \beta_{1} - 2 \beta_{2} - 3 \beta_{3} ) q^{56} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{57} + ( 3 \beta_{1} + 3 \beta_{2} - 6 \beta_{3} ) q^{58} + ( -3 - 5 \beta_{2} ) q^{59} + 6 \beta_{3} q^{60} + ( 3 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} ) q^{61} + ( 5 + 7 \beta_{1} + 5 \beta_{3} ) q^{63} + ( 5 + 6 \beta_{2} ) q^{64} + ( -8 - 6 \beta_{2} ) q^{65} + ( 2 + \beta_{1} + 2 \beta_{3} ) q^{66} + ( -1 + 3 \beta_{1} - \beta_{3} ) q^{67} + ( 6 \beta_{1} + 6 \beta_{2} - 21 \beta_{3} ) q^{68} + ( -4 \beta_{1} - 4 \beta_{2} - 5 \beta_{3} ) q^{69} + 2 q^{70} + ( -11 \beta_{1} - 11 \beta_{2} + 7 \beta_{3} ) q^{71} + ( -7 \beta_{1} - 7 \beta_{2} + 17 \beta_{3} ) q^{72} + ( 3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{73} + ( 3 - 3 \beta_{1} + 3 \beta_{3} ) q^{74} + ( 1 - 5 \beta_{2} ) q^{75} + ( -12 + 6 \beta_{1} - 12 \beta_{3} ) q^{76} + ( 7 \beta_{1} + 7 \beta_{2} + 4 \beta_{3} ) q^{77} + ( 3 + \beta_{2} ) q^{78} + ( \beta_{1} + \beta_{2} - 3 \beta_{3} ) q^{79} + ( 22 - 16 \beta_{1} + 22 \beta_{3} ) q^{80} + ( -4 + 6 \beta_{1} - 4 \beta_{3} ) q^{81} + ( -2 + \beta_{2} ) q^{82} + ( 5 - 13 \beta_{1} + 5 \beta_{3} ) q^{83} + ( -6 + 9 \beta_{2} ) q^{84} + ( 14 + 4 \beta_{2} ) q^{85} + ( 14 - \beta_{1} + 6 \beta_{2} + 2 \beta_{3} ) q^{86} + ( -3 + 3 \beta_{2} ) q^{87} + ( 6 + 7 \beta_{2} ) q^{88} + ( -3 + 3 \beta_{1} - 3 \beta_{3} ) q^{89} + ( -18 - 10 \beta_{2} ) q^{90} + ( 1 + 3 \beta_{1} + \beta_{3} ) q^{91} + ( -21 + 18 \beta_{1} - 21 \beta_{3} ) q^{92} + ( -15 - 9 \beta_{2} ) q^{94} + ( 4 \beta_{1} + 4 \beta_{2} - 8 \beta_{3} ) q^{95} + ( -6 - 3 \beta_{1} - 6 \beta_{3} ) q^{96} + ( -6 + 2 \beta_{2} ) q^{97} + ( -12 + 10 \beta_{1} - 12 \beta_{3} ) q^{98} + ( -8 \beta_{1} - 8 \beta_{2} - \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 6 q^{2} + 3 q^{3} + 6 q^{4} + 2 q^{5} - 2 q^{6} + 4 q^{7} - 12 q^{8} - q^{9} + O(q^{10})$$ $$4 q - 6 q^{2} + 3 q^{3} + 6 q^{4} + 2 q^{5} - 2 q^{6} + 4 q^{7} - 12 q^{8} - q^{9} - 8 q^{10} - 10 q^{11} - 3 q^{12} - 5 q^{13} - q^{14} + 2 q^{15} + 26 q^{16} - q^{17} - 6 q^{18} - 2 q^{19} + 18 q^{20} + 22 q^{21} + 10 q^{22} - 11 q^{23} + q^{24} - 2 q^{25} + 10 q^{26} - 9 q^{28} - 6 q^{29} + 2 q^{30} - 30 q^{32} - 10 q^{33} - 11 q^{34} - 12 q^{35} + 21 q^{36} + 3 q^{37} + 8 q^{38} - 10 q^{39} - 26 q^{40} + 20 q^{41} - 8 q^{42} - 26 q^{43} + 28 q^{45} + 19 q^{46} + 18 q^{47} + 12 q^{48} - 4 q^{49} + 13 q^{50} - 28 q^{51} - 15 q^{52} + 5 q^{53} - 10 q^{54} + 8 q^{56} - 2 q^{57} + 9 q^{58} - 2 q^{59} - 12 q^{60} + q^{61} + 17 q^{63} + 8 q^{64} - 20 q^{65} + 5 q^{66} + q^{67} + 36 q^{68} + 14 q^{69} + 8 q^{70} - 3 q^{71} - 27 q^{72} + 3 q^{73} + 3 q^{74} + 14 q^{75} - 18 q^{76} - 15 q^{77} + 10 q^{78} + 5 q^{79} + 28 q^{80} - 2 q^{81} - 10 q^{82} - 3 q^{83} - 42 q^{84} + 48 q^{85} + 39 q^{86} - 18 q^{87} + 10 q^{88} - 3 q^{89} - 52 q^{90} + 5 q^{91} - 24 q^{92} - 42 q^{94} + 12 q^{95} - 15 q^{96} - 28 q^{97} - 14 q^{98} + 10 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - x^{3} + 2 x^{2} + x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 1$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 2 \nu^{2} - 2 \nu - 1$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{3} + \beta_{2} + \beta_{1}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{2} - 1$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/43\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$\beta_{3}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
6.1
 −0.309017 + 0.535233i 0.809017 − 1.40126i −0.309017 − 0.535233i 0.809017 + 1.40126i
−2.61803 0.190983 0.330792i 4.85410 1.61803 2.80252i −0.500000 + 0.866025i −0.118034 0.204441i −7.47214 1.42705 + 2.47172i −4.23607 + 7.33708i
6.2 −0.381966 1.30902 2.26728i −1.85410 −0.618034 + 1.07047i −0.500000 + 0.866025i 2.11803 + 3.66854i 1.47214 −1.92705 3.33775i 0.236068 0.408882i
36.1 −2.61803 0.190983 + 0.330792i 4.85410 1.61803 + 2.80252i −0.500000 0.866025i −0.118034 + 0.204441i −7.47214 1.42705 2.47172i −4.23607 7.33708i
36.2 −0.381966 1.30902 + 2.26728i −1.85410 −0.618034 1.07047i −0.500000 0.866025i 2.11803 3.66854i 1.47214 −1.92705 + 3.33775i 0.236068 + 0.408882i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
43.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 43.2.c.b 4
3.b odd 2 1 387.2.h.d 4
4.b odd 2 1 688.2.i.e 4
43.c even 3 1 inner 43.2.c.b 4
43.c even 3 1 1849.2.a.e 2
43.d odd 6 1 1849.2.a.h 2
129.f odd 6 1 387.2.h.d 4
172.g odd 6 1 688.2.i.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
43.2.c.b 4 1.a even 1 1 trivial
43.2.c.b 4 43.c even 3 1 inner
387.2.h.d 4 3.b odd 2 1
387.2.h.d 4 129.f odd 6 1
688.2.i.e 4 4.b odd 2 1
688.2.i.e 4 172.g odd 6 1
1849.2.a.e 2 43.c even 3 1
1849.2.a.h 2 43.d odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} + 3 T_{2} + 1$$ acting on $$S_{2}^{\mathrm{new}}(43, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + 3 T + T^{2} )^{2}$$
$3$ $$1 - 3 T + 8 T^{2} - 3 T^{3} + T^{4}$$
$5$ $$16 + 8 T + 8 T^{2} - 2 T^{3} + T^{4}$$
$7$ $$1 + 4 T + 17 T^{2} - 4 T^{3} + T^{4}$$
$11$ $$( 5 + 5 T + T^{2} )^{2}$$
$13$ $$25 + 25 T + 20 T^{2} + 5 T^{3} + T^{4}$$
$17$ $$961 - 31 T + 32 T^{2} + T^{3} + T^{4}$$
$19$ $$16 - 8 T + 8 T^{2} + 2 T^{3} + T^{4}$$
$23$ $$841 + 319 T + 92 T^{2} + 11 T^{3} + T^{4}$$
$29$ $$( 9 + 3 T + T^{2} )^{2}$$
$31$ $$T^{4}$$
$37$ $$81 + 27 T + 18 T^{2} - 3 T^{3} + T^{4}$$
$41$ $$( 5 - 10 T + T^{2} )^{2}$$
$43$ $$( 43 + 13 T + T^{2} )^{2}$$
$47$ $$( 9 - 9 T + T^{2} )^{2}$$
$53$ $$25 - 25 T + 20 T^{2} - 5 T^{3} + T^{4}$$
$59$ $$( -31 + T + T^{2} )^{2}$$
$61$ $$121 + 11 T + 12 T^{2} - T^{3} + T^{4}$$
$67$ $$121 + 11 T + 12 T^{2} - T^{3} + T^{4}$$
$71$ $$22201 - 447 T + 158 T^{2} + 3 T^{3} + T^{4}$$
$73$ $$81 + 27 T + 18 T^{2} - 3 T^{3} + T^{4}$$
$79$ $$25 - 25 T + 20 T^{2} - 5 T^{3} + T^{4}$$
$83$ $$43681 - 627 T + 218 T^{2} + 3 T^{3} + T^{4}$$
$89$ $$81 - 27 T + 18 T^{2} + 3 T^{3} + T^{4}$$
$97$ $$( 44 + 14 T + T^{2} )^{2}$$