Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator \(12\!\cdots\!20\)\( T_{2}^{195} + \)\(63\!\cdots\!16\)\( T_{2}^{194} - \)\(18\!\cdots\!00\)\( T_{2}^{193} + \)\(58\!\cdots\!85\)\( T_{2}^{192} - \)\(74\!\cdots\!20\)\( T_{2}^{191} + \)\(18\!\cdots\!46\)\( T_{2}^{190} - \)\(56\!\cdots\!40\)\( T_{2}^{189} + \)\(25\!\cdots\!82\)\( T_{2}^{188} - \)\(18\!\cdots\!50\)\( T_{2}^{187} + \)\(13\!\cdots\!74\)\( T_{2}^{186} - \)\(39\!\cdots\!70\)\( T_{2}^{185} + \)\(40\!\cdots\!56\)\( T_{2}^{184} + \)\(20\!\cdots\!00\)\( T_{2}^{183} - \)\(26\!\cdots\!72\)\( T_{2}^{182} + \)\(85\!\cdots\!20\)\( T_{2}^{181} - \)\(13\!\cdots\!62\)\( T_{2}^{180} + \)\(28\!\cdots\!40\)\( T_{2}^{179} - \)\(11\!\cdots\!54\)\( T_{2}^{178} + \)\(38\!\cdots\!20\)\( T_{2}^{177} - \)\(98\!\cdots\!90\)\( T_{2}^{176} + \)\(11\!\cdots\!20\)\( T_{2}^{175} - \)\(24\!\cdots\!12\)\( T_{2}^{174} + \)\(70\!\cdots\!20\)\( T_{2}^{173} - \)\(27\!\cdots\!95\)\( T_{2}^{172} + \)\(21\!\cdots\!80\)\( T_{2}^{171} + \)\(56\!\cdots\!81\)\( T_{2}^{170} - \)\(84\!\cdots\!40\)\( T_{2}^{169} - \)\(14\!\cdots\!58\)\( T_{2}^{168} - \)\(34\!\cdots\!10\)\( T_{2}^{167} + \)\(24\!\cdots\!81\)\( T_{2}^{166} - \)\(97\!\cdots\!90\)\( T_{2}^{165} + \)\(19\!\cdots\!86\)\( T_{2}^{164} - \)\(40\!\cdots\!90\)\( T_{2}^{163} + \)\(10\!\cdots\!50\)\( T_{2}^{162} - \)\(31\!\cdots\!00\)\( T_{2}^{161} + \)\(76\!\cdots\!85\)\( T_{2}^{160} - \)\(11\!\cdots\!50\)\( T_{2}^{159} + \)\(19\!\cdots\!23\)\( T_{2}^{158} - \)\(31\!\cdots\!20\)\( T_{2}^{157} + \)\(90\!\cdots\!60\)\( T_{2}^{156} - \)\(11\!\cdots\!80\)\( T_{2}^{155} - \)\(16\!\cdots\!91\)\( T_{2}^{154} + \)\(10\!\cdots\!10\)\( T_{2}^{153} - \)\(17\!\cdots\!15\)\( T_{2}^{152} + \)\(66\!\cdots\!10\)\( T_{2}^{151} - \)\(15\!\cdots\!80\)\( T_{2}^{150} + \)\(44\!\cdots\!10\)\( T_{2}^{149} - \)\(73\!\cdots\!15\)\( T_{2}^{148} + \)\(16\!\cdots\!90\)\( T_{2}^{147} - \)\(24\!\cdots\!94\)\( T_{2}^{146} + \)\(59\!\cdots\!00\)\( T_{2}^{145} - \)\(73\!\cdots\!00\)\( T_{2}^{144} + \)\(10\!\cdots\!20\)\( T_{2}^{143} + \)\(49\!\cdots\!92\)\( T_{2}^{142} - \)\(15\!\cdots\!50\)\( T_{2}^{141} + \)\(82\!\cdots\!41\)\( T_{2}^{140} - \)\(23\!\cdots\!70\)\( T_{2}^{139} + \)\(76\!\cdots\!02\)\( T_{2}^{138} - \)\(16\!\cdots\!90\)\( T_{2}^{137} + \)\(32\!\cdots\!34\)\( T_{2}^{136} - \)\(61\!\cdots\!40\)\( T_{2}^{135} + \)\(13\!\cdots\!61\)\( T_{2}^{134} - \)\(26\!\cdots\!10\)\( T_{2}^{133} + \)\(49\!\cdots\!77\)\( T_{2}^{132} - \)\(87\!\cdots\!20\)\( T_{2}^{131} + \)\(15\!\cdots\!38\)\( T_{2}^{130} - \)\(29\!\cdots\!90\)\( T_{2}^{129} + \)\(57\!\cdots\!79\)\( T_{2}^{128} - \)\(10\!\cdots\!90\)\( T_{2}^{127} + \)\(16\!\cdots\!25\)\( T_{2}^{126} - \)\(27\!\cdots\!50\)\( T_{2}^{125} + \)\(49\!\cdots\!69\)\( T_{2}^{124} - \)\(88\!\cdots\!50\)\( T_{2}^{123} + \)\(13\!\cdots\!49\)\( T_{2}^{122} - \)\(19\!\cdots\!00\)\( T_{2}^{121} + \)\(31\!\cdots\!88\)\( T_{2}^{120} - \)\(54\!\cdots\!00\)\( T_{2}^{119} + \)\(87\!\cdots\!42\)\( T_{2}^{118} - \)\(13\!\cdots\!40\)\( T_{2}^{117} + \)\(19\!\cdots\!70\)\( T_{2}^{116} - \)\(28\!\cdots\!50\)\( T_{2}^{115} + \)\(46\!\cdots\!97\)\( T_{2}^{114} - \)\(74\!\cdots\!30\)\( T_{2}^{113} + \)\(96\!\cdots\!24\)\( T_{2}^{112} - \)\(11\!\cdots\!10\)\( T_{2}^{111} + \)\(17\!\cdots\!47\)\( T_{2}^{110} - \)\(29\!\cdots\!00\)\( T_{2}^{109} + \)\(36\!\cdots\!13\)\( T_{2}^{108} - \)\(42\!\cdots\!10\)\( T_{2}^{107} + \)\(60\!\cdots\!09\)\( T_{2}^{106} - \)\(80\!\cdots\!80\)\( T_{2}^{105} + \)\(98\!\cdots\!19\)\( T_{2}^{104} - \)\(14\!\cdots\!00\)\( T_{2}^{103} + \)\(15\!\cdots\!00\)\( T_{2}^{102} - \)\(86\!\cdots\!70\)\( T_{2}^{101} + \)\(15\!\cdots\!04\)\( T_{2}^{100} - \)\(33\!\cdots\!60\)\( T_{2}^{99} + \)\(38\!\cdots\!51\)\( T_{2}^{98} + \)\(48\!\cdots\!80\)\( T_{2}^{97} + \)\(73\!\cdots\!09\)\( T_{2}^{96} - \)\(52\!\cdots\!00\)\( T_{2}^{95} - \)\(10\!\cdots\!64\)\( T_{2}^{94} + \)\(21\!\cdots\!40\)\( T_{2}^{93} - \)\(12\!\cdots\!83\)\( T_{2}^{92} - \)\(68\!\cdots\!10\)\( T_{2}^{91} - \)\(24\!\cdots\!61\)\( T_{2}^{90} + \)\(30\!\cdots\!10\)\( T_{2}^{89} + \)\(67\!\cdots\!81\)\( T_{2}^{88} - \)\(90\!\cdots\!20\)\( T_{2}^{87} - \)\(14\!\cdots\!49\)\( T_{2}^{86} + \)\(38\!\cdots\!10\)\( T_{2}^{85} + \)\(22\!\cdots\!40\)\( T_{2}^{84} - \)\(24\!\cdots\!10\)\( T_{2}^{83} + \)\(22\!\cdots\!27\)\( T_{2}^{82} - \)\(30\!\cdots\!00\)\( T_{2}^{81} + \)\(78\!\cdots\!01\)\( T_{2}^{80} + \)\(89\!\cdots\!30\)\( T_{2}^{79} + \)\(56\!\cdots\!16\)\( T_{2}^{78} - \)\(99\!\cdots\!90\)\( T_{2}^{77} - \)\(52\!\cdots\!41\)\( T_{2}^{76} + \)\(11\!\cdots\!10\)\( T_{2}^{75} + \)\(51\!\cdots\!53\)\( T_{2}^{74} - \)\(10\!\cdots\!60\)\( T_{2}^{73} - \)\(71\!\cdots\!08\)\( T_{2}^{72} + \)\(13\!\cdots\!60\)\( T_{2}^{71} - \)\(66\!\cdots\!52\)\( T_{2}^{70} - \)\(28\!\cdots\!60\)\( T_{2}^{69} + \)\(34\!\cdots\!19\)\( T_{2}^{68} - \)\(92\!\cdots\!80\)\( T_{2}^{67} - \)\(57\!\cdots\!67\)\( T_{2}^{66} + \)\(16\!\cdots\!40\)\( T_{2}^{65} + \)\(10\!\cdots\!96\)\( T_{2}^{64} - \)\(20\!\cdots\!60\)\( T_{2}^{63} - \)\(91\!\cdots\!02\)\( T_{2}^{62} + \)\(17\!\cdots\!40\)\( T_{2}^{61} + \)\(56\!\cdots\!73\)\( T_{2}^{60} - \)\(18\!\cdots\!20\)\( T_{2}^{59} - \)\(62\!\cdots\!42\)\( T_{2}^{58} + \)\(64\!\cdots\!70\)\( T_{2}^{57} - \)\(49\!\cdots\!45\)\( T_{2}^{56} - \)\(14\!\cdots\!00\)\( T_{2}^{55} - \)\(58\!\cdots\!51\)\( T_{2}^{54} + \)\(43\!\cdots\!50\)\( T_{2}^{53} + \)\(41\!\cdots\!19\)\( T_{2}^{52} - \)\(14\!\cdots\!30\)\( T_{2}^{51} - \)\(20\!\cdots\!34\)\( T_{2}^{50} + \)\(17\!\cdots\!40\)\( T_{2}^{49} + \)\(53\!\cdots\!61\)\( T_{2}^{48} + \)\(58\!\cdots\!40\)\( T_{2}^{47} + \)\(44\!\cdots\!52\)\( T_{2}^{46} + \)\(33\!\cdots\!60\)\( T_{2}^{45} + \)\(32\!\cdots\!87\)\( T_{2}^{44} + \)\(34\!\cdots\!00\)\( T_{2}^{43} + \)\(32\!\cdots\!70\)\( T_{2}^{42} + \)\(28\!\cdots\!20\)\( T_{2}^{41} + \)\(26\!\cdots\!15\)\( T_{2}^{40} + \)\(25\!\cdots\!00\)\( T_{2}^{39} + \)\(24\!\cdots\!96\)\( T_{2}^{38} + \)\(22\!\cdots\!00\)\( T_{2}^{37} + \)\(18\!\cdots\!48\)\( T_{2}^{36} + \)\(14\!\cdots\!10\)\( T_{2}^{35} + \)\(95\!\cdots\!65\)\( T_{2}^{34} + \)\(60\!\cdots\!00\)\( T_{2}^{33} + \)\(35\!\cdots\!07\)\( T_{2}^{32} + \)\(18\!\cdots\!30\)\( T_{2}^{31} + \)\(92\!\cdots\!01\)\( T_{2}^{30} + \)\(42\!\cdots\!40\)\( T_{2}^{29} + \)\(17\!\cdots\!09\)\( T_{2}^{28} + \)\(69\!\cdots\!70\)\( T_{2}^{27} + \)\(25\!\cdots\!01\)\( T_{2}^{26} + \)\(85\!\cdots\!50\)\( T_{2}^{25} + \)\(26\!\cdots\!99\)\( T_{2}^{24} + \)\(75\!\cdots\!20\)\( T_{2}^{23} + \)\(19\!\cdots\!93\)\( T_{2}^{22} + \)\(44\!\cdots\!60\)\( T_{2}^{21} + \)\(88\!\cdots\!98\)\( T_{2}^{20} + \)\(16\!\cdots\!20\)\( T_{2}^{19} + \)\(26\!\cdots\!39\)\( T_{2}^{18} + \)\(42\!\cdots\!30\)\( T_{2}^{17} + \)\(62\!\cdots\!96\)\( T_{2}^{16} + \)\(83\!\cdots\!60\)\( T_{2}^{15} + \)\(98\!\cdots\!42\)\( T_{2}^{14} + \)\(10\!\cdots\!10\)\( T_{2}^{13} + \)\(12\!\cdots\!26\)\( T_{2}^{12} + \)\(12\!\cdots\!30\)\( T_{2}^{11} + \)\(11\!\cdots\!62\)\( T_{2}^{10} + \)\(10\!\cdots\!00\)\( T_{2}^{9} + \)\(96\!\cdots\!07\)\( T_{2}^{8} + \)\(73\!\cdots\!30\)\( T_{2}^{7} + \)\(53\!\cdots\!52\)\( T_{2}^{6} + \)\(35\!\cdots\!20\)\( T_{2}^{5} + \)\(19\!\cdots\!29\)\( T_{2}^{4} + \)\(10\!\cdots\!20\)\( T_{2}^{3} + \)\(49\!\cdots\!31\)\( T_{2}^{2} + \)\(14\!\cdots\!50\)\( T_{2} + \)\(19\!\cdots\!01\)\( \)">\(T_{2}^{224} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).