Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bq (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(416\) |
Relative dimension: | \(52\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −0.276807 | + | 2.63364i | −1.73182 | − | 0.0281544i | −4.90316 | − | 1.04220i | −1.71868 | − | 2.36556i | 0.553529 | − | 4.55321i | −0.0575585 | + | 0.270792i | 2.46537 | − | 7.58762i | 2.99841 | + | 0.0975169i | 6.70579 | − | 3.87159i |
29.2 | −0.274469 | + | 2.61140i | 1.03166 | − | 1.39129i | −4.78776 | − | 1.01767i | 1.02930 | + | 1.41670i | 3.35004 | + | 3.07594i | 0.916640 | − | 4.31245i | 2.34881 | − | 7.22888i | −0.871350 | − | 2.87067i | −3.98208 | + | 2.29906i |
29.3 | −0.270097 | + | 2.56980i | 0.0599513 | − | 1.73101i | −4.57463 | − | 0.972368i | −0.821874 | − | 1.13121i | 4.43217 | + | 0.621604i | −0.850348 | + | 4.00057i | 2.13742 | − | 6.57829i | −2.99281 | − | 0.207553i | 3.12898 | − | 1.80652i |
29.4 | −0.260719 | + | 2.48057i | 1.72227 | + | 0.183844i | −4.12897 | − | 0.877640i | −2.22258 | − | 3.05912i | −0.905066 | + | 4.22428i | 0.668489 | − | 3.14500i | 1.71203 | − | 5.26908i | 2.93240 | + | 0.633258i | 8.16784 | − | 4.71570i |
29.5 | −0.256618 | + | 2.44156i | 1.38266 | + | 1.04320i | −3.93907 | − | 0.837274i | 1.76595 | + | 2.43063i | −2.90184 | + | 3.10814i | −0.156026 | + | 0.734044i | 1.53781 | − | 4.73290i | 0.823485 | + | 2.88477i | −6.38769 | + | 3.68794i |
29.6 | −0.244335 | + | 2.32469i | −1.09963 | + | 1.33821i | −3.38819 | − | 0.720181i | 0.672844 | + | 0.926090i | −2.84225 | − | 2.88327i | −0.747086 | + | 3.51476i | 1.05740 | − | 3.25434i | −0.581631 | − | 2.94308i | −2.31727 | + | 1.33788i |
29.7 | −0.237841 | + | 2.26290i | −0.837076 | − | 1.51635i | −3.10787 | − | 0.660597i | 0.619671 | + | 0.852904i | 3.63043 | − | 1.53357i | 0.272540 | − | 1.28220i | 0.827791 | − | 2.54768i | −1.59861 | + | 2.53859i | −2.07742 | + | 1.19940i |
29.8 | −0.230857 | + | 2.19646i | −1.65359 | − | 0.515394i | −2.81485 | − | 0.598316i | 1.87210 | + | 2.57672i | 1.51379 | − | 3.51307i | −0.269880 | + | 1.26968i | 0.599043 | − | 1.84366i | 2.46874 | + | 1.70450i | −6.09186 | + | 3.51714i |
29.9 | −0.219545 | + | 2.08883i | 1.04164 | + | 1.38383i | −2.35871 | − | 0.501359i | −0.372847 | − | 0.513179i | −3.11927 | + | 1.87199i | −0.107574 | + | 0.506098i | 0.267016 | − | 0.821790i | −0.829974 | + | 2.88291i | 1.15380 | − | 0.666147i |
29.10 | −0.198720 | + | 1.89069i | −1.52365 | + | 0.823714i | −1.57894 | − | 0.335614i | −0.924919 | − | 1.27304i | −1.25461 | − | 3.04444i | 0.668009 | − | 3.14273i | −0.226639 | + | 0.697522i | 1.64299 | − | 2.51010i | 2.59073 | − | 1.49576i |
29.11 | −0.188305 | + | 1.79160i | 1.68236 | − | 0.411909i | −1.21807 | − | 0.258909i | −1.00123 | − | 1.37808i | 0.421180 | + | 3.09168i | −0.457516 | + | 2.15245i | −0.420139 | + | 1.29305i | 2.66066 | − | 1.38596i | 2.65749 | − | 1.53430i |
29.12 | −0.179632 | + | 1.70909i | 1.33049 | − | 1.10896i | −0.932422 | − | 0.198192i | 1.96134 | + | 2.69955i | 1.65631 | + | 2.47313i | −0.393158 | + | 1.84966i | −0.555871 | + | 1.71080i | 0.540418 | − | 2.95092i | −4.96609 | + | 2.86717i |
29.13 | −0.170529 | + | 1.62248i | −0.280130 | + | 1.70925i | −0.647056 | − | 0.137536i | −2.20891 | − | 3.04030i | −2.72544 | − | 0.745981i | −0.757508 | + | 3.56379i | −0.674778 | + | 2.07675i | −2.84305 | − | 0.957623i | 5.30950 | − | 3.06544i |
29.14 | −0.159737 | + | 1.51979i | −1.11400 | − | 1.32627i | −0.327964 | − | 0.0697108i | −0.0308880 | − | 0.0425136i | 2.19361 | − | 1.48120i | 0.593356 | − | 2.79152i | −0.786124 | + | 2.41944i | −0.517989 | + | 2.95494i | 0.0695459 | − | 0.0401523i |
29.15 | −0.144098 | + | 1.37101i | 0.143318 | + | 1.72611i | 0.0974043 | + | 0.0207039i | 0.756574 | + | 1.04133i | −2.38716 | − | 0.0522407i | 0.619507 | − | 2.91455i | −0.894416 | + | 2.75273i | −2.95892 | + | 0.494764i | −1.53670 | + | 0.887212i |
29.16 | −0.127461 | + | 1.21271i | 0.478976 | − | 1.66451i | 0.501877 | + | 0.106677i | −1.76681 | − | 2.43180i | 1.95751 | + | 0.793018i | 0.706704 | − | 3.32478i | −0.946962 | + | 2.91445i | −2.54116 | − | 1.59452i | 3.17427 | − | 1.83266i |
29.17 | −0.123261 | + | 1.17275i | −1.50937 | − | 0.849596i | 0.596149 | + | 0.126715i | −2.37562 | − | 3.26976i | 1.18241 | − | 1.66539i | −0.489968 | + | 2.30512i | −0.950878 | + | 2.92650i | 1.55637 | + | 2.56470i | 4.12743 | − | 2.38297i |
29.18 | −0.115554 | + | 1.09942i | 1.72615 | − | 0.142897i | 0.760914 | + | 0.161737i | 1.07486 | + | 1.47941i | −0.0423587 | + | 1.91428i | 0.576184 | − | 2.71073i | −0.948969 | + | 2.92063i | 2.95916 | − | 0.493323i | −1.75071 | + | 1.01077i |
29.19 | −0.0983746 | + | 0.935971i | −0.0424277 | + | 1.73153i | 1.08993 | + | 0.231672i | 1.83190 | + | 2.52139i | −1.61649 | − | 0.210050i | −0.116038 | + | 0.545914i | −0.905708 | + | 2.78748i | −2.99640 | − | 0.146930i | −2.54016 | + | 1.46656i |
29.20 | −0.0790544 | + | 0.752152i | −1.44283 | + | 0.958255i | 1.39681 | + | 0.296902i | 0.221314 | + | 0.304612i | −0.606692 | − | 1.16098i | 0.0924831 | − | 0.435099i | −0.801155 | + | 2.46570i | 1.16349 | − | 2.76519i | −0.246611 | + | 0.142381i |
See next 80 embeddings (of 416 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
13.c | even | 3 | 1 | inner |
33.f | even | 10 | 1 | inner |
39.i | odd | 6 | 1 | inner |
143.t | odd | 30 | 1 | inner |
429.bq | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bq.a | ✓ | 416 |
3.b | odd | 2 | 1 | inner | 429.2.bq.a | ✓ | 416 |
11.d | odd | 10 | 1 | inner | 429.2.bq.a | ✓ | 416 |
13.c | even | 3 | 1 | inner | 429.2.bq.a | ✓ | 416 |
33.f | even | 10 | 1 | inner | 429.2.bq.a | ✓ | 416 |
39.i | odd | 6 | 1 | inner | 429.2.bq.a | ✓ | 416 |
143.t | odd | 30 | 1 | inner | 429.2.bq.a | ✓ | 416 |
429.bq | even | 30 | 1 | inner | 429.2.bq.a | ✓ | 416 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bq.a | ✓ | 416 | 1.a | even | 1 | 1 | trivial |
429.2.bq.a | ✓ | 416 | 3.b | odd | 2 | 1 | inner |
429.2.bq.a | ✓ | 416 | 11.d | odd | 10 | 1 | inner |
429.2.bq.a | ✓ | 416 | 13.c | even | 3 | 1 | inner |
429.2.bq.a | ✓ | 416 | 33.f | even | 10 | 1 | inner |
429.2.bq.a | ✓ | 416 | 39.i | odd | 6 | 1 | inner |
429.2.bq.a | ✓ | 416 | 143.t | odd | 30 | 1 | inner |
429.2.bq.a | ✓ | 416 | 429.bq | even | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(429, [\chi])\).