Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bn (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −1.08659 | − | 2.44051i | 0.669131 | + | 0.743145i | −3.43718 | + | 3.81737i | −1.96001 | − | 2.69773i | 1.08659 | − | 2.44051i | −2.63121 | − | 2.36915i | 7.96970 | + | 2.58951i | −0.104528 | + | 0.994522i | −4.45412 | + | 7.71476i |
4.2 | −0.976080 | − | 2.19231i | 0.669131 | + | 0.743145i | −2.51524 | + | 2.79345i | 0.603494 | + | 0.830639i | 0.976080 | − | 2.19231i | 0.422137 | + | 0.380094i | 4.01454 | + | 1.30440i | −0.104528 | + | 0.994522i | 1.23196 | − | 2.13382i |
4.3 | −0.819494 | − | 1.84061i | 0.669131 | + | 0.743145i | −1.37803 | + | 1.53046i | −1.15996 | − | 1.59655i | 0.819494 | − | 1.84061i | 3.61282 | + | 3.25299i | 0.113886 | + | 0.0370037i | −0.104528 | + | 0.994522i | −1.98805 | + | 3.44340i |
4.4 | −0.727584 | − | 1.63418i | 0.669131 | + | 0.743145i | −0.802903 | + | 0.891714i | −0.105484 | − | 0.145187i | 0.727584 | − | 1.63418i | −2.03695 | − | 1.83408i | −1.36116 | − | 0.442268i | −0.104528 | + | 0.994522i | −0.160512 | + | 0.278015i |
4.5 | −0.425286 | − | 0.955208i | 0.669131 | + | 0.743145i | 0.606707 | − | 0.673817i | 2.35366 | + | 3.23953i | 0.425286 | − | 0.955208i | −1.51333 | − | 1.36261i | −2.89052 | − | 0.939186i | −0.104528 | + | 0.994522i | 2.09345 | − | 3.62596i |
4.6 | −0.288687 | − | 0.648403i | 0.669131 | + | 0.743145i | 1.00118 | − | 1.11192i | −2.40424 | − | 3.30915i | 0.288687 | − | 0.648403i | 0.504508 | + | 0.454261i | −2.36005 | − | 0.766827i | −0.104528 | + | 0.994522i | −1.45159 | + | 2.51422i |
4.7 | 0.0203023 | + | 0.0455997i | 0.669131 | + | 0.743145i | 1.33659 | − | 1.48444i | 1.77101 | + | 2.43759i | −0.0203023 | + | 0.0455997i | 0.890300 | + | 0.801630i | 0.189770 | + | 0.0616600i | −0.104528 | + | 0.994522i | −0.0751978 | + | 0.130246i |
4.8 | 0.0299019 | + | 0.0671608i | 0.669131 | + | 0.743145i | 1.33464 | − | 1.48227i | 0.0495558 | + | 0.0682077i | −0.0299019 | + | 0.0671608i | 1.42900 | + | 1.28668i | 0.279296 | + | 0.0907488i | −0.104528 | + | 0.994522i | −0.00309907 | + | 0.00536775i |
4.9 | 0.293907 | + | 0.660125i | 0.669131 | + | 0.743145i | 0.988877 | − | 1.09826i | −1.15395 | − | 1.58828i | −0.293907 | + | 0.660125i | −3.62548 | − | 3.26440i | 2.39009 | + | 0.776586i | −0.104528 | + | 0.994522i | 0.709310 | − | 1.22856i |
4.10 | 0.434661 | + | 0.976265i | 0.669131 | + | 0.743145i | 0.574098 | − | 0.637600i | 0.194734 | + | 0.268028i | −0.434661 | + | 0.976265i | 1.78328 | + | 1.60567i | 2.90471 | + | 0.943797i | −0.104528 | + | 0.994522i | −0.177023 | + | 0.306614i |
4.11 | 0.644170 | + | 1.44683i | 0.669131 | + | 0.743145i | −0.340099 | + | 0.377718i | −1.31195 | − | 1.80574i | −0.644170 | + | 1.44683i | 1.36339 | + | 1.22760i | 2.24690 | + | 0.730062i | −0.104528 | + | 0.994522i | 1.76748 | − | 3.06137i |
4.12 | 0.772619 | + | 1.73533i | 0.669131 | + | 0.743145i | −1.07617 | + | 1.19521i | 1.38712 | + | 1.90920i | −0.772619 | + | 1.73533i | −2.05909 | − | 1.85401i | 0.707612 | + | 0.229917i | −0.104528 | + | 0.994522i | −2.24139 | + | 3.88220i |
4.13 | 1.04016 | + | 2.33623i | 0.669131 | + | 0.743145i | −3.03778 | + | 3.37380i | −0.492512 | − | 0.677885i | −1.04016 | + | 2.33623i | 3.64547 | + | 3.28240i | −6.17741 | − | 2.00716i | −0.104528 | + | 0.994522i | 1.07140 | − | 1.85573i |
4.14 | 1.08800 | + | 2.44369i | 0.669131 | + | 0.743145i | −3.44962 | + | 3.83119i | 0.581262 | + | 0.800038i | −1.08800 | + | 2.44369i | −1.78483 | − | 1.60707i | −8.02736 | − | 2.60825i | −0.104528 | + | 0.994522i | −1.32263 | + | 2.29087i |
49.1 | −1.91017 | − | 1.71993i | −0.104528 | + | 0.994522i | 0.481555 | + | 4.58169i | 3.19249 | + | 1.03730i | 1.91017 | − | 1.71993i | −2.98254 | + | 0.313478i | 3.93864 | − | 5.42108i | −0.978148 | − | 0.207912i | −4.31412 | − | 7.47228i |
49.2 | −1.64800 | − | 1.48387i | −0.104528 | + | 0.994522i | 0.304992 | + | 2.90181i | −1.57487 | − | 0.511707i | 1.64800 | − | 1.48387i | 1.08496 | − | 0.114034i | 1.19632 | − | 1.64659i | −0.978148 | − | 0.207912i | 1.83609 | + | 3.18020i |
49.3 | −1.60557 | − | 1.44566i | −0.104528 | + | 0.994522i | 0.278861 | + | 2.65319i | −0.655963 | − | 0.213135i | 1.60557 | − | 1.44566i | 0.714969 | − | 0.0751462i | 0.848055 | − | 1.16725i | −0.978148 | − | 0.207912i | 0.745073 | + | 1.29051i |
49.4 | −0.977278 | − | 0.879945i | −0.104528 | + | 0.994522i | −0.0282879 | − | 0.269141i | 1.70562 | + | 0.554188i | 0.977278 | − | 0.879945i | 2.04084 | − | 0.214501i | −1.75513 | + | 2.41573i | −0.978148 | − | 0.207912i | −1.17921 | − | 2.04245i |
49.5 | −0.646484 | − | 0.582097i | −0.104528 | + | 0.994522i | −0.129952 | − | 1.23641i | −2.84399 | − | 0.924069i | 0.646484 | − | 0.582097i | 0.352201 | − | 0.0370178i | −1.65836 | + | 2.28254i | −0.978148 | − | 0.207912i | 1.30070 | + | 2.25288i |
49.6 | −0.429748 | − | 0.386946i | −0.104528 | + | 0.994522i | −0.174102 | − | 1.65647i | 0.866536 | + | 0.281555i | 0.429748 | − | 0.386946i | −3.42237 | + | 0.359706i | −1.24596 | + | 1.71491i | −0.978148 | − | 0.207912i | −0.263445 | − | 0.456300i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
13.e | even | 6 | 1 | inner |
143.u | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bn.b | ✓ | 112 |
11.c | even | 5 | 1 | inner | 429.2.bn.b | ✓ | 112 |
13.e | even | 6 | 1 | inner | 429.2.bn.b | ✓ | 112 |
143.u | even | 30 | 1 | inner | 429.2.bn.b | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bn.b | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
429.2.bn.b | ✓ | 112 | 11.c | even | 5 | 1 | inner |
429.2.bn.b | ✓ | 112 | 13.e | even | 6 | 1 | inner |
429.2.bn.b | ✓ | 112 | 143.u | even | 30 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(96\!\cdots\!80\)\( T_{2}^{82} + \)\(46\!\cdots\!16\)\( T_{2}^{81} + \)\(44\!\cdots\!17\)\( T_{2}^{80} + \)\(94\!\cdots\!05\)\( T_{2}^{79} + \)\(48\!\cdots\!42\)\( T_{2}^{78} - \)\(39\!\cdots\!65\)\( T_{2}^{77} - \)\(56\!\cdots\!63\)\( T_{2}^{76} - \)\(22\!\cdots\!10\)\( T_{2}^{75} - \)\(35\!\cdots\!71\)\( T_{2}^{74} + \)\(36\!\cdots\!44\)\( T_{2}^{73} - \)\(85\!\cdots\!30\)\( T_{2}^{72} + \)\(45\!\cdots\!56\)\( T_{2}^{71} + \)\(48\!\cdots\!45\)\( T_{2}^{70} + \)\(22\!\cdots\!20\)\( T_{2}^{69} + \)\(12\!\cdots\!24\)\( T_{2}^{68} - \)\(10\!\cdots\!99\)\( T_{2}^{67} + \)\(52\!\cdots\!69\)\( T_{2}^{66} - \)\(36\!\cdots\!10\)\( T_{2}^{65} + \)\(82\!\cdots\!85\)\( T_{2}^{64} + \)\(66\!\cdots\!27\)\( T_{2}^{63} - \)\(19\!\cdots\!49\)\( T_{2}^{62} + \)\(44\!\cdots\!77\)\( T_{2}^{61} - \)\(13\!\cdots\!54\)\( T_{2}^{60} + \)\(14\!\cdots\!12\)\( T_{2}^{59} - \)\(27\!\cdots\!34\)\( T_{2}^{58} + \)\(11\!\cdots\!79\)\( T_{2}^{57} - \)\(59\!\cdots\!42\)\( T_{2}^{56} - \)\(48\!\cdots\!61\)\( T_{2}^{55} + \)\(11\!\cdots\!41\)\( T_{2}^{54} - \)\(19\!\cdots\!23\)\( T_{2}^{53} + \)\(36\!\cdots\!41\)\( T_{2}^{52} - \)\(37\!\cdots\!26\)\( T_{2}^{51} + \)\(66\!\cdots\!76\)\( T_{2}^{50} - \)\(43\!\cdots\!31\)\( T_{2}^{49} + \)\(70\!\cdots\!05\)\( T_{2}^{48} - \)\(89\!\cdots\!42\)\( T_{2}^{47} + \)\(82\!\cdots\!71\)\( T_{2}^{46} + \)\(70\!\cdots\!75\)\( T_{2}^{45} - \)\(10\!\cdots\!31\)\( T_{2}^{44} + \)\(12\!\cdots\!15\)\( T_{2}^{43} - \)\(16\!\cdots\!70\)\( T_{2}^{42} + \)\(65\!\cdots\!37\)\( T_{2}^{41} - \)\(11\!\cdots\!31\)\( T_{2}^{40} - \)\(59\!\cdots\!00\)\( T_{2}^{39} + \)\(10\!\cdots\!17\)\( T_{2}^{38} - \)\(12\!\cdots\!11\)\( T_{2}^{37} + \)\(11\!\cdots\!72\)\( T_{2}^{36} - \)\(82\!\cdots\!20\)\( T_{2}^{35} + \)\(14\!\cdots\!67\)\( T_{2}^{34} - \)\(15\!\cdots\!91\)\( T_{2}^{33} + \)\(11\!\cdots\!26\)\( T_{2}^{32} + \)\(33\!\cdots\!72\)\( T_{2}^{31} + \)\(55\!\cdots\!59\)\( T_{2}^{30} + \)\(42\!\cdots\!60\)\( T_{2}^{29} + \)\(23\!\cdots\!99\)\( T_{2}^{28} + \)\(16\!\cdots\!57\)\( T_{2}^{27} - \)\(20\!\cdots\!21\)\( T_{2}^{26} - \)\(88\!\cdots\!56\)\( T_{2}^{25} - \)\(16\!\cdots\!01\)\( T_{2}^{24} - \)\(90\!\cdots\!16\)\( T_{2}^{23} - \)\(45\!\cdots\!71\)\( T_{2}^{22} - \)\(19\!\cdots\!74\)\( T_{2}^{21} + \)\(13\!\cdots\!05\)\( T_{2}^{20} + \)\(10\!\cdots\!50\)\( T_{2}^{19} + \)\(15\!\cdots\!46\)\( T_{2}^{18} + \)\(57\!\cdots\!09\)\( T_{2}^{17} + \)\(50\!\cdots\!19\)\( T_{2}^{16} + \)\(10\!\cdots\!45\)\( T_{2}^{15} + \)\(65\!\cdots\!51\)\( T_{2}^{14} + \)\(11\!\cdots\!35\)\( T_{2}^{13} + \)\(50\!\cdots\!45\)\( T_{2}^{12} - \)\(22\!\cdots\!27\)\( T_{2}^{11} + \)\(40\!\cdots\!36\)\( T_{2}^{10} - \)\(43\!\cdots\!37\)\( T_{2}^{9} + \)\(31\!\cdots\!22\)\( T_{2}^{8} - \)\(15\!\cdots\!30\)\( T_{2}^{7} + 50623041572 T_{2}^{6} - 1012957494 T_{2}^{5} + 8921117 T_{2}^{4} - 70728 T_{2}^{3} + 3515 T_{2}^{2} - 21 T_{2} + 1 \)">\(T_{2}^{112} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).