Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bn (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −1.05844 | − | 2.37729i | −0.669131 | − | 0.743145i | −3.19297 | + | 3.54616i | 0.696965 | + | 0.959290i | −1.05844 | + | 2.37729i | 1.37323 | + | 1.23646i | 6.86002 | + | 2.22895i | −0.104528 | + | 0.994522i | 1.54282 | − | 2.67224i |
4.2 | −0.866606 | − | 1.94643i | −0.669131 | − | 0.743145i | −1.69932 | + | 1.88729i | 1.80442 | + | 2.48357i | −0.866606 | + | 1.94643i | −3.61054 | − | 3.25094i | 1.09341 | + | 0.355271i | −0.104528 | + | 0.994522i | 3.27037 | − | 5.66445i |
4.3 | −0.763963 | − | 1.71589i | −0.669131 | − | 0.743145i | −1.02237 | + | 1.13546i | −1.07133 | − | 1.47456i | −0.763963 | + | 1.71589i | 1.14179 | + | 1.02807i | −0.843308 | − | 0.274007i | −0.104528 | + | 0.994522i | −1.71172 | + | 2.96479i |
4.4 | −0.688193 | − | 1.54571i | −0.669131 | − | 0.743145i | −0.577339 | + | 0.641200i | 1.57124 | + | 2.16263i | −0.688193 | + | 1.54571i | 1.25124 | + | 1.12663i | −1.82992 | − | 0.594578i | −0.104528 | + | 0.994522i | 2.26148 | − | 3.91699i |
4.5 | −0.672174 | − | 1.50973i | −0.669131 | − | 0.743145i | −0.489197 | + | 0.543308i | −2.52085 | − | 3.46966i | −0.672174 | + | 1.50973i | −2.16497 | − | 1.94935i | −1.99436 | − | 0.648008i | −0.104528 | + | 0.994522i | −3.54378 | + | 6.13802i |
4.6 | −0.177986 | − | 0.399764i | −0.669131 | − | 0.743145i | 1.21013 | − | 1.34398i | 0.0311778 | + | 0.0429126i | −0.177986 | + | 0.399764i | −0.860670 | − | 0.774951i | −1.58502 | − | 0.515004i | −0.104528 | + | 0.994522i | 0.0116057 | − | 0.0201016i |
4.7 | −0.0803440 | − | 0.180456i | −0.669131 | − | 0.743145i | 1.31215 | − | 1.45729i | 0.296705 | + | 0.408379i | −0.0803440 | + | 0.180456i | 3.31863 | + | 2.98811i | −0.744131 | − | 0.241783i | −0.104528 | + | 0.994522i | 0.0498559 | − | 0.0863529i |
4.8 | 0.250968 | + | 0.563684i | −0.669131 | − | 0.743145i | 1.08351 | − | 1.20336i | −1.79971 | − | 2.47709i | 0.250968 | − | 0.563684i | −2.23596 | − | 2.01327i | 2.12390 | + | 0.690096i | −0.104528 | + | 0.994522i | 0.944626 | − | 1.63614i |
4.9 | 0.275867 | + | 0.619607i | −0.669131 | − | 0.743145i | 1.03045 | − | 1.14443i | −1.77061 | − | 2.43703i | 0.275867 | − | 0.619607i | 3.22654 | + | 2.90519i | 2.28346 | + | 0.741942i | −0.104528 | + | 0.994522i | 1.02155 | − | 1.76938i |
4.10 | 0.386229 | + | 0.867484i | −0.669131 | − | 0.743145i | 0.734905 | − | 0.816195i | 2.09746 | + | 2.88691i | 0.386229 | − | 0.867484i | 0.681566 | + | 0.613685i | 2.79809 | + | 0.909153i | −0.104528 | + | 0.994522i | −1.69425 | + | 2.93453i |
4.11 | 0.534181 | + | 1.19979i | −0.669131 | − | 0.743145i | 0.184114 | − | 0.204479i | 1.16055 | + | 1.59736i | 0.534181 | − | 1.19979i | −2.62438 | − | 2.36301i | 2.84179 | + | 0.923354i | −0.104528 | + | 0.994522i | −1.29655 | + | 2.24569i |
4.12 | 0.883617 | + | 1.98464i | −0.669131 | − | 0.743145i | −1.81974 | + | 2.02103i | −1.20025 | − | 1.65200i | 0.883617 | − | 1.98464i | −2.60068 | − | 2.34166i | −1.48670 | − | 0.483058i | −0.104528 | + | 0.994522i | 2.21806 | − | 3.84180i |
4.13 | 0.896442 | + | 2.01344i | −0.669131 | − | 0.743145i | −1.91208 | + | 2.12358i | 0.00844073 | + | 0.0116177i | 0.896442 | − | 2.01344i | 1.50438 | + | 1.35455i | −1.79754 | − | 0.584056i | −0.104528 | + | 0.994522i | −0.0158249 | + | 0.0274095i |
4.14 | 1.08040 | + | 2.42662i | −0.669131 | − | 0.743145i | −3.38297 | + | 3.75717i | 2.34307 | + | 3.22496i | 1.08040 | − | 2.42662i | 1.59982 | + | 1.44048i | −7.71968 | − | 2.50828i | −0.104528 | + | 0.994522i | −5.29430 | + | 9.17000i |
49.1 | −1.97287 | − | 1.77638i | 0.104528 | − | 0.994522i | 0.527630 | + | 5.02007i | 1.64057 | + | 0.533054i | −1.97287 | + | 1.77638i | −2.55155 | + | 0.268179i | 4.75574 | − | 6.54571i | −0.978148 | − | 0.207912i | −2.28973 | − | 3.96592i |
49.2 | −1.80408 | − | 1.62440i | 0.104528 | − | 0.994522i | 0.406968 | + | 3.87204i | −2.99760 | − | 0.973979i | −1.80408 | + | 1.62440i | 1.24847 | − | 0.131220i | 2.70169 | − | 3.71856i | −0.978148 | − | 0.207912i | 3.82577 | + | 6.62643i |
49.3 | −1.54435 | − | 1.39054i | 0.104528 | − | 0.994522i | 0.242362 | + | 2.30592i | 1.99851 | + | 0.649356i | −1.54435 | + | 1.39054i | 2.22364 | − | 0.233714i | 0.389193 | − | 0.535678i | −0.978148 | − | 0.207912i | −2.18345 | − | 3.78184i |
49.4 | −1.38170 | − | 1.24409i | 0.104528 | − | 0.994522i | 0.152285 | + | 1.44889i | −1.73448 | − | 0.563568i | −1.38170 | + | 1.24409i | −4.66758 | + | 0.490582i | −0.593557 | + | 0.816960i | −0.978148 | − | 0.207912i | 1.69541 | + | 2.93654i |
49.5 | −1.04336 | − | 0.939450i | 0.104528 | − | 0.994522i | −0.00301284 | − | 0.0286652i | 1.68655 | + | 0.547992i | −1.04336 | + | 0.939450i | −0.0876448 | + | 0.00921184i | −1.67427 | + | 2.30444i | −0.978148 | − | 0.207912i | −1.24487 | − | 2.15618i |
49.6 | −0.280336 | − | 0.252415i | 0.104528 | − | 0.994522i | −0.194182 | − | 1.84752i | −2.49942 | − | 0.812112i | −0.280336 | + | 0.252415i | −1.73582 | + | 0.182442i | −0.855366 | + | 1.17731i | −0.978148 | − | 0.207912i | 0.495688 | + | 0.858557i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
13.e | even | 6 | 1 | inner |
143.u | even | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bn.a | ✓ | 112 |
11.c | even | 5 | 1 | inner | 429.2.bn.a | ✓ | 112 |
13.e | even | 6 | 1 | inner | 429.2.bn.a | ✓ | 112 |
143.u | even | 30 | 1 | inner | 429.2.bn.a | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bn.a | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
429.2.bn.a | ✓ | 112 | 11.c | even | 5 | 1 | inner |
429.2.bn.a | ✓ | 112 | 13.e | even | 6 | 1 | inner |
429.2.bn.a | ✓ | 112 | 143.u | even | 30 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(25\!\cdots\!34\)\( T_{2}^{84} - 603643065171 T_{2}^{83} - \)\(14\!\cdots\!86\)\( T_{2}^{82} + \)\(10\!\cdots\!60\)\( T_{2}^{81} + \)\(53\!\cdots\!19\)\( T_{2}^{80} + \)\(78\!\cdots\!51\)\( T_{2}^{79} + \)\(32\!\cdots\!46\)\( T_{2}^{78} + \)\(18\!\cdots\!57\)\( T_{2}^{77} + \)\(73\!\cdots\!97\)\( T_{2}^{76} - \)\(51\!\cdots\!20\)\( T_{2}^{75} - \)\(15\!\cdots\!67\)\( T_{2}^{74} - \)\(49\!\cdots\!52\)\( T_{2}^{73} - \)\(18\!\cdots\!08\)\( T_{2}^{72} - \)\(15\!\cdots\!88\)\( T_{2}^{71} - \)\(74\!\cdots\!69\)\( T_{2}^{70} - \)\(17\!\cdots\!66\)\( T_{2}^{69} - \)\(12\!\cdots\!08\)\( T_{2}^{68} + \)\(54\!\cdots\!09\)\( T_{2}^{67} + \)\(35\!\cdots\!09\)\( T_{2}^{66} + \)\(40\!\cdots\!16\)\( T_{2}^{65} + \)\(30\!\cdots\!93\)\( T_{2}^{64} + \)\(14\!\cdots\!81\)\( T_{2}^{63} + \)\(98\!\cdots\!59\)\( T_{2}^{62} + \)\(43\!\cdots\!35\)\( T_{2}^{61} + \)\(15\!\cdots\!50\)\( T_{2}^{60} + \)\(17\!\cdots\!02\)\( T_{2}^{59} - \)\(13\!\cdots\!76\)\( T_{2}^{58} + \)\(65\!\cdots\!77\)\( T_{2}^{57} - \)\(14\!\cdots\!12\)\( T_{2}^{56} + \)\(13\!\cdots\!97\)\( T_{2}^{55} - \)\(34\!\cdots\!25\)\( T_{2}^{54} - \)\(34\!\cdots\!83\)\( T_{2}^{53} + \)\(45\!\cdots\!53\)\( T_{2}^{52} - \)\(12\!\cdots\!80\)\( T_{2}^{51} + \)\(22\!\cdots\!76\)\( T_{2}^{50} - \)\(39\!\cdots\!43\)\( T_{2}^{49} + \)\(56\!\cdots\!95\)\( T_{2}^{48} - \)\(45\!\cdots\!42\)\( T_{2}^{47} + \)\(28\!\cdots\!57\)\( T_{2}^{46} + \)\(75\!\cdots\!11\)\( T_{2}^{45} - \)\(18\!\cdots\!95\)\( T_{2}^{44} + \)\(40\!\cdots\!19\)\( T_{2}^{43} - \)\(60\!\cdots\!16\)\( T_{2}^{42} + \)\(79\!\cdots\!47\)\( T_{2}^{41} - \)\(88\!\cdots\!43\)\( T_{2}^{40} + \)\(61\!\cdots\!92\)\( T_{2}^{39} - \)\(28\!\cdots\!67\)\( T_{2}^{38} - \)\(13\!\cdots\!31\)\( T_{2}^{37} + \)\(31\!\cdots\!46\)\( T_{2}^{36} - \)\(53\!\cdots\!34\)\( T_{2}^{35} + \)\(73\!\cdots\!63\)\( T_{2}^{34} - \)\(83\!\cdots\!69\)\( T_{2}^{33} + \)\(80\!\cdots\!84\)\( T_{2}^{32} - \)\(63\!\cdots\!68\)\( T_{2}^{31} + \)\(41\!\cdots\!91\)\( T_{2}^{30} - \)\(20\!\cdots\!32\)\( T_{2}^{29} + \)\(71\!\cdots\!47\)\( T_{2}^{28} - \)\(86\!\cdots\!39\)\( T_{2}^{27} - \)\(10\!\cdots\!05\)\( T_{2}^{26} + \)\(10\!\cdots\!36\)\( T_{2}^{25} - \)\(51\!\cdots\!75\)\( T_{2}^{24} + \)\(18\!\cdots\!68\)\( T_{2}^{23} - \)\(42\!\cdots\!17\)\( T_{2}^{22} + \)\(85\!\cdots\!64\)\( T_{2}^{21} + \)\(12\!\cdots\!47\)\( T_{2}^{20} - \)\(26\!\cdots\!48\)\( T_{2}^{19} + \)\(14\!\cdots\!02\)\( T_{2}^{18} - \)\(58\!\cdots\!17\)\( T_{2}^{17} + \)\(65\!\cdots\!71\)\( T_{2}^{16} - \)\(17\!\cdots\!05\)\( T_{2}^{15} + \)\(37\!\cdots\!15\)\( T_{2}^{14} - \)\(11\!\cdots\!45\)\( T_{2}^{13} + \)\(71\!\cdots\!85\)\( T_{2}^{12} + \)\(43\!\cdots\!75\)\( T_{2}^{11} + \)\(11\!\cdots\!50\)\( T_{2}^{10} + \)\(27\!\cdots\!25\)\( T_{2}^{9} + \)\(37\!\cdots\!00\)\( T_{2}^{8} + \)\(58\!\cdots\!00\)\( T_{2}^{7} + \)\(10\!\cdots\!50\)\( T_{2}^{6} + \)\(16\!\cdots\!00\)\( T_{2}^{5} + 292490938375 T_{2}^{4} + 26808127500 T_{2}^{3} + 2455619375 T_{2}^{2} + 152233125 T_{2} + 9150625 \)">\(T_{2}^{112} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).