Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bg (of order \(15\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −1.60050 | + | 1.77754i | −0.104528 | + | 0.994522i | −0.388975 | − | 3.70085i | −1.06190 | + | 3.26819i | −1.60050 | − | 1.77754i | 0.204434 | + | 1.94506i | 3.33076 | + | 2.41994i | −0.978148 | − | 0.207912i | −4.10976 | − | 7.11831i |
16.2 | −1.53199 | + | 1.70145i | −0.104528 | + | 0.994522i | −0.338874 | − | 3.22417i | 0.485300 | − | 1.49360i | −1.53199 | − | 1.70145i | 0.0971269 | + | 0.924101i | 2.30039 | + | 1.67133i | −0.978148 | − | 0.207912i | 1.79781 | + | 3.11390i |
16.3 | −1.22841 | + | 1.36429i | −0.104528 | + | 0.994522i | −0.143231 | − | 1.36275i | −0.972545 | + | 2.99319i | −1.22841 | − | 1.36429i | −0.369323 | − | 3.51387i | −0.935298 | − | 0.679534i | −0.978148 | − | 0.207912i | −2.88888 | − | 5.00368i |
16.4 | −1.12855 | + | 1.25338i | −0.104528 | + | 0.994522i | −0.0882831 | − | 0.839957i | 0.636771 | − | 1.95978i | −1.12855 | − | 1.25338i | −0.222872 | − | 2.12049i | −1.57654 | − | 1.14542i | −0.978148 | − | 0.207912i | 1.73772 | + | 3.00982i |
16.5 | −0.802761 | + | 0.891557i | −0.104528 | + | 0.994522i | 0.0586092 | + | 0.557629i | 0.833954 | − | 2.56665i | −0.802761 | − | 0.891557i | 0.259398 | + | 2.46800i | −2.48538 | − | 1.80573i | −0.978148 | − | 0.207912i | 1.61885 | + | 2.80392i |
16.6 | −0.471127 | + | 0.523240i | −0.104528 | + | 0.994522i | 0.157238 | + | 1.49602i | −0.263224 | + | 0.810122i | −0.471127 | − | 0.523240i | 0.496767 | + | 4.72642i | −1.99610 | − | 1.45025i | −0.978148 | − | 0.207912i | −0.299876 | − | 0.519400i |
16.7 | 0.0112957 | − | 0.0125452i | −0.104528 | + | 0.994522i | 0.209027 | + | 1.98876i | 1.04169 | − | 3.20599i | 0.0112957 | + | 0.0125452i | −0.462856 | − | 4.40378i | 0.0546248 | + | 0.0396872i | −0.978148 | − | 0.207912i | −0.0284531 | − | 0.0492821i |
16.8 | 0.0581605 | − | 0.0645938i | −0.104528 | + | 0.994522i | 0.208267 | + | 1.98153i | −0.913448 | + | 2.81130i | 0.0581605 | + | 0.0645938i | −0.0279312 | − | 0.265748i | 0.280746 | + | 0.203974i | −0.978148 | − | 0.207912i | 0.128466 | + | 0.222510i |
16.9 | 0.433437 | − | 0.481381i | −0.104528 | + | 0.994522i | 0.165197 | + | 1.57175i | −0.543246 | + | 1.67194i | 0.433437 | + | 0.481381i | 0.0903479 | + | 0.859603i | 1.87631 | + | 1.36322i | −0.978148 | − | 0.207912i | 0.569377 | + | 0.986190i |
16.10 | 0.682919 | − | 0.758458i | −0.104528 | + | 0.994522i | 0.100176 | + | 0.953113i | 0.0526100 | − | 0.161917i | 0.682919 | + | 0.758458i | −0.171511 | − | 1.63181i | 2.44268 | + | 1.77471i | −0.978148 | − | 0.207912i | −0.0868789 | − | 0.150479i |
16.11 | 0.932419 | − | 1.03556i | −0.104528 | + | 0.994522i | 0.00608545 | + | 0.0578992i | 0.554150 | − | 1.70550i | 0.932419 | + | 1.03556i | 0.357902 | + | 3.40521i | 2.32033 | + | 1.68582i | −0.978148 | − | 0.207912i | −1.24944 | − | 2.16409i |
16.12 | 1.38006 | − | 1.53272i | −0.104528 | + | 0.994522i | −0.235585 | − | 2.24144i | −1.05420 | + | 3.24451i | 1.38006 | + | 1.53272i | 0.100634 | + | 0.957465i | −0.423465 | − | 0.307666i | −0.978148 | − | 0.207912i | 3.51804 | + | 6.09342i |
16.13 | 1.49760 | − | 1.66326i | −0.104528 | + | 0.994522i | −0.314550 | − | 2.99275i | 0.954688 | − | 2.93823i | 1.49760 | + | 1.66326i | −0.278334 | − | 2.64817i | −1.82740 | − | 1.32769i | −0.978148 | − | 0.207912i | −3.45728 | − | 5.98819i |
16.14 | 1.76744 | − | 1.96294i | −0.104528 | + | 0.994522i | −0.520238 | − | 4.94974i | 0.0584231 | − | 0.179808i | 1.76744 | + | 1.96294i | −0.0737832 | − | 0.702000i | −6.36167 | − | 4.62202i | −0.978148 | − | 0.207912i | −0.249693 | − | 0.432481i |
256.1 | −0.265449 | − | 2.52558i | −0.978148 | − | 0.207912i | −4.35177 | + | 0.924997i | −0.205708 | − | 0.149455i | −0.265449 | + | 2.52558i | −0.893413 | + | 0.189901i | 1.92183 | + | 5.91479i | 0.913545 | + | 0.406737i | −0.322856 | + | 0.559203i |
256.2 | −0.245821 | − | 2.33883i | −0.978148 | − | 0.207912i | −3.45339 | + | 0.734041i | 1.76043 | + | 1.27903i | −0.245821 | + | 2.33883i | 2.44940 | − | 0.520637i | 1.11227 | + | 3.42322i | 0.913545 | + | 0.406737i | 2.55867 | − | 4.43175i |
256.3 | −0.190759 | − | 1.81495i | −0.978148 | − | 0.207912i | −1.30136 | + | 0.276613i | −3.21129 | − | 2.33314i | −0.190759 | + | 1.81495i | 3.99809 | − | 0.849821i | −0.377595 | − | 1.16212i | 0.913545 | + | 0.406737i | −3.62195 | + | 6.27341i |
256.4 | −0.176325 | − | 1.67762i | −0.978148 | − | 0.207912i | −0.827032 | + | 0.175791i | 0.993113 | + | 0.721539i | −0.176325 | + | 1.67762i | −1.11199 | + | 0.236360i | −0.601801 | − | 1.85215i | 0.913545 | + | 0.406737i | 1.03536 | − | 1.79330i |
256.5 | −0.121483 | − | 1.15584i | −0.978148 | − | 0.207912i | 0.635096 | − | 0.134994i | −2.64351 | − | 1.92062i | −0.121483 | + | 1.15584i | −2.84394 | + | 0.604498i | −0.951465 | − | 2.92831i | 0.913545 | + | 0.406737i | −1.89878 | + | 3.28879i |
256.6 | −0.0891258 | − | 0.847975i | −0.978148 | − | 0.207912i | 1.24518 | − | 0.264670i | 1.84578 | + | 1.34104i | −0.0891258 | + | 0.847975i | −2.53940 | + | 0.539767i | −0.862376 | − | 2.65412i | 0.913545 | + | 0.406737i | 0.972662 | − | 1.68470i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
13.c | even | 3 | 1 | inner |
143.q | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bg.b | ✓ | 112 |
11.c | even | 5 | 1 | inner | 429.2.bg.b | ✓ | 112 |
13.c | even | 3 | 1 | inner | 429.2.bg.b | ✓ | 112 |
143.q | even | 15 | 1 | inner | 429.2.bg.b | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bg.b | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
429.2.bg.b | ✓ | 112 | 11.c | even | 5 | 1 | inner |
429.2.bg.b | ✓ | 112 | 13.c | even | 3 | 1 | inner |
429.2.bg.b | ✓ | 112 | 143.q | even | 15 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(59\!\cdots\!70\)\( T_{2}^{82} + 673362357978 T_{2}^{81} + \)\(28\!\cdots\!43\)\( T_{2}^{80} - \)\(43\!\cdots\!01\)\( T_{2}^{79} - \)\(39\!\cdots\!18\)\( T_{2}^{78} + \)\(13\!\cdots\!73\)\( T_{2}^{77} - \)\(32\!\cdots\!51\)\( T_{2}^{76} + \)\(13\!\cdots\!96\)\( T_{2}^{75} + \)\(23\!\cdots\!49\)\( T_{2}^{74} - \)\(12\!\cdots\!52\)\( T_{2}^{73} - \)\(74\!\cdots\!02\)\( T_{2}^{72} - \)\(12\!\cdots\!52\)\( T_{2}^{71} + \)\(42\!\cdots\!83\)\( T_{2}^{70} + \)\(10\!\cdots\!88\)\( T_{2}^{69} + \)\(77\!\cdots\!84\)\( T_{2}^{68} - \)\(22\!\cdots\!47\)\( T_{2}^{67} - \)\(41\!\cdots\!59\)\( T_{2}^{66} - \)\(42\!\cdots\!32\)\( T_{2}^{65} + \)\(93\!\cdots\!53\)\( T_{2}^{64} + \)\(39\!\cdots\!37\)\( T_{2}^{63} + \)\(47\!\cdots\!65\)\( T_{2}^{62} - \)\(11\!\cdots\!73\)\( T_{2}^{61} - \)\(93\!\cdots\!26\)\( T_{2}^{60} + \)\(39\!\cdots\!06\)\( T_{2}^{59} + \)\(29\!\cdots\!00\)\( T_{2}^{58} + \)\(63\!\cdots\!35\)\( T_{2}^{57} - \)\(39\!\cdots\!46\)\( T_{2}^{56} - \)\(21\!\cdots\!19\)\( T_{2}^{55} - \)\(29\!\cdots\!23\)\( T_{2}^{54} + \)\(31\!\cdots\!07\)\( T_{2}^{53} + \)\(33\!\cdots\!83\)\( T_{2}^{52} - \)\(10\!\cdots\!60\)\( T_{2}^{51} - \)\(85\!\cdots\!64\)\( T_{2}^{50} + \)\(31\!\cdots\!35\)\( T_{2}^{49} + \)\(10\!\cdots\!85\)\( T_{2}^{48} - \)\(23\!\cdots\!32\)\( T_{2}^{47} - \)\(25\!\cdots\!63\)\( T_{2}^{46} - \)\(50\!\cdots\!63\)\( T_{2}^{45} - \)\(10\!\cdots\!19\)\( T_{2}^{44} + \)\(11\!\cdots\!91\)\( T_{2}^{43} + \)\(26\!\cdots\!16\)\( T_{2}^{42} - \)\(20\!\cdots\!97\)\( T_{2}^{41} - \)\(24\!\cdots\!27\)\( T_{2}^{40} + \)\(26\!\cdots\!68\)\( T_{2}^{39} - \)\(49\!\cdots\!17\)\( T_{2}^{38} - \)\(10\!\cdots\!65\)\( T_{2}^{37} + \)\(31\!\cdots\!52\)\( T_{2}^{36} - \)\(20\!\cdots\!40\)\( T_{2}^{35} - \)\(24\!\cdots\!27\)\( T_{2}^{34} + \)\(28\!\cdots\!61\)\( T_{2}^{33} + \)\(62\!\cdots\!06\)\( T_{2}^{32} - \)\(81\!\cdots\!50\)\( T_{2}^{31} + \)\(12\!\cdots\!03\)\( T_{2}^{30} - \)\(86\!\cdots\!64\)\( T_{2}^{29} - \)\(80\!\cdots\!71\)\( T_{2}^{28} + \)\(79\!\cdots\!49\)\( T_{2}^{27} + \)\(19\!\cdots\!53\)\( T_{2}^{26} - \)\(24\!\cdots\!54\)\( T_{2}^{25} + \)\(12\!\cdots\!29\)\( T_{2}^{24} - \)\(22\!\cdots\!60\)\( T_{2}^{23} - \)\(12\!\cdots\!69\)\( T_{2}^{22} + \)\(57\!\cdots\!14\)\( T_{2}^{21} + \)\(72\!\cdots\!37\)\( T_{2}^{20} - \)\(49\!\cdots\!86\)\( T_{2}^{19} - \)\(17\!\cdots\!00\)\( T_{2}^{18} + \)\(17\!\cdots\!91\)\( T_{2}^{17} - \)\(98\!\cdots\!41\)\( T_{2}^{16} + \)\(12\!\cdots\!83\)\( T_{2}^{15} + \)\(82\!\cdots\!33\)\( T_{2}^{14} - \)\(10\!\cdots\!03\)\( T_{2}^{13} + \)\(23\!\cdots\!65\)\( T_{2}^{12} + \)\(40\!\cdots\!89\)\( T_{2}^{11} - \)\(32\!\cdots\!18\)\( T_{2}^{10} + \)\(14\!\cdots\!51\)\( T_{2}^{9} + \)\(23\!\cdots\!60\)\( T_{2}^{8} + \)\(12\!\cdots\!02\)\( T_{2}^{7} + 33801426268 T_{2}^{6} + 953593498 T_{2}^{5} + 20268973 T_{2}^{4} + 155018 T_{2}^{3} + 2355 T_{2}^{2} + 99 T_{2} + 1 \)">\(T_{2}^{112} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).