Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bg (of order \(15\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(112\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{15})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −1.80037 | + | 1.99951i | 0.104528 | − | 0.994522i | −0.547661 | − | 5.21064i | −0.759776 | + | 2.33835i | 1.80037 | + | 1.99951i | 0.0209204 | + | 0.199044i | 7.05123 | + | 5.12302i | −0.978148 | − | 0.207912i | −3.30768 | − | 5.72907i |
16.2 | −1.68093 | + | 1.86686i | 0.104528 | − | 0.994522i | −0.450589 | − | 4.28707i | 1.24954 | − | 3.84568i | 1.68093 | + | 1.86686i | 0.0277297 | + | 0.263830i | 4.69608 | + | 3.41190i | −0.978148 | − | 0.207912i | 5.07897 | + | 8.79703i |
16.3 | −1.46128 | + | 1.62292i | 0.104528 | − | 0.994522i | −0.289460 | − | 2.75403i | −0.299446 | + | 0.921600i | 1.46128 | + | 1.62292i | −0.235463 | − | 2.24028i | 1.35900 | + | 0.987368i | −0.978148 | − | 0.207912i | −1.05810 | − | 1.83269i |
16.4 | −0.990763 | + | 1.10035i | 0.104528 | − | 0.994522i | −0.0201101 | − | 0.191335i | −0.983732 | + | 3.02762i | 0.990763 | + | 1.10035i | 0.365713 | + | 3.47953i | −2.16532 | − | 1.57319i | −0.978148 | − | 0.207912i | −2.35680 | − | 4.08210i |
16.5 | −0.946617 | + | 1.05132i | 0.104528 | − | 0.994522i | −0.000142744 | − | 0.00135811i | 0.776847 | − | 2.39089i | 0.946617 | + | 1.05132i | −0.131132 | − | 1.24764i | −2.28746 | − | 1.66194i | −0.978148 | − | 0.207912i | 1.77822 | + | 3.07997i |
16.6 | −0.491663 | + | 0.546047i | 0.104528 | − | 0.994522i | 0.152622 | + | 1.45210i | −0.00147074 | + | 0.00452647i | 0.491663 | + | 0.546047i | −0.428655 | − | 4.07838i | −2.05685 | − | 1.49439i | −0.978148 | − | 0.207912i | −0.00174856 | − | 0.00302859i |
16.7 | −0.0978317 | + | 0.108653i | 0.104528 | − | 0.994522i | 0.206822 | + | 1.96778i | −0.621977 | + | 1.91425i | 0.0978317 | + | 0.108653i | 0.00250914 | + | 0.0238729i | −0.470608 | − | 0.341917i | −0.978148 | − | 0.207912i | −0.147140 | − | 0.254854i |
16.8 | 0.244102 | − | 0.271103i | 0.104528 | − | 0.994522i | 0.195146 | + | 1.85669i | 0.211790 | − | 0.651823i | −0.244102 | − | 0.271103i | 0.465929 | + | 4.43302i | 1.14126 | + | 0.829171i | −0.978148 | − | 0.207912i | −0.125013 | − | 0.216528i |
16.9 | 0.502391 | − | 0.557961i | 0.104528 | − | 0.994522i | 0.150132 | + | 1.42841i | −0.0412359 | + | 0.126911i | −0.502391 | − | 0.557961i | −0.139017 | − | 1.32266i | 2.08726 | + | 1.51649i | −0.978148 | − | 0.207912i | 0.0500950 | + | 0.0867670i |
16.10 | 0.844998 | − | 0.938465i | 0.104528 | − | 0.994522i | 0.0423614 | + | 0.403042i | 1.13050 | − | 3.47932i | −0.844998 | − | 0.938465i | −0.100820 | − | 0.959240i | 2.45734 | + | 1.78536i | −0.978148 | − | 0.207912i | −2.30995 | − | 4.00095i |
16.11 | 1.06574 | − | 1.18363i | 0.104528 | − | 0.994522i | −0.0561096 | − | 0.533847i | −1.11978 | + | 3.44633i | −1.06574 | − | 1.18363i | 0.311034 | + | 2.95930i | 1.88542 | + | 1.36983i | −0.978148 | − | 0.207912i | 2.88578 | + | 4.99832i |
16.12 | 1.44079 | − | 1.60016i | 0.104528 | − | 0.994522i | −0.275575 | − | 2.62192i | 0.0727615 | − | 0.223937i | −1.44079 | − | 1.60016i | −0.0981000 | − | 0.933359i | −1.10854 | − | 0.805401i | −0.978148 | − | 0.207912i | −0.253500 | − | 0.439075i |
16.13 | 1.65656 | − | 1.83979i | 0.104528 | − | 0.994522i | −0.431601 | − | 4.10641i | −0.543715 | + | 1.67338i | −1.65656 | − | 1.83979i | −0.506656 | − | 4.82051i | −4.26418 | − | 3.09811i | −0.978148 | − | 0.207912i | 2.17798 | + | 3.77238i |
16.14 | 1.71487 | − | 1.90455i | 0.104528 | − | 0.994522i | −0.477496 | − | 4.54307i | 1.12068 | − | 3.44910i | −1.71487 | − | 1.90455i | 0.446007 | + | 4.24348i | −5.32461 | − | 3.86856i | −0.978148 | − | 0.207912i | −4.64718 | − | 8.04915i |
256.1 | −0.273007 | − | 2.59749i | 0.978148 | + | 0.207912i | −4.71612 | + | 1.00244i | 0.822674 | + | 0.597708i | 0.273007 | − | 2.59749i | 3.34488 | − | 0.710976i | 2.27719 | + | 7.00848i | 0.913545 | + | 0.406737i | 1.32794 | − | 2.30007i |
256.2 | −0.258546 | − | 2.45990i | 0.978148 | + | 0.207912i | −4.02797 | + | 0.856172i | −0.872789 | − | 0.634118i | 0.258546 | − | 2.45990i | −3.11026 | + | 0.661107i | 1.61884 | + | 4.98227i | 0.913545 | + | 0.406737i | −1.33421 | + | 2.31092i |
256.3 | −0.220383 | − | 2.09680i | 0.978148 | + | 0.207912i | −2.39171 | + | 0.508373i | 3.27922 | + | 2.38249i | 0.220383 | − | 2.09680i | −0.946033 | + | 0.201086i | 0.290016 | + | 0.892577i | 0.913545 | + | 0.406737i | 4.27293 | − | 7.40092i |
256.4 | −0.140589 | − | 1.33762i | 0.978148 | + | 0.207912i | 0.186846 | − | 0.0397154i | −0.768940 | − | 0.558668i | 0.140589 | − | 1.33762i | 3.61727 | − | 0.768874i | −0.910638 | − | 2.80265i | 0.913545 | + | 0.406737i | −0.639178 | + | 1.10709i |
256.5 | −0.134448 | − | 1.27919i | 0.978148 | + | 0.207912i | 0.338055 | − | 0.0718558i | −1.25069 | − | 0.908681i | 0.134448 | − | 1.27919i | 1.33154 | − | 0.283029i | −0.932303 | − | 2.86933i | 0.913545 | + | 0.406737i | −0.994219 | + | 1.72204i |
256.6 | −0.0790719 | − | 0.752319i | 0.978148 | + | 0.207912i | 1.39656 | − | 0.296849i | 2.62007 | + | 1.90359i | 0.0790719 | − | 0.752319i | −0.683673 | + | 0.145319i | −0.801274 | − | 2.46607i | 0.913545 | + | 0.406737i | 1.22494 | − | 2.12165i |
See next 80 embeddings (of 112 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
13.c | even | 3 | 1 | inner |
143.q | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bg.a | ✓ | 112 |
11.c | even | 5 | 1 | inner | 429.2.bg.a | ✓ | 112 |
13.c | even | 3 | 1 | inner | 429.2.bg.a | ✓ | 112 |
143.q | even | 15 | 1 | inner | 429.2.bg.a | ✓ | 112 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bg.a | ✓ | 112 | 1.a | even | 1 | 1 | trivial |
429.2.bg.a | ✓ | 112 | 11.c | even | 5 | 1 | inner |
429.2.bg.a | ✓ | 112 | 13.c | even | 3 | 1 | inner |
429.2.bg.a | ✓ | 112 | 143.q | even | 15 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(20\!\cdots\!92\)\( T_{2}^{84} - 93223698381 T_{2}^{83} + \)\(32\!\cdots\!96\)\( T_{2}^{82} + 850388036538 T_{2}^{81} + \)\(29\!\cdots\!09\)\( T_{2}^{80} + \)\(37\!\cdots\!33\)\( T_{2}^{79} - \)\(24\!\cdots\!94\)\( T_{2}^{78} - \)\(40\!\cdots\!93\)\( T_{2}^{77} + \)\(84\!\cdots\!89\)\( T_{2}^{76} + \)\(42\!\cdots\!82\)\( T_{2}^{75} - \)\(17\!\cdots\!31\)\( T_{2}^{74} + \)\(80\!\cdots\!80\)\( T_{2}^{73} - \)\(14\!\cdots\!12\)\( T_{2}^{72} - \)\(55\!\cdots\!68\)\( T_{2}^{71} + \)\(79\!\cdots\!73\)\( T_{2}^{70} + \)\(21\!\cdots\!46\)\( T_{2}^{69} - \)\(16\!\cdots\!40\)\( T_{2}^{68} - \)\(12\!\cdots\!35\)\( T_{2}^{67} - \)\(34\!\cdots\!31\)\( T_{2}^{66} - \)\(41\!\cdots\!42\)\( T_{2}^{65} + \)\(31\!\cdots\!41\)\( T_{2}^{64} + \)\(24\!\cdots\!63\)\( T_{2}^{63} - \)\(79\!\cdots\!27\)\( T_{2}^{62} - \)\(48\!\cdots\!63\)\( T_{2}^{61} + \)\(50\!\cdots\!18\)\( T_{2}^{60} - \)\(26\!\cdots\!96\)\( T_{2}^{59} + \)\(32\!\cdots\!22\)\( T_{2}^{58} + \)\(46\!\cdots\!81\)\( T_{2}^{57} - \)\(14\!\cdots\!16\)\( T_{2}^{56} - \)\(17\!\cdots\!93\)\( T_{2}^{55} + \)\(25\!\cdots\!23\)\( T_{2}^{54} + \)\(36\!\cdots\!79\)\( T_{2}^{53} + \)\(36\!\cdots\!95\)\( T_{2}^{52} - \)\(21\!\cdots\!78\)\( T_{2}^{51} - \)\(13\!\cdots\!84\)\( T_{2}^{50} - \)\(11\!\cdots\!57\)\( T_{2}^{49} + \)\(30\!\cdots\!39\)\( T_{2}^{48} + \)\(34\!\cdots\!20\)\( T_{2}^{47} - \)\(27\!\cdots\!97\)\( T_{2}^{46} - \)\(39\!\cdots\!59\)\( T_{2}^{45} - \)\(16\!\cdots\!23\)\( T_{2}^{44} - \)\(77\!\cdots\!37\)\( T_{2}^{43} + \)\(10\!\cdots\!90\)\( T_{2}^{42} + \)\(10\!\cdots\!45\)\( T_{2}^{41} - \)\(18\!\cdots\!99\)\( T_{2}^{40} - \)\(17\!\cdots\!44\)\( T_{2}^{39} + \)\(13\!\cdots\!11\)\( T_{2}^{38} + \)\(83\!\cdots\!55\)\( T_{2}^{37} + \)\(16\!\cdots\!50\)\( T_{2}^{36} + \)\(21\!\cdots\!66\)\( T_{2}^{35} - \)\(45\!\cdots\!19\)\( T_{2}^{34} - \)\(43\!\cdots\!53\)\( T_{2}^{33} + \)\(34\!\cdots\!20\)\( T_{2}^{32} + \)\(26\!\cdots\!74\)\( T_{2}^{31} + \)\(63\!\cdots\!87\)\( T_{2}^{30} + \)\(17\!\cdots\!08\)\( T_{2}^{29} - \)\(15\!\cdots\!07\)\( T_{2}^{28} - \)\(25\!\cdots\!91\)\( T_{2}^{27} + \)\(96\!\cdots\!73\)\( T_{2}^{26} + \)\(13\!\cdots\!94\)\( T_{2}^{25} - \)\(14\!\cdots\!41\)\( T_{2}^{24} - \)\(34\!\cdots\!68\)\( T_{2}^{23} - \)\(19\!\cdots\!23\)\( T_{2}^{22} - \)\(69\!\cdots\!88\)\( T_{2}^{21} + \)\(26\!\cdots\!95\)\( T_{2}^{20} + \)\(20\!\cdots\!96\)\( T_{2}^{19} - \)\(13\!\cdots\!72\)\( T_{2}^{18} - \)\(10\!\cdots\!63\)\( T_{2}^{17} + \)\(30\!\cdots\!31\)\( T_{2}^{16} + \)\(14\!\cdots\!25\)\( T_{2}^{15} + \)\(65\!\cdots\!65\)\( T_{2}^{14} + \)\(67\!\cdots\!25\)\( T_{2}^{13} + \)\(15\!\cdots\!25\)\( T_{2}^{12} - \)\(79\!\cdots\!25\)\( T_{2}^{11} + \)\(24\!\cdots\!00\)\( T_{2}^{10} + \)\(16\!\cdots\!25\)\( T_{2}^{9} - \)\(22\!\cdots\!50\)\( T_{2}^{8} - \)\(65\!\cdots\!00\)\( T_{2}^{7} + \)\(74\!\cdots\!50\)\( T_{2}^{6} - \)\(82\!\cdots\!00\)\( T_{2}^{5} + \)\(46\!\cdots\!75\)\( T_{2}^{4} - \)\(36\!\cdots\!50\)\( T_{2}^{3} + \)\(15\!\cdots\!75\)\( T_{2}^{2} - \)\(14\!\cdots\!75\)\( T_{2} + 152587890625 \)">\(T_{2}^{112} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).