Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.bd (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
76.1 | −2.44393 | − | 0.654849i | 0.500000 | + | 0.866025i | 3.81192 | + | 2.20081i | −0.748465 | − | 0.748465i | −0.654849 | − | 2.44393i | −0.270535 | + | 0.0724897i | −4.29670 | − | 4.29670i | −0.500000 | + | 0.866025i | 1.33906 | + | 2.31933i |
76.2 | −2.02512 | − | 0.542629i | 0.500000 | + | 0.866025i | 2.07462 | + | 1.19778i | 1.41467 | + | 1.41467i | −0.542629 | − | 2.02512i | −0.256787 | + | 0.0688060i | −0.586415 | − | 0.586415i | −0.500000 | + | 0.866025i | −2.09724 | − | 3.63252i |
76.3 | −1.77380 | − | 0.475288i | 0.500000 | + | 0.866025i | 1.18842 | + | 0.686133i | −0.611710 | − | 0.611710i | −0.475288 | − | 1.77380i | −4.35587 | + | 1.16715i | 0.815121 | + | 0.815121i | −0.500000 | + | 0.866025i | 0.794312 | + | 1.37579i |
76.4 | −1.69511 | − | 0.454204i | 0.500000 | + | 0.866025i | 0.935048 | + | 0.539850i | 2.20359 | + | 2.20359i | −0.454204 | − | 1.69511i | 4.59665 | − | 1.23167i | 1.14201 | + | 1.14201i | −0.500000 | + | 0.866025i | −2.73445 | − | 4.73621i |
76.5 | −1.19562 | − | 0.320366i | 0.500000 | + | 0.866025i | −0.405173 | − | 0.233927i | −2.87074 | − | 2.87074i | −0.320366 | − | 1.19562i | 2.15836 | − | 0.578331i | 2.16000 | + | 2.16000i | −0.500000 | + | 0.866025i | 2.51263 | + | 4.35201i |
76.6 | −0.391582 | − | 0.104924i | 0.500000 | + | 0.866025i | −1.58972 | − | 0.917827i | 2.00961 | + | 2.00961i | −0.104924 | − | 0.391582i | −3.95482 | + | 1.05969i | 1.09952 | + | 1.09952i | −0.500000 | + | 0.866025i | −0.576070 | − | 0.997782i |
76.7 | −0.225205 | − | 0.0603434i | 0.500000 | + | 0.866025i | −1.68498 | − | 0.972821i | −1.03093 | − | 1.03093i | −0.0603434 | − | 0.225205i | −1.55041 | + | 0.415430i | 0.650483 | + | 0.650483i | −0.500000 | + | 0.866025i | 0.169960 | + | 0.294380i |
76.8 | 0.225205 | + | 0.0603434i | 0.500000 | + | 0.866025i | −1.68498 | − | 0.972821i | −1.03093 | − | 1.03093i | 0.0603434 | + | 0.225205i | 1.55041 | − | 0.415430i | −0.650483 | − | 0.650483i | −0.500000 | + | 0.866025i | −0.169960 | − | 0.294380i |
76.9 | 0.391582 | + | 0.104924i | 0.500000 | + | 0.866025i | −1.58972 | − | 0.917827i | 2.00961 | + | 2.00961i | 0.104924 | + | 0.391582i | 3.95482 | − | 1.05969i | −1.09952 | − | 1.09952i | −0.500000 | + | 0.866025i | 0.576070 | + | 0.997782i |
76.10 | 1.19562 | + | 0.320366i | 0.500000 | + | 0.866025i | −0.405173 | − | 0.233927i | −2.87074 | − | 2.87074i | 0.320366 | + | 1.19562i | −2.15836 | + | 0.578331i | −2.16000 | − | 2.16000i | −0.500000 | + | 0.866025i | −2.51263 | − | 4.35201i |
76.11 | 1.69511 | + | 0.454204i | 0.500000 | + | 0.866025i | 0.935048 | + | 0.539850i | 2.20359 | + | 2.20359i | 0.454204 | + | 1.69511i | −4.59665 | + | 1.23167i | −1.14201 | − | 1.14201i | −0.500000 | + | 0.866025i | 2.73445 | + | 4.73621i |
76.12 | 1.77380 | + | 0.475288i | 0.500000 | + | 0.866025i | 1.18842 | + | 0.686133i | −0.611710 | − | 0.611710i | 0.475288 | + | 1.77380i | 4.35587 | − | 1.16715i | −0.815121 | − | 0.815121i | −0.500000 | + | 0.866025i | −0.794312 | − | 1.37579i |
76.13 | 2.02512 | + | 0.542629i | 0.500000 | + | 0.866025i | 2.07462 | + | 1.19778i | 1.41467 | + | 1.41467i | 0.542629 | + | 2.02512i | 0.256787 | − | 0.0688060i | 0.586415 | + | 0.586415i | −0.500000 | + | 0.866025i | 2.09724 | + | 3.63252i |
76.14 | 2.44393 | + | 0.654849i | 0.500000 | + | 0.866025i | 3.81192 | + | 2.20081i | −0.748465 | − | 0.748465i | 0.654849 | + | 2.44393i | 0.270535 | − | 0.0724897i | 4.29670 | + | 4.29670i | −0.500000 | + | 0.866025i | −1.33906 | − | 2.31933i |
175.1 | −2.44393 | + | 0.654849i | 0.500000 | − | 0.866025i | 3.81192 | − | 2.20081i | −0.748465 | + | 0.748465i | −0.654849 | + | 2.44393i | −0.270535 | − | 0.0724897i | −4.29670 | + | 4.29670i | −0.500000 | − | 0.866025i | 1.33906 | − | 2.31933i |
175.2 | −2.02512 | + | 0.542629i | 0.500000 | − | 0.866025i | 2.07462 | − | 1.19778i | 1.41467 | − | 1.41467i | −0.542629 | + | 2.02512i | −0.256787 | − | 0.0688060i | −0.586415 | + | 0.586415i | −0.500000 | − | 0.866025i | −2.09724 | + | 3.63252i |
175.3 | −1.77380 | + | 0.475288i | 0.500000 | − | 0.866025i | 1.18842 | − | 0.686133i | −0.611710 | + | 0.611710i | −0.475288 | + | 1.77380i | −4.35587 | − | 1.16715i | 0.815121 | − | 0.815121i | −0.500000 | − | 0.866025i | 0.794312 | − | 1.37579i |
175.4 | −1.69511 | + | 0.454204i | 0.500000 | − | 0.866025i | 0.935048 | − | 0.539850i | 2.20359 | − | 2.20359i | −0.454204 | + | 1.69511i | 4.59665 | + | 1.23167i | 1.14201 | − | 1.14201i | −0.500000 | − | 0.866025i | −2.73445 | + | 4.73621i |
175.5 | −1.19562 | + | 0.320366i | 0.500000 | − | 0.866025i | −0.405173 | + | 0.233927i | −2.87074 | + | 2.87074i | −0.320366 | + | 1.19562i | 2.15836 | + | 0.578331i | 2.16000 | − | 2.16000i | −0.500000 | − | 0.866025i | 2.51263 | − | 4.35201i |
175.6 | −0.391582 | + | 0.104924i | 0.500000 | − | 0.866025i | −1.58972 | + | 0.917827i | 2.00961 | − | 2.00961i | −0.104924 | + | 0.391582i | −3.95482 | − | 1.05969i | 1.09952 | − | 1.09952i | −0.500000 | − | 0.866025i | −0.576070 | + | 0.997782i |
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
143.o | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.bd.b | ✓ | 56 |
11.b | odd | 2 | 1 | inner | 429.2.bd.b | ✓ | 56 |
13.f | odd | 12 | 1 | inner | 429.2.bd.b | ✓ | 56 |
143.o | even | 12 | 1 | inner | 429.2.bd.b | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.bd.b | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
429.2.bd.b | ✓ | 56 | 11.b | odd | 2 | 1 | inner |
429.2.bd.b | ✓ | 56 | 13.f | odd | 12 | 1 | inner |
429.2.bd.b | ✓ | 56 | 143.o | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{56} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).