Properties

Label 429.1.v.a.311.1
Level $429$
Weight $1$
Character 429.311
Analytic conductor $0.214$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -39
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 429 = 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 429.v (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.214098890420\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.22268961.1

Embedding invariants

Embedding label 311.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 429.311
Dual form 429.1.v.a.389.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.30902 + 0.951057i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.500000 - 1.53884i) q^{4} +(0.500000 + 0.363271i) q^{5} +(-1.30902 - 0.951057i) q^{6} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+(-1.30902 + 0.951057i) q^{2} +(0.309017 + 0.951057i) q^{3} +(0.500000 - 1.53884i) q^{4} +(0.500000 + 0.363271i) q^{5} +(-1.30902 - 0.951057i) q^{6} +(0.309017 + 0.951057i) q^{8} +(-0.809017 + 0.587785i) q^{9} -1.00000 q^{10} +(0.809017 + 0.587785i) q^{11} +1.61803 q^{12} +(-0.809017 + 0.587785i) q^{13} +(-0.190983 + 0.587785i) q^{15} +(0.500000 - 1.53884i) q^{18} +(0.809017 - 0.587785i) q^{20} -1.61803 q^{22} +(-0.809017 + 0.587785i) q^{24} +(-0.190983 - 0.587785i) q^{25} +(0.500000 - 1.53884i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(-0.309017 - 0.951057i) q^{30} -1.00000 q^{32} +(-0.309017 + 0.951057i) q^{33} +(0.500000 + 1.53884i) q^{36} +(-0.809017 - 0.587785i) q^{39} +(-0.190983 + 0.587785i) q^{40} +(-0.618034 - 1.90211i) q^{41} +0.618034 q^{43} +(1.30902 - 0.951057i) q^{44} -0.618034 q^{45} +(0.500000 + 1.53884i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(0.809017 + 0.587785i) q^{50} +(0.500000 + 1.53884i) q^{52} +1.61803 q^{54} +(0.190983 + 0.587785i) q^{55} +(0.500000 - 1.53884i) q^{59} +(0.809017 + 0.587785i) q^{60} +(1.30902 + 0.951057i) q^{61} +(1.30902 - 0.951057i) q^{64} -0.618034 q^{65} +(-0.500000 - 1.53884i) q^{66} +(1.61803 + 1.17557i) q^{71} +(-0.809017 - 0.587785i) q^{72} +(0.500000 - 0.363271i) q^{75} +1.61803 q^{78} +(1.30902 - 0.951057i) q^{79} +(0.309017 - 0.951057i) q^{81} +(2.61803 + 1.90211i) q^{82} +(0.500000 + 0.363271i) q^{83} +(-0.809017 + 0.587785i) q^{86} +(-0.309017 + 0.951057i) q^{88} -2.00000 q^{89} +(0.809017 - 0.587785i) q^{90} +(-2.11803 - 1.53884i) q^{94} +(-0.309017 - 0.951057i) q^{96} +1.61803 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 3q^{2} - q^{3} + 2q^{4} + 2q^{5} - 3q^{6} - q^{8} - q^{9} + O(q^{10}) \) \( 4q - 3q^{2} - q^{3} + 2q^{4} + 2q^{5} - 3q^{6} - q^{8} - q^{9} - 4q^{10} + q^{11} + 2q^{12} - q^{13} - 3q^{15} + 2q^{18} + q^{20} - 2q^{22} - q^{24} - 3q^{25} + 2q^{26} - q^{27} + q^{30} - 4q^{32} + q^{33} + 2q^{36} - q^{39} - 3q^{40} + 2q^{41} - 2q^{43} + 3q^{44} + 2q^{45} + 2q^{47} - q^{49} + q^{50} + 2q^{52} + 2q^{54} + 3q^{55} + 2q^{59} + q^{60} + 3q^{61} + 3q^{64} + 2q^{65} - 2q^{66} + 2q^{71} - q^{72} + 2q^{75} + 2q^{78} + 3q^{79} - q^{81} + 6q^{82} + 2q^{83} - q^{86} + q^{88} - 8q^{89} + q^{90} - 4q^{94} + q^{96} + 2q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/429\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(79\) \(287\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(3\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(4\) 0.500000 1.53884i 0.500000 1.53884i
\(5\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(6\) −1.30902 0.951057i −1.30902 0.951057i
\(7\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(8\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(9\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(10\) −1.00000 −1.00000
\(11\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(12\) 1.61803 1.61803
\(13\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(14\) 0 0
\(15\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(16\) 0 0
\(17\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(18\) 0.500000 1.53884i 0.500000 1.53884i
\(19\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(20\) 0.809017 0.587785i 0.809017 0.587785i
\(21\) 0 0
\(22\) −1.61803 −1.61803
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(25\) −0.190983 0.587785i −0.190983 0.587785i
\(26\) 0.500000 1.53884i 0.500000 1.53884i
\(27\) −0.809017 0.587785i −0.809017 0.587785i
\(28\) 0 0
\(29\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(30\) −0.309017 0.951057i −0.309017 0.951057i
\(31\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(32\) −1.00000 −1.00000
\(33\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(37\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(38\) 0 0
\(39\) −0.809017 0.587785i −0.809017 0.587785i
\(40\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(41\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(42\) 0 0
\(43\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(44\) 1.30902 0.951057i 1.30902 0.951057i
\(45\) −0.618034 −0.618034
\(46\) 0 0
\(47\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.809017 0.587785i
\(50\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(51\) 0 0
\(52\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(53\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) 1.61803 1.61803
\(55\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(60\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(61\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.30902 0.951057i 1.30902 0.951057i
\(65\) −0.618034 −0.618034
\(66\) −0.500000 1.53884i −0.500000 1.53884i
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(72\) −0.809017 0.587785i −0.809017 0.587785i
\(73\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(74\) 0 0
\(75\) 0.500000 0.363271i 0.500000 0.363271i
\(76\) 0 0
\(77\) 0 0
\(78\) 1.61803 1.61803
\(79\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.309017 0.951057i
\(82\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(83\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(87\) 0 0
\(88\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(89\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(90\) 0.809017 0.587785i 0.809017 0.587785i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −2.11803 1.53884i −2.11803 1.53884i
\(95\) 0 0
\(96\) −0.309017 0.951057i −0.309017 0.951057i
\(97\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 1.61803 1.61803
\(99\) −1.00000 −1.00000
\(100\) −1.00000 −1.00000
\(101\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(102\) 0 0
\(103\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(104\) −0.809017 0.587785i −0.809017 0.587785i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(108\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.809017 0.587785i −0.809017 0.587785i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.309017 0.951057i 0.309017 0.951057i
\(118\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(119\) 0 0
\(120\) −0.618034 −0.618034
\(121\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(122\) −2.61803 −2.61803
\(123\) 1.61803 1.17557i 1.61803 1.17557i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.309017 0.951057i
\(126\) 0 0
\(127\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(128\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(129\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(130\) 0.809017 0.587785i 0.809017 0.587785i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(133\) 0 0
\(134\) 0 0
\(135\) −0.190983 0.587785i −0.190983 0.587785i
\(136\) 0 0
\(137\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(140\) 0 0
\(141\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(142\) −3.23607 −3.23607
\(143\) −1.00000 −1.00000
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.309017 0.951057i 0.309017 0.951057i
\(148\) 0 0
\(149\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(150\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(151\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(157\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(158\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(159\) 0 0
\(160\) −0.500000 0.363271i −0.500000 0.363271i
\(161\) 0 0
\(162\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(163\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(164\) −3.23607 −3.23607
\(165\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(166\) −1.00000 −1.00000
\(167\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(168\) 0 0
\(169\) 0.309017 0.951057i 0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 0.309017 0.951057i 0.309017 0.951057i
\(173\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.61803 1.61803
\(178\) 2.61803 1.90211i 2.61803 1.90211i
\(179\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(180\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(181\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(182\) 0 0
\(183\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 2.61803 2.61803
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(192\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(193\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(194\) 0 0
\(195\) −0.190983 0.587785i −0.190983 0.587785i
\(196\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(197\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(198\) 1.30902 0.951057i 1.30902 0.951057i
\(199\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(200\) 0.500000 0.363271i 0.500000 0.363271i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.381966 1.17557i 0.381966 1.17557i
\(206\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) 0 0
\(213\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(214\) 0 0
\(215\) 0.309017 + 0.224514i 0.309017 + 0.224514i
\(216\) 0.309017 0.951057i 0.309017 0.951057i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.00000 1.00000
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(224\) 0 0
\(225\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(226\) 0 0
\(227\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(228\) 0 0
\(229\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(234\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(235\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(236\) −2.11803 1.53884i −2.11803 1.53884i
\(237\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(238\) 0 0
\(239\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −1.30902 0.951057i −1.30902 0.951057i
\(243\) 1.00000 1.00000
\(244\) 2.11803 1.53884i 2.11803 1.53884i
\(245\) −0.190983 0.587785i −0.190983 0.587785i
\(246\) −1.00000 + 3.07768i −1.00000 + 3.07768i
\(247\) 0 0
\(248\) 0 0
\(249\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(250\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(251\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.00000 1.00000
\(255\) 0 0
\(256\) −0.309017 0.951057i −0.309017 0.951057i
\(257\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(258\) −0.809017 0.587785i −0.809017 0.587785i
\(259\) 0 0
\(260\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −1.00000 −1.00000
\(265\) 0 0
\(266\) 0 0
\(267\) −0.618034 1.90211i −0.618034 1.90211i
\(268\) 0 0
\(269\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(270\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(271\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 2.61803 2.61803
\(275\) 0.190983 0.587785i 0.190983 0.587785i
\(276\) 0 0
\(277\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(278\) −0.809017 2.48990i −0.809017 2.48990i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(282\) 0.809017 2.48990i 0.809017 2.48990i
\(283\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(284\) 2.61803 1.90211i 2.61803 1.90211i
\(285\) 0 0
\(286\) 1.30902 0.951057i 1.30902 0.951057i
\(287\) 0 0
\(288\) 0.809017 0.587785i 0.809017 0.587785i
\(289\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(294\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(295\) 0.809017 0.587785i 0.809017 0.587785i
\(296\) 0 0
\(297\) −0.309017 0.951057i −0.309017 0.951057i
\(298\) −1.00000 −1.00000
\(299\) 0 0
\(300\) −0.309017 0.951057i −0.309017 0.951057i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0.618034 0.618034
\(310\) 0 0
\(311\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0.309017 0.951057i 0.309017 0.951057i
\(313\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(314\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(315\) 0 0
\(316\) −0.809017 2.48990i −0.809017 2.48990i
\(317\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 1.00000
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.30902 0.951057i −1.30902 0.951057i
\(325\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(326\) 0 0
\(327\) 0 0
\(328\) 1.61803 1.17557i 1.61803 1.17557i
\(329\) 0 0
\(330\) 0.309017 0.951057i 0.309017 0.951057i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0.809017 0.587785i 0.809017 0.587785i
\(333\) 0 0
\(334\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(335\) 0 0
\(336\) 0 0
\(337\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(338\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(348\) 0 0
\(349\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(350\) 0 0
\(351\) 1.00000 1.00000
\(352\) −0.809017 0.587785i −0.809017 0.587785i
\(353\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(354\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(355\) 0.381966 + 1.17557i 0.381966 + 1.17557i
\(356\) −1.00000 + 3.07768i −1.00000 + 3.07768i
\(357\) 0 0
\(358\) 0 0
\(359\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(360\) −0.190983 0.587785i −0.190983 0.587785i
\(361\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(362\) 1.00000 1.00000
\(363\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.809017 2.48990i −0.809017 2.48990i
\(367\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(368\) 0 0
\(369\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(374\) 0 0
\(375\) 1.00000 1.00000
\(376\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(380\) 0 0
\(381\) 0.190983 0.587785i 0.190983 0.587785i
\(382\) 0 0
\(383\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(384\) −1.61803 −1.61803
\(385\) 0 0
\(386\) 0 0
\(387\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(388\) 0 0
\(389\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(390\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(391\) 0 0
\(392\) 0.309017 0.951057i 0.309017 0.951057i
\(393\) 0 0
\(394\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(395\) 1.00000 1.00000
\(396\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 2.11803 1.53884i 2.11803 1.53884i
\(399\) 0 0
\(400\) 0 0
\(401\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.500000 0.363271i 0.500000 0.363271i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(410\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(411\) 0.500000 1.53884i 0.500000 1.53884i
\(412\) −0.809017 0.587785i −0.809017 0.587785i
\(413\) 0 0
\(414\) 0 0
\(415\) 0.118034 + 0.363271i 0.118034 + 0.363271i
\(416\) 0.809017 0.587785i 0.809017 0.587785i
\(417\) −1.61803 −1.61803
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(422\) 0.309017 0.951057i 0.309017 0.951057i
\(423\) −1.30902 0.951057i −1.30902 0.951057i
\(424\) 0 0
\(425\) 0 0
\(426\) −1.00000 3.07768i −1.00000 3.07768i
\(427\) 0 0
\(428\) 0 0
\(429\) −0.309017 0.951057i −0.309017 0.951057i
\(430\) −0.618034 −0.618034
\(431\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(440\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(444\) 0 0
\(445\) −1.00000 0.726543i −1.00000 0.726543i
\(446\) 0 0
\(447\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(448\) 0 0
\(449\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(450\) −1.00000 −1.00000
\(451\) 0.618034 1.90211i 0.618034 1.90211i
\(452\) 0 0
\(453\) 0 0
\(454\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(468\) −1.30902 0.951057i −1.30902 0.951057i
\(469\) 0 0
\(470\) −0.500000 1.53884i −0.500000 1.53884i
\(471\) 1.30902 0.951057i 1.30902 0.951057i
\(472\) 1.61803 1.61803
\(473\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(474\) −2.61803 −2.61803
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(479\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(480\) 0.190983 0.587785i 0.190983 0.587785i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.61803 1.61803
\(485\) 0 0
\(486\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(487\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(488\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(489\) 0 0
\(490\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(491\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) −1.00000 3.07768i −1.00000 3.07768i
\(493\) 0 0
\(494\) 0 0
\(495\) −0.500000 0.363271i −0.500000 0.363271i
\(496\) 0 0
\(497\) 0 0
\(498\) −0.309017 0.951057i −0.309017 0.951057i
\(499\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(500\) −1.30902 0.951057i −1.30902 0.951057i
\(501\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(502\) 0 0
\(503\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000 1.00000
\(508\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(509\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.309017 0.224514i 0.309017 0.224514i
\(516\) 1.00000 1.00000
\(517\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.190983 0.587785i −0.190983 0.587785i
\(521\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 0 0
\(523\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(532\) 0 0
\(533\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(534\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.309017 0.951057i −0.309017 0.951057i
\(540\) −1.00000 −1.00000
\(541\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) 0.190983 0.587785i 0.190983 0.587785i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(548\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(549\) −1.61803 −1.61803
\(550\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 1.00000 3.07768i 1.00000 3.07768i
\(555\) 0 0
\(556\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(557\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(558\) 0 0
\(559\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(560\) 0 0
\(561\) 0 0
\(562\) 2.61803 2.61803
\(563\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(564\) 0.809017 + 2.48990i 0.809017 + 2.48990i
\(565\) 0 0
\(566\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(567\) 0 0
\(568\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(569\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(570\) 0 0
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(577\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(578\) −1.30902 0.951057i −1.30902 0.951057i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.500000 0.363271i 0.500000 0.363271i
\(586\) −0.309017 0.951057i −0.309017 0.951057i
\(587\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(588\) −1.30902 0.951057i −1.30902 0.951057i
\(589\) 0 0
\(590\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(591\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(592\) 0 0
\(593\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(594\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(595\) 0 0
\(596\) 0.809017 0.587785i 0.809017 0.587785i
\(597\) −0.500000 1.53884i −0.500000 1.53884i
\(598\) 0 0
\(599\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(600\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(601\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(606\) 0 0
\(607\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −1.30902 0.951057i −1.30902 0.951057i
\(611\) −1.30902 0.951057i −1.30902 0.951057i
\(612\) 0 0
\(613\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(614\) 0 0
\(615\) 1.23607 1.23607
\(616\) 0 0
\(617\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(618\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(619\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 1.00000 1.00000
\(627\) 0 0
\(628\) −2.61803 −2.61803
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(632\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(633\) −0.500000 0.363271i −0.500000 0.363271i
\(634\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(635\) −0.118034 0.363271i −0.118034 0.363271i
\(636\) 0 0
\(637\) 1.00000 1.00000
\(638\) 0 0
\(639\) −2.00000 −2.00000
\(640\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(641\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(644\) 0 0
\(645\) −0.118034 + 0.363271i −0.118034 + 0.363271i
\(646\) 0 0
\(647\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(648\) 1.00000 1.00000
\(649\) 1.30902 0.951057i 1.30902 0.951057i
\(650\) −1.00000 −1.00000
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −0.309017 0.951057i −0.309017 0.951057i
\(669\) 0 0
\(670\) 0 0
\(671\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(672\) 0 0
\(673\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(674\) −0.809017 2.48990i −0.809017 2.48990i
\(675\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(676\) −1.30902 0.951057i −1.30902 0.951057i
\(677\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.61803 1.61803
\(682\) 0 0
\(683\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(684\) 0 0
\(685\) −0.309017 0.951057i −0.309017 0.951057i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(702\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(703\) 0 0
\(704\) 1.61803 1.61803
\(705\) −1.00000 −1.00000
\(706\) 0.809017 0.587785i 0.809017 0.587785i
\(707\) 0 0
\(708\) 0.809017 2.48990i 0.809017 2.48990i
\(709\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(710\) −1.61803 1.17557i −1.61803 1.17557i
\(711\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(712\) −0.618034 1.90211i −0.618034 1.90211i
\(713\) 0 0
\(714\) 0 0
\(715\) −0.500000 0.363271i −0.500000 0.363271i
\(716\) 0 0
\(717\) 0.500000 0.363271i 0.500000 0.363271i
\(718\) −1.00000 3.07768i −1.00000 3.07768i
\(719\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.500000 1.53884i 0.500000 1.53884i
\(723\) 0 0
\(724\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(725\) 0 0
\(726\) 0.500000 1.53884i 0.500000 1.53884i
\(727\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(730\) 0 0
\(731\) 0 0
\(732\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(733\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(734\) −0.809017 2.48990i −0.809017 2.48990i
\(735\) 0.500000 0.363271i 0.500000 0.363271i
\(736\) 0 0
\(737\) 0 0
\(738\) −3.23607 −3.23607
\(739\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0.118034 + 0.363271i 0.118034 + 0.363271i
\(746\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(747\) −0.618034 −0.618034
\(748\) 0 0
\(749\) 0 0
\(750\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(751\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(762\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0.809017 2.48990i 0.809017 2.48990i
\(767\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(768\) 0.809017 0.587785i 0.809017 0.587785i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(774\) 0.309017 0.951057i 0.309017 0.951057i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −1.00000 −1.00000
\(781\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.309017 0.951057i 0.309017 0.951057i
\(786\) 0 0
\(787\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(788\) 0.809017 2.48990i 0.809017 2.48990i
\(789\) 0 0
\(790\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(791\) 0 0
\(792\) −0.309017 0.951057i −0.309017 0.951057i
\(793\) −1.61803 −1.61803
\(794\) 0 0
\(795\) 0 0
\(796\) −0.809017 + 2.48990i −0.809017 + 2.48990i
\(797\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(798\) 0 0