Defining parameters
Level: | \( N \) | = | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(13440\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(429))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 506 | 216 | 290 |
Cusp forms | 26 | 16 | 10 |
Eisenstein series | 480 | 200 | 280 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(429))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(429))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(429)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(143))\)\(^{\oplus 2}\)