Properties

Label 4275.2.a.z.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 475)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.44504 q^{2} +0.0881460 q^{4} +1.35690 q^{7} +2.76271 q^{8} +O(q^{10})\) \(q-1.44504 q^{2} +0.0881460 q^{4} +1.35690 q^{7} +2.76271 q^{8} -4.85086 q^{11} +0.198062 q^{13} -1.96077 q^{14} -4.16852 q^{16} +1.13706 q^{17} -1.00000 q^{19} +7.00969 q^{22} -2.55496 q^{23} -0.286208 q^{26} +0.119605 q^{28} +10.2349 q^{29} +2.51573 q^{31} +0.498271 q^{32} -1.64310 q^{34} -0.137063 q^{37} +1.44504 q^{38} +11.7506 q^{41} -7.59179 q^{43} -0.427583 q^{44} +3.69202 q^{46} -2.69202 q^{47} -5.15883 q^{49} +0.0174584 q^{52} -12.8780 q^{53} +3.74871 q^{56} -14.7899 q^{58} -5.82371 q^{59} -7.58211 q^{61} -3.63533 q^{62} +7.61702 q^{64} +8.01507 q^{67} +0.100228 q^{68} +8.82371 q^{71} -11.9705 q^{73} +0.198062 q^{74} -0.0881460 q^{76} -6.58211 q^{77} +10.7409 q^{79} -16.9801 q^{82} -3.77479 q^{83} +10.9705 q^{86} -13.4015 q^{88} -9.36658 q^{89} +0.268750 q^{91} -0.225209 q^{92} +3.89008 q^{94} +0.198062 q^{97} +7.45473 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{2} + 4 q^{4} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 4 q^{2} + 4 q^{4} - 9 q^{8} - q^{11} + 5 q^{13} + 7 q^{14} + 18 q^{16} - 2 q^{17} - 3 q^{19} - q^{22} - 8 q^{23} - 9 q^{26} - 21 q^{28} + 7 q^{29} - 5 q^{31} - 27 q^{32} - 9 q^{34} + 5 q^{37} + 4 q^{38} - q^{41} + 5 q^{43} + 15 q^{44} + 6 q^{46} - 3 q^{47} - 7 q^{49} + 16 q^{52} - 19 q^{53} + 35 q^{56} - 21 q^{58} - 10 q^{59} - 17 q^{61} + 23 q^{62} + 49 q^{64} - q^{67} + 23 q^{68} + 19 q^{71} - q^{73} + 5 q^{74} - 4 q^{76} - 14 q^{77} + 18 q^{79} + 6 q^{82} - 13 q^{83} - 2 q^{86} - 46 q^{88} - 2 q^{89} - 7 q^{91} + q^{92} + 11 q^{94} + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.44504 −1.02180 −0.510899 0.859640i \(-0.670688\pi\)
−0.510899 + 0.859640i \(0.670688\pi\)
\(3\) 0 0
\(4\) 0.0881460 0.0440730
\(5\) 0 0
\(6\) 0 0
\(7\) 1.35690 0.512858 0.256429 0.966563i \(-0.417454\pi\)
0.256429 + 0.966563i \(0.417454\pi\)
\(8\) 2.76271 0.976765
\(9\) 0 0
\(10\) 0 0
\(11\) −4.85086 −1.46259 −0.731294 0.682062i \(-0.761083\pi\)
−0.731294 + 0.682062i \(0.761083\pi\)
\(12\) 0 0
\(13\) 0.198062 0.0549326 0.0274663 0.999623i \(-0.491256\pi\)
0.0274663 + 0.999623i \(0.491256\pi\)
\(14\) −1.96077 −0.524038
\(15\) 0 0
\(16\) −4.16852 −1.04213
\(17\) 1.13706 0.275778 0.137889 0.990448i \(-0.455968\pi\)
0.137889 + 0.990448i \(0.455968\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 7.00969 1.49447
\(23\) −2.55496 −0.532746 −0.266373 0.963870i \(-0.585825\pi\)
−0.266373 + 0.963870i \(0.585825\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.286208 −0.0561301
\(27\) 0 0
\(28\) 0.119605 0.0226032
\(29\) 10.2349 1.90057 0.950286 0.311377i \(-0.100790\pi\)
0.950286 + 0.311377i \(0.100790\pi\)
\(30\) 0 0
\(31\) 2.51573 0.451838 0.225919 0.974146i \(-0.427461\pi\)
0.225919 + 0.974146i \(0.427461\pi\)
\(32\) 0.498271 0.0880827
\(33\) 0 0
\(34\) −1.64310 −0.281790
\(35\) 0 0
\(36\) 0 0
\(37\) −0.137063 −0.0225331 −0.0112665 0.999937i \(-0.503586\pi\)
−0.0112665 + 0.999937i \(0.503586\pi\)
\(38\) 1.44504 0.234417
\(39\) 0 0
\(40\) 0 0
\(41\) 11.7506 1.83514 0.917570 0.397575i \(-0.130148\pi\)
0.917570 + 0.397575i \(0.130148\pi\)
\(42\) 0 0
\(43\) −7.59179 −1.15774 −0.578869 0.815421i \(-0.696506\pi\)
−0.578869 + 0.815421i \(0.696506\pi\)
\(44\) −0.427583 −0.0644606
\(45\) 0 0
\(46\) 3.69202 0.544359
\(47\) −2.69202 −0.392672 −0.196336 0.980537i \(-0.562904\pi\)
−0.196336 + 0.980537i \(0.562904\pi\)
\(48\) 0 0
\(49\) −5.15883 −0.736976
\(50\) 0 0
\(51\) 0 0
\(52\) 0.0174584 0.00242104
\(53\) −12.8780 −1.76893 −0.884465 0.466607i \(-0.845476\pi\)
−0.884465 + 0.466607i \(0.845476\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.74871 0.500942
\(57\) 0 0
\(58\) −14.7899 −1.94200
\(59\) −5.82371 −0.758182 −0.379091 0.925359i \(-0.623763\pi\)
−0.379091 + 0.925359i \(0.623763\pi\)
\(60\) 0 0
\(61\) −7.58211 −0.970789 −0.485395 0.874295i \(-0.661324\pi\)
−0.485395 + 0.874295i \(0.661324\pi\)
\(62\) −3.63533 −0.461688
\(63\) 0 0
\(64\) 7.61702 0.952128
\(65\) 0 0
\(66\) 0 0
\(67\) 8.01507 0.979196 0.489598 0.871948i \(-0.337144\pi\)
0.489598 + 0.871948i \(0.337144\pi\)
\(68\) 0.100228 0.0121544
\(69\) 0 0
\(70\) 0 0
\(71\) 8.82371 1.04718 0.523591 0.851970i \(-0.324592\pi\)
0.523591 + 0.851970i \(0.324592\pi\)
\(72\) 0 0
\(73\) −11.9705 −1.40104 −0.700518 0.713635i \(-0.747048\pi\)
−0.700518 + 0.713635i \(0.747048\pi\)
\(74\) 0.198062 0.0230243
\(75\) 0 0
\(76\) −0.0881460 −0.0101110
\(77\) −6.58211 −0.750101
\(78\) 0 0
\(79\) 10.7409 1.20845 0.604225 0.796814i \(-0.293483\pi\)
0.604225 + 0.796814i \(0.293483\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −16.9801 −1.87514
\(83\) −3.77479 −0.414337 −0.207169 0.978305i \(-0.566425\pi\)
−0.207169 + 0.978305i \(0.566425\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.9705 1.18298
\(87\) 0 0
\(88\) −13.4015 −1.42860
\(89\) −9.36658 −0.992856 −0.496428 0.868078i \(-0.665355\pi\)
−0.496428 + 0.868078i \(0.665355\pi\)
\(90\) 0 0
\(91\) 0.268750 0.0281726
\(92\) −0.225209 −0.0234797
\(93\) 0 0
\(94\) 3.89008 0.401232
\(95\) 0 0
\(96\) 0 0
\(97\) 0.198062 0.0201102 0.0100551 0.999949i \(-0.496799\pi\)
0.0100551 + 0.999949i \(0.496799\pi\)
\(98\) 7.45473 0.753042
\(99\) 0 0
\(100\) 0 0
\(101\) −11.5090 −1.14519 −0.572595 0.819838i \(-0.694063\pi\)
−0.572595 + 0.819838i \(0.694063\pi\)
\(102\) 0 0
\(103\) 15.1564 1.49341 0.746704 0.665156i \(-0.231635\pi\)
0.746704 + 0.665156i \(0.231635\pi\)
\(104\) 0.547188 0.0536562
\(105\) 0 0
\(106\) 18.6093 1.80749
\(107\) −2.65279 −0.256455 −0.128228 0.991745i \(-0.540929\pi\)
−0.128228 + 0.991745i \(0.540929\pi\)
\(108\) 0 0
\(109\) −2.49934 −0.239393 −0.119696 0.992811i \(-0.538192\pi\)
−0.119696 + 0.992811i \(0.538192\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.65625 −0.534465
\(113\) −8.52781 −0.802229 −0.401114 0.916028i \(-0.631377\pi\)
−0.401114 + 0.916028i \(0.631377\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.902165 0.0837639
\(117\) 0 0
\(118\) 8.41550 0.774710
\(119\) 1.54288 0.141435
\(120\) 0 0
\(121\) 12.5308 1.13916
\(122\) 10.9565 0.991951
\(123\) 0 0
\(124\) 0.221751 0.0199139
\(125\) 0 0
\(126\) 0 0
\(127\) 20.4088 1.81099 0.905494 0.424359i \(-0.139501\pi\)
0.905494 + 0.424359i \(0.139501\pi\)
\(128\) −12.0035 −1.06097
\(129\) 0 0
\(130\) 0 0
\(131\) 13.2131 1.15444 0.577218 0.816590i \(-0.304138\pi\)
0.577218 + 0.816590i \(0.304138\pi\)
\(132\) 0 0
\(133\) −1.35690 −0.117658
\(134\) −11.5821 −1.00054
\(135\) 0 0
\(136\) 3.14138 0.269371
\(137\) 6.86054 0.586136 0.293068 0.956092i \(-0.405324\pi\)
0.293068 + 0.956092i \(0.405324\pi\)
\(138\) 0 0
\(139\) 4.28621 0.363551 0.181776 0.983340i \(-0.441816\pi\)
0.181776 + 0.983340i \(0.441816\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.7506 −1.07001
\(143\) −0.960771 −0.0803437
\(144\) 0 0
\(145\) 0 0
\(146\) 17.2978 1.43158
\(147\) 0 0
\(148\) −0.0120816 −0.000993100 0
\(149\) 15.3545 1.25789 0.628945 0.777450i \(-0.283487\pi\)
0.628945 + 0.777450i \(0.283487\pi\)
\(150\) 0 0
\(151\) −10.2295 −0.832467 −0.416233 0.909258i \(-0.636650\pi\)
−0.416233 + 0.909258i \(0.636650\pi\)
\(152\) −2.76271 −0.224085
\(153\) 0 0
\(154\) 9.51142 0.766452
\(155\) 0 0
\(156\) 0 0
\(157\) 3.17092 0.253067 0.126533 0.991962i \(-0.459615\pi\)
0.126533 + 0.991962i \(0.459615\pi\)
\(158\) −15.5211 −1.23479
\(159\) 0 0
\(160\) 0 0
\(161\) −3.46681 −0.273223
\(162\) 0 0
\(163\) −4.63773 −0.363255 −0.181627 0.983367i \(-0.558136\pi\)
−0.181627 + 0.983367i \(0.558136\pi\)
\(164\) 1.03577 0.0808801
\(165\) 0 0
\(166\) 5.45473 0.423369
\(167\) 19.6286 1.51891 0.759454 0.650560i \(-0.225466\pi\)
0.759454 + 0.650560i \(0.225466\pi\)
\(168\) 0 0
\(169\) −12.9608 −0.996982
\(170\) 0 0
\(171\) 0 0
\(172\) −0.669186 −0.0510250
\(173\) −20.5646 −1.56350 −0.781751 0.623591i \(-0.785673\pi\)
−0.781751 + 0.623591i \(0.785673\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 20.2209 1.52421
\(177\) 0 0
\(178\) 13.5351 1.01450
\(179\) −6.92154 −0.517340 −0.258670 0.965966i \(-0.583284\pi\)
−0.258670 + 0.965966i \(0.583284\pi\)
\(180\) 0 0
\(181\) −17.6461 −1.31162 −0.655812 0.754925i \(-0.727673\pi\)
−0.655812 + 0.754925i \(0.727673\pi\)
\(182\) −0.388355 −0.0287868
\(183\) 0 0
\(184\) −7.05861 −0.520367
\(185\) 0 0
\(186\) 0 0
\(187\) −5.51573 −0.403350
\(188\) −0.237291 −0.0173062
\(189\) 0 0
\(190\) 0 0
\(191\) −6.92931 −0.501387 −0.250694 0.968066i \(-0.580659\pi\)
−0.250694 + 0.968066i \(0.580659\pi\)
\(192\) 0 0
\(193\) −21.0368 −1.51426 −0.757132 0.653262i \(-0.773400\pi\)
−0.757132 + 0.653262i \(0.773400\pi\)
\(194\) −0.286208 −0.0205486
\(195\) 0 0
\(196\) −0.454731 −0.0324808
\(197\) −21.5646 −1.53642 −0.768209 0.640199i \(-0.778852\pi\)
−0.768209 + 0.640199i \(0.778852\pi\)
\(198\) 0 0
\(199\) 21.9909 1.55889 0.779447 0.626468i \(-0.215500\pi\)
0.779447 + 0.626468i \(0.215500\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 16.6310 1.17015
\(203\) 13.8877 0.974725
\(204\) 0 0
\(205\) 0 0
\(206\) −21.9017 −1.52596
\(207\) 0 0
\(208\) −0.825627 −0.0572469
\(209\) 4.85086 0.335541
\(210\) 0 0
\(211\) −20.6233 −1.41976 −0.709882 0.704321i \(-0.751252\pi\)
−0.709882 + 0.704321i \(0.751252\pi\)
\(212\) −1.13514 −0.0779620
\(213\) 0 0
\(214\) 3.83340 0.262046
\(215\) 0 0
\(216\) 0 0
\(217\) 3.41358 0.231729
\(218\) 3.61165 0.244611
\(219\) 0 0
\(220\) 0 0
\(221\) 0.225209 0.0151492
\(222\) 0 0
\(223\) 7.97716 0.534190 0.267095 0.963670i \(-0.413936\pi\)
0.267095 + 0.963670i \(0.413936\pi\)
\(224\) 0.676102 0.0451740
\(225\) 0 0
\(226\) 12.3230 0.819717
\(227\) −19.7942 −1.31379 −0.656893 0.753984i \(-0.728129\pi\)
−0.656893 + 0.753984i \(0.728129\pi\)
\(228\) 0 0
\(229\) −4.03385 −0.266564 −0.133282 0.991078i \(-0.542552\pi\)
−0.133282 + 0.991078i \(0.542552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 28.2760 1.85641
\(233\) −26.8159 −1.75677 −0.878385 0.477953i \(-0.841379\pi\)
−0.878385 + 0.477953i \(0.841379\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.513337 −0.0334154
\(237\) 0 0
\(238\) −2.22952 −0.144518
\(239\) −3.36227 −0.217487 −0.108744 0.994070i \(-0.534683\pi\)
−0.108744 + 0.994070i \(0.534683\pi\)
\(240\) 0 0
\(241\) 27.7506 1.78758 0.893788 0.448491i \(-0.148038\pi\)
0.893788 + 0.448491i \(0.148038\pi\)
\(242\) −18.1075 −1.16400
\(243\) 0 0
\(244\) −0.668332 −0.0427856
\(245\) 0 0
\(246\) 0 0
\(247\) −0.198062 −0.0126024
\(248\) 6.95023 0.441340
\(249\) 0 0
\(250\) 0 0
\(251\) 5.59419 0.353102 0.176551 0.984291i \(-0.443506\pi\)
0.176551 + 0.984291i \(0.443506\pi\)
\(252\) 0 0
\(253\) 12.3937 0.779187
\(254\) −29.4916 −1.85047
\(255\) 0 0
\(256\) 2.11146 0.131966
\(257\) −10.4668 −0.652902 −0.326451 0.945214i \(-0.605853\pi\)
−0.326451 + 0.945214i \(0.605853\pi\)
\(258\) 0 0
\(259\) −0.185981 −0.0115563
\(260\) 0 0
\(261\) 0 0
\(262\) −19.0935 −1.17960
\(263\) −15.4795 −0.954506 −0.477253 0.878766i \(-0.658367\pi\)
−0.477253 + 0.878766i \(0.658367\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.96077 0.120223
\(267\) 0 0
\(268\) 0.706496 0.0431561
\(269\) −9.13036 −0.556688 −0.278344 0.960481i \(-0.589785\pi\)
−0.278344 + 0.960481i \(0.589785\pi\)
\(270\) 0 0
\(271\) 7.44265 0.452109 0.226054 0.974115i \(-0.427417\pi\)
0.226054 + 0.974115i \(0.427417\pi\)
\(272\) −4.73987 −0.287397
\(273\) 0 0
\(274\) −9.91377 −0.598913
\(275\) 0 0
\(276\) 0 0
\(277\) −11.4155 −0.685891 −0.342946 0.939355i \(-0.611425\pi\)
−0.342946 + 0.939355i \(0.611425\pi\)
\(278\) −6.19375 −0.371476
\(279\) 0 0
\(280\) 0 0
\(281\) −21.5060 −1.28294 −0.641471 0.767147i \(-0.721676\pi\)
−0.641471 + 0.767147i \(0.721676\pi\)
\(282\) 0 0
\(283\) −5.45712 −0.324392 −0.162196 0.986759i \(-0.551858\pi\)
−0.162196 + 0.986759i \(0.551858\pi\)
\(284\) 0.777775 0.0461524
\(285\) 0 0
\(286\) 1.38835 0.0820951
\(287\) 15.9444 0.941167
\(288\) 0 0
\(289\) −15.7071 −0.923946
\(290\) 0 0
\(291\) 0 0
\(292\) −1.05515 −0.0617479
\(293\) −7.39075 −0.431772 −0.215886 0.976419i \(-0.569264\pi\)
−0.215886 + 0.976419i \(0.569264\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −0.378666 −0.0220095
\(297\) 0 0
\(298\) −22.1879 −1.28531
\(299\) −0.506041 −0.0292651
\(300\) 0 0
\(301\) −10.3013 −0.593756
\(302\) 14.7821 0.850613
\(303\) 0 0
\(304\) 4.16852 0.239081
\(305\) 0 0
\(306\) 0 0
\(307\) −32.2131 −1.83850 −0.919250 0.393674i \(-0.871204\pi\)
−0.919250 + 0.393674i \(0.871204\pi\)
\(308\) −0.580186 −0.0330592
\(309\) 0 0
\(310\) 0 0
\(311\) −14.8442 −0.841735 −0.420867 0.907122i \(-0.638274\pi\)
−0.420867 + 0.907122i \(0.638274\pi\)
\(312\) 0 0
\(313\) −13.1491 −0.743234 −0.371617 0.928386i \(-0.621196\pi\)
−0.371617 + 0.928386i \(0.621196\pi\)
\(314\) −4.58211 −0.258583
\(315\) 0 0
\(316\) 0.946771 0.0532600
\(317\) 5.13467 0.288392 0.144196 0.989549i \(-0.453940\pi\)
0.144196 + 0.989549i \(0.453940\pi\)
\(318\) 0 0
\(319\) −49.6480 −2.77975
\(320\) 0 0
\(321\) 0 0
\(322\) 5.00969 0.279179
\(323\) −1.13706 −0.0632679
\(324\) 0 0
\(325\) 0 0
\(326\) 6.70171 0.371173
\(327\) 0 0
\(328\) 32.4636 1.79250
\(329\) −3.65279 −0.201385
\(330\) 0 0
\(331\) 2.00969 0.110462 0.0552312 0.998474i \(-0.482410\pi\)
0.0552312 + 0.998474i \(0.482410\pi\)
\(332\) −0.332733 −0.0182611
\(333\) 0 0
\(334\) −28.3642 −1.55202
\(335\) 0 0
\(336\) 0 0
\(337\) −1.31873 −0.0718359 −0.0359180 0.999355i \(-0.511436\pi\)
−0.0359180 + 0.999355i \(0.511436\pi\)
\(338\) 18.7289 1.01872
\(339\) 0 0
\(340\) 0 0
\(341\) −12.2034 −0.660853
\(342\) 0 0
\(343\) −16.4983 −0.890823
\(344\) −20.9739 −1.13084
\(345\) 0 0
\(346\) 29.7168 1.59758
\(347\) −12.0151 −0.645003 −0.322501 0.946569i \(-0.604524\pi\)
−0.322501 + 0.946569i \(0.604524\pi\)
\(348\) 0 0
\(349\) −10.5579 −0.565154 −0.282577 0.959245i \(-0.591189\pi\)
−0.282577 + 0.959245i \(0.591189\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.41704 −0.128829
\(353\) 1.01102 0.0538110 0.0269055 0.999638i \(-0.491435\pi\)
0.0269055 + 0.999638i \(0.491435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.825627 −0.0437581
\(357\) 0 0
\(358\) 10.0019 0.528618
\(359\) 5.14244 0.271408 0.135704 0.990749i \(-0.456670\pi\)
0.135704 + 0.990749i \(0.456670\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 25.4993 1.34022
\(363\) 0 0
\(364\) 0.0236892 0.00124165
\(365\) 0 0
\(366\) 0 0
\(367\) −29.5308 −1.54149 −0.770747 0.637141i \(-0.780117\pi\)
−0.770747 + 0.637141i \(0.780117\pi\)
\(368\) 10.6504 0.555190
\(369\) 0 0
\(370\) 0 0
\(371\) −17.4741 −0.907210
\(372\) 0 0
\(373\) 8.78986 0.455121 0.227561 0.973764i \(-0.426925\pi\)
0.227561 + 0.973764i \(0.426925\pi\)
\(374\) 7.97046 0.412143
\(375\) 0 0
\(376\) −7.43727 −0.383548
\(377\) 2.02715 0.104403
\(378\) 0 0
\(379\) 19.1511 0.983724 0.491862 0.870673i \(-0.336316\pi\)
0.491862 + 0.870673i \(0.336316\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.0131 0.512317
\(383\) 6.99894 0.357629 0.178814 0.983883i \(-0.442774\pi\)
0.178814 + 0.983883i \(0.442774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.3991 1.54727
\(387\) 0 0
\(388\) 0.0174584 0.000886316 0
\(389\) −8.08575 −0.409964 −0.204982 0.978766i \(-0.565714\pi\)
−0.204982 + 0.978766i \(0.565714\pi\)
\(390\) 0 0
\(391\) −2.90515 −0.146920
\(392\) −14.2524 −0.719853
\(393\) 0 0
\(394\) 31.1618 1.56991
\(395\) 0 0
\(396\) 0 0
\(397\) −17.7006 −0.888370 −0.444185 0.895935i \(-0.646507\pi\)
−0.444185 + 0.895935i \(0.646507\pi\)
\(398\) −31.7778 −1.59288
\(399\) 0 0
\(400\) 0 0
\(401\) 15.5418 0.776121 0.388061 0.921634i \(-0.373145\pi\)
0.388061 + 0.921634i \(0.373145\pi\)
\(402\) 0 0
\(403\) 0.498271 0.0248207
\(404\) −1.01447 −0.0504720
\(405\) 0 0
\(406\) −20.0683 −0.995973
\(407\) 0.664874 0.0329566
\(408\) 0 0
\(409\) 13.1661 0.651023 0.325512 0.945538i \(-0.394463\pi\)
0.325512 + 0.945538i \(0.394463\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.33598 0.0658190
\(413\) −7.90217 −0.388840
\(414\) 0 0
\(415\) 0 0
\(416\) 0.0986887 0.00483861
\(417\) 0 0
\(418\) −7.00969 −0.342855
\(419\) 25.1739 1.22983 0.614913 0.788595i \(-0.289191\pi\)
0.614913 + 0.788595i \(0.289191\pi\)
\(420\) 0 0
\(421\) 26.9420 1.31307 0.656536 0.754295i \(-0.272021\pi\)
0.656536 + 0.754295i \(0.272021\pi\)
\(422\) 29.8015 1.45071
\(423\) 0 0
\(424\) −35.5782 −1.72783
\(425\) 0 0
\(426\) 0 0
\(427\) −10.2881 −0.497877
\(428\) −0.233833 −0.0113027
\(429\) 0 0
\(430\) 0 0
\(431\) −18.9487 −0.912726 −0.456363 0.889794i \(-0.650848\pi\)
−0.456363 + 0.889794i \(0.650848\pi\)
\(432\) 0 0
\(433\) −3.68904 −0.177284 −0.0886419 0.996064i \(-0.528253\pi\)
−0.0886419 + 0.996064i \(0.528253\pi\)
\(434\) −4.93277 −0.236781
\(435\) 0 0
\(436\) −0.220306 −0.0105508
\(437\) 2.55496 0.122220
\(438\) 0 0
\(439\) −25.6926 −1.22624 −0.613121 0.789989i \(-0.710086\pi\)
−0.613121 + 0.789989i \(0.710086\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.325437 −0.0154795
\(443\) 27.3653 1.30016 0.650081 0.759865i \(-0.274735\pi\)
0.650081 + 0.759865i \(0.274735\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −11.5273 −0.545835
\(447\) 0 0
\(448\) 10.3355 0.488307
\(449\) −7.55794 −0.356681 −0.178341 0.983969i \(-0.557073\pi\)
−0.178341 + 0.983969i \(0.557073\pi\)
\(450\) 0 0
\(451\) −57.0006 −2.68405
\(452\) −0.751692 −0.0353566
\(453\) 0 0
\(454\) 28.6034 1.34242
\(455\) 0 0
\(456\) 0 0
\(457\) −7.85623 −0.367499 −0.183750 0.982973i \(-0.558824\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(458\) 5.82908 0.272375
\(459\) 0 0
\(460\) 0 0
\(461\) −3.87907 −0.180666 −0.0903331 0.995912i \(-0.528793\pi\)
−0.0903331 + 0.995912i \(0.528793\pi\)
\(462\) 0 0
\(463\) −13.0954 −0.608597 −0.304298 0.952577i \(-0.598422\pi\)
−0.304298 + 0.952577i \(0.598422\pi\)
\(464\) −42.6644 −1.98065
\(465\) 0 0
\(466\) 38.7502 1.79507
\(467\) −6.44026 −0.298020 −0.149010 0.988836i \(-0.547609\pi\)
−0.149010 + 0.988836i \(0.547609\pi\)
\(468\) 0 0
\(469\) 10.8756 0.502189
\(470\) 0 0
\(471\) 0 0
\(472\) −16.0892 −0.740566
\(473\) 36.8267 1.69329
\(474\) 0 0
\(475\) 0 0
\(476\) 0.135998 0.00623348
\(477\) 0 0
\(478\) 4.85862 0.222228
\(479\) −5.69096 −0.260026 −0.130013 0.991512i \(-0.541502\pi\)
−0.130013 + 0.991512i \(0.541502\pi\)
\(480\) 0 0
\(481\) −0.0271471 −0.00123780
\(482\) −40.1008 −1.82654
\(483\) 0 0
\(484\) 1.10454 0.0502063
\(485\) 0 0
\(486\) 0 0
\(487\) −12.9632 −0.587417 −0.293709 0.955895i \(-0.594890\pi\)
−0.293709 + 0.955895i \(0.594890\pi\)
\(488\) −20.9472 −0.948233
\(489\) 0 0
\(490\) 0 0
\(491\) 19.6045 0.884737 0.442369 0.896833i \(-0.354138\pi\)
0.442369 + 0.896833i \(0.354138\pi\)
\(492\) 0 0
\(493\) 11.6377 0.524137
\(494\) 0.286208 0.0128771
\(495\) 0 0
\(496\) −10.4869 −0.470875
\(497\) 11.9729 0.537056
\(498\) 0 0
\(499\) 5.49827 0.246136 0.123068 0.992398i \(-0.460727\pi\)
0.123068 + 0.992398i \(0.460727\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −8.08383 −0.360799
\(503\) 35.6939 1.59151 0.795757 0.605616i \(-0.207073\pi\)
0.795757 + 0.605616i \(0.207073\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −17.9095 −0.796173
\(507\) 0 0
\(508\) 1.79895 0.0798157
\(509\) 16.4450 0.728914 0.364457 0.931220i \(-0.381255\pi\)
0.364457 + 0.931220i \(0.381255\pi\)
\(510\) 0 0
\(511\) −16.2427 −0.718533
\(512\) 20.9558 0.926123
\(513\) 0 0
\(514\) 15.1250 0.667134
\(515\) 0 0
\(516\) 0 0
\(517\) 13.0586 0.574317
\(518\) 0.268750 0.0118082
\(519\) 0 0
\(520\) 0 0
\(521\) 26.5435 1.16289 0.581445 0.813586i \(-0.302487\pi\)
0.581445 + 0.813586i \(0.302487\pi\)
\(522\) 0 0
\(523\) −24.1685 −1.05682 −0.528408 0.848991i \(-0.677211\pi\)
−0.528408 + 0.848991i \(0.677211\pi\)
\(524\) 1.16468 0.0508795
\(525\) 0 0
\(526\) 22.3685 0.975313
\(527\) 2.86054 0.124607
\(528\) 0 0
\(529\) −16.4722 −0.716182
\(530\) 0 0
\(531\) 0 0
\(532\) −0.119605 −0.00518553
\(533\) 2.32736 0.100809
\(534\) 0 0
\(535\) 0 0
\(536\) 22.1433 0.956445
\(537\) 0 0
\(538\) 13.1938 0.568823
\(539\) 25.0248 1.07789
\(540\) 0 0
\(541\) 9.80386 0.421501 0.210750 0.977540i \(-0.432409\pi\)
0.210750 + 0.977540i \(0.432409\pi\)
\(542\) −10.7549 −0.461964
\(543\) 0 0
\(544\) 0.566566 0.0242913
\(545\) 0 0
\(546\) 0 0
\(547\) 21.1739 0.905331 0.452665 0.891681i \(-0.350473\pi\)
0.452665 + 0.891681i \(0.350473\pi\)
\(548\) 0.604729 0.0258328
\(549\) 0 0
\(550\) 0 0
\(551\) −10.2349 −0.436021
\(552\) 0 0
\(553\) 14.5743 0.619764
\(554\) 16.4959 0.700843
\(555\) 0 0
\(556\) 0.377812 0.0160228
\(557\) −24.4077 −1.03419 −0.517094 0.855928i \(-0.672986\pi\)
−0.517094 + 0.855928i \(0.672986\pi\)
\(558\) 0 0
\(559\) −1.50365 −0.0635975
\(560\) 0 0
\(561\) 0 0
\(562\) 31.0771 1.31091
\(563\) −14.4849 −0.610464 −0.305232 0.952278i \(-0.598734\pi\)
−0.305232 + 0.952278i \(0.598734\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.88577 0.331464
\(567\) 0 0
\(568\) 24.3773 1.02285
\(569\) −0.811626 −0.0340251 −0.0170126 0.999855i \(-0.505416\pi\)
−0.0170126 + 0.999855i \(0.505416\pi\)
\(570\) 0 0
\(571\) −37.6588 −1.57597 −0.787985 0.615694i \(-0.788876\pi\)
−0.787985 + 0.615694i \(0.788876\pi\)
\(572\) −0.0846882 −0.00354099
\(573\) 0 0
\(574\) −23.0403 −0.961683
\(575\) 0 0
\(576\) 0 0
\(577\) 8.89307 0.370223 0.185112 0.982718i \(-0.440735\pi\)
0.185112 + 0.982718i \(0.440735\pi\)
\(578\) 22.6974 0.944087
\(579\) 0 0
\(580\) 0 0
\(581\) −5.12200 −0.212496
\(582\) 0 0
\(583\) 62.4693 2.58721
\(584\) −33.0709 −1.36848
\(585\) 0 0
\(586\) 10.6799 0.441184
\(587\) −20.3327 −0.839222 −0.419611 0.907704i \(-0.637833\pi\)
−0.419611 + 0.907704i \(0.637833\pi\)
\(588\) 0 0
\(589\) −2.51573 −0.103659
\(590\) 0 0
\(591\) 0 0
\(592\) 0.571352 0.0234824
\(593\) −17.0049 −0.698308 −0.349154 0.937065i \(-0.613531\pi\)
−0.349154 + 0.937065i \(0.613531\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.35344 0.0554390
\(597\) 0 0
\(598\) 0.731250 0.0299030
\(599\) 12.4004 0.506668 0.253334 0.967379i \(-0.418473\pi\)
0.253334 + 0.967379i \(0.418473\pi\)
\(600\) 0 0
\(601\) −9.73125 −0.396946 −0.198473 0.980106i \(-0.563598\pi\)
−0.198473 + 0.980106i \(0.563598\pi\)
\(602\) 14.8858 0.606699
\(603\) 0 0
\(604\) −0.901691 −0.0366893
\(605\) 0 0
\(606\) 0 0
\(607\) −23.4282 −0.950920 −0.475460 0.879737i \(-0.657718\pi\)
−0.475460 + 0.879737i \(0.657718\pi\)
\(608\) −0.498271 −0.0202076
\(609\) 0 0
\(610\) 0 0
\(611\) −0.533188 −0.0215705
\(612\) 0 0
\(613\) 28.1424 1.13666 0.568331 0.822800i \(-0.307589\pi\)
0.568331 + 0.822800i \(0.307589\pi\)
\(614\) 46.5493 1.87858
\(615\) 0 0
\(616\) −18.1844 −0.732672
\(617\) −36.4805 −1.46865 −0.734326 0.678797i \(-0.762502\pi\)
−0.734326 + 0.678797i \(0.762502\pi\)
\(618\) 0 0
\(619\) −38.2097 −1.53578 −0.767888 0.640584i \(-0.778692\pi\)
−0.767888 + 0.640584i \(0.778692\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 21.4504 0.860083
\(623\) −12.7095 −0.509195
\(624\) 0 0
\(625\) 0 0
\(626\) 19.0011 0.759435
\(627\) 0 0
\(628\) 0.279503 0.0111534
\(629\) −0.155850 −0.00621413
\(630\) 0 0
\(631\) −12.5235 −0.498553 −0.249276 0.968432i \(-0.580193\pi\)
−0.249276 + 0.968432i \(0.580193\pi\)
\(632\) 29.6741 1.18037
\(633\) 0 0
\(634\) −7.41981 −0.294678
\(635\) 0 0
\(636\) 0 0
\(637\) −1.02177 −0.0404840
\(638\) 71.7434 2.84035
\(639\) 0 0
\(640\) 0 0
\(641\) −37.3564 −1.47549 −0.737745 0.675080i \(-0.764109\pi\)
−0.737745 + 0.675080i \(0.764109\pi\)
\(642\) 0 0
\(643\) −14.5483 −0.573727 −0.286864 0.957971i \(-0.592613\pi\)
−0.286864 + 0.957971i \(0.592613\pi\)
\(644\) −0.305586 −0.0120418
\(645\) 0 0
\(646\) 1.64310 0.0646471
\(647\) 23.4403 0.921532 0.460766 0.887522i \(-0.347575\pi\)
0.460766 + 0.887522i \(0.347575\pi\)
\(648\) 0 0
\(649\) 28.2500 1.10891
\(650\) 0 0
\(651\) 0 0
\(652\) −0.408797 −0.0160097
\(653\) −27.1903 −1.06404 −0.532019 0.846732i \(-0.678567\pi\)
−0.532019 + 0.846732i \(0.678567\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −48.9828 −1.91246
\(657\) 0 0
\(658\) 5.27844 0.205775
\(659\) −2.71486 −0.105756 −0.0528779 0.998601i \(-0.516839\pi\)
−0.0528779 + 0.998601i \(0.516839\pi\)
\(660\) 0 0
\(661\) −9.41311 −0.366128 −0.183064 0.983101i \(-0.558601\pi\)
−0.183064 + 0.983101i \(0.558601\pi\)
\(662\) −2.90408 −0.112870
\(663\) 0 0
\(664\) −10.4286 −0.404710
\(665\) 0 0
\(666\) 0 0
\(667\) −26.1497 −1.01252
\(668\) 1.73019 0.0669429
\(669\) 0 0
\(670\) 0 0
\(671\) 36.7797 1.41986
\(672\) 0 0
\(673\) −44.8001 −1.72692 −0.863459 0.504419i \(-0.831707\pi\)
−0.863459 + 0.504419i \(0.831707\pi\)
\(674\) 1.90562 0.0734019
\(675\) 0 0
\(676\) −1.14244 −0.0439400
\(677\) 32.9197 1.26521 0.632604 0.774475i \(-0.281986\pi\)
0.632604 + 0.774475i \(0.281986\pi\)
\(678\) 0 0
\(679\) 0.268750 0.0103137
\(680\) 0 0
\(681\) 0 0
\(682\) 17.6345 0.675259
\(683\) −20.3448 −0.778473 −0.389236 0.921138i \(-0.627261\pi\)
−0.389236 + 0.921138i \(0.627261\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 23.8407 0.910242
\(687\) 0 0
\(688\) 31.6466 1.20651
\(689\) −2.55065 −0.0971719
\(690\) 0 0
\(691\) −46.1473 −1.75553 −0.877764 0.479094i \(-0.840965\pi\)
−0.877764 + 0.479094i \(0.840965\pi\)
\(692\) −1.81269 −0.0689082
\(693\) 0 0
\(694\) 17.3623 0.659063
\(695\) 0 0
\(696\) 0 0
\(697\) 13.3612 0.506092
\(698\) 15.2567 0.577473
\(699\) 0 0
\(700\) 0 0
\(701\) −13.1933 −0.498303 −0.249152 0.968464i \(-0.580152\pi\)
−0.249152 + 0.968464i \(0.580152\pi\)
\(702\) 0 0
\(703\) 0.137063 0.00516944
\(704\) −36.9491 −1.39257
\(705\) 0 0
\(706\) −1.46096 −0.0549840
\(707\) −15.6165 −0.587321
\(708\) 0 0
\(709\) 41.1860 1.54677 0.773386 0.633935i \(-0.218562\pi\)
0.773386 + 0.633935i \(0.218562\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −25.8771 −0.969787
\(713\) −6.42758 −0.240715
\(714\) 0 0
\(715\) 0 0
\(716\) −0.610106 −0.0228007
\(717\) 0 0
\(718\) −7.43104 −0.277324
\(719\) 35.6256 1.32861 0.664306 0.747461i \(-0.268727\pi\)
0.664306 + 0.747461i \(0.268727\pi\)
\(720\) 0 0
\(721\) 20.5657 0.765907
\(722\) −1.44504 −0.0537789
\(723\) 0 0
\(724\) −1.55543 −0.0578072
\(725\) 0 0
\(726\) 0 0
\(727\) 20.0116 0.742189 0.371095 0.928595i \(-0.378983\pi\)
0.371095 + 0.928595i \(0.378983\pi\)
\(728\) 0.742478 0.0275181
\(729\) 0 0
\(730\) 0 0
\(731\) −8.63235 −0.319279
\(732\) 0 0
\(733\) −18.9952 −0.701604 −0.350802 0.936450i \(-0.614091\pi\)
−0.350802 + 0.936450i \(0.614091\pi\)
\(734\) 42.6732 1.57510
\(735\) 0 0
\(736\) −1.27306 −0.0469257
\(737\) −38.8799 −1.43216
\(738\) 0 0
\(739\) 48.1704 1.77198 0.885989 0.463706i \(-0.153481\pi\)
0.885989 + 0.463706i \(0.153481\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 25.2508 0.926987
\(743\) 13.2446 0.485897 0.242948 0.970039i \(-0.421885\pi\)
0.242948 + 0.970039i \(0.421885\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −12.7017 −0.465043
\(747\) 0 0
\(748\) −0.486189 −0.0177768
\(749\) −3.59956 −0.131525
\(750\) 0 0
\(751\) 12.0562 0.439937 0.219969 0.975507i \(-0.429404\pi\)
0.219969 + 0.975507i \(0.429404\pi\)
\(752\) 11.2218 0.409215
\(753\) 0 0
\(754\) −2.92931 −0.106679
\(755\) 0 0
\(756\) 0 0
\(757\) 15.0054 0.545380 0.272690 0.962102i \(-0.412087\pi\)
0.272690 + 0.962102i \(0.412087\pi\)
\(758\) −27.6741 −1.00517
\(759\) 0 0
\(760\) 0 0
\(761\) −44.3967 −1.60938 −0.804690 0.593695i \(-0.797668\pi\)
−0.804690 + 0.593695i \(0.797668\pi\)
\(762\) 0 0
\(763\) −3.39134 −0.122775
\(764\) −0.610791 −0.0220976
\(765\) 0 0
\(766\) −10.1138 −0.365425
\(767\) −1.15346 −0.0416489
\(768\) 0 0
\(769\) −39.7211 −1.43238 −0.716190 0.697906i \(-0.754115\pi\)
−0.716190 + 0.697906i \(0.754115\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.85431 −0.0667382
\(773\) 1.72779 0.0621444 0.0310722 0.999517i \(-0.490108\pi\)
0.0310722 + 0.999517i \(0.490108\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.547188 0.0196429
\(777\) 0 0
\(778\) 11.6843 0.418901
\(779\) −11.7506 −0.421010
\(780\) 0 0
\(781\) −42.8025 −1.53159
\(782\) 4.19806 0.150122
\(783\) 0 0
\(784\) 21.5047 0.768025
\(785\) 0 0
\(786\) 0 0
\(787\) 42.6329 1.51970 0.759850 0.650098i \(-0.225272\pi\)
0.759850 + 0.650098i \(0.225272\pi\)
\(788\) −1.90084 −0.0677145
\(789\) 0 0
\(790\) 0 0
\(791\) −11.5714 −0.411430
\(792\) 0 0
\(793\) −1.50173 −0.0533280
\(794\) 25.5782 0.907735
\(795\) 0 0
\(796\) 1.93841 0.0687051
\(797\) −38.5864 −1.36680 −0.683401 0.730044i \(-0.739500\pi\)
−0.683401 + 0.730044i \(0.739500\pi\)
\(798\) 0 0
\(799\) −3.06100 −0.108290
\(800\) 0 0
\(801\) 0 0
\(802\) −22.4586 −0.793040
\(803\) 58.0670 2.04914
\(804\) 0 0
\(805\) 0 0
\(806\) −0.720023 −0.0253617
\(807\) 0 0
\(808\) −31.7961 −1.11858
\(809\) 8.38298 0.294730 0.147365 0.989082i \(-0.452921\pi\)
0.147365 + 0.989082i \(0.452921\pi\)
\(810\) 0 0
\(811\) −0.340765 −0.0119659 −0.00598295 0.999982i \(-0.501904\pi\)
−0.00598295 + 0.999982i \(0.501904\pi\)
\(812\) 1.22414 0.0429590
\(813\) 0 0
\(814\) −0.960771 −0.0336750
\(815\) 0 0
\(816\) 0 0
\(817\) 7.59179 0.265603
\(818\) −19.0256 −0.665215
\(819\) 0 0
\(820\) 0 0
\(821\) 33.7506 1.17791 0.588953 0.808168i \(-0.299540\pi\)
0.588953 + 0.808168i \(0.299540\pi\)
\(822\) 0 0
\(823\) 37.2669 1.29904 0.649522 0.760343i \(-0.274969\pi\)
0.649522 + 0.760343i \(0.274969\pi\)
\(824\) 41.8728 1.45871
\(825\) 0 0
\(826\) 11.4190 0.397316
\(827\) 21.1691 0.736122 0.368061 0.929802i \(-0.380022\pi\)
0.368061 + 0.929802i \(0.380022\pi\)
\(828\) 0 0
\(829\) −31.0374 −1.07797 −0.538987 0.842314i \(-0.681193\pi\)
−0.538987 + 0.842314i \(0.681193\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.50864 0.0523028
\(833\) −5.86592 −0.203242
\(834\) 0 0
\(835\) 0 0
\(836\) 0.427583 0.0147883
\(837\) 0 0
\(838\) −36.3773 −1.25663
\(839\) −33.2403 −1.14758 −0.573791 0.819002i \(-0.694528\pi\)
−0.573791 + 0.819002i \(0.694528\pi\)
\(840\) 0 0
\(841\) 75.7531 2.61218
\(842\) −38.9323 −1.34170
\(843\) 0 0
\(844\) −1.81786 −0.0625732
\(845\) 0 0
\(846\) 0 0
\(847\) 17.0030 0.584229
\(848\) 53.6822 1.84346
\(849\) 0 0
\(850\) 0 0
\(851\) 0.350191 0.0120044
\(852\) 0 0
\(853\) −24.3086 −0.832310 −0.416155 0.909294i \(-0.636623\pi\)
−0.416155 + 0.909294i \(0.636623\pi\)
\(854\) 14.8668 0.508731
\(855\) 0 0
\(856\) −7.32889 −0.250496
\(857\) 57.3889 1.96037 0.980185 0.198087i \(-0.0634727\pi\)
0.980185 + 0.198087i \(0.0634727\pi\)
\(858\) 0 0
\(859\) −13.8135 −0.471312 −0.235656 0.971837i \(-0.575724\pi\)
−0.235656 + 0.971837i \(0.575724\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 27.3817 0.932623
\(863\) 9.01938 0.307023 0.153512 0.988147i \(-0.450942\pi\)
0.153512 + 0.988147i \(0.450942\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 5.33081 0.181148
\(867\) 0 0
\(868\) 0.300894 0.0102130
\(869\) −52.1027 −1.76746
\(870\) 0 0
\(871\) 1.58748 0.0537898
\(872\) −6.90494 −0.233831
\(873\) 0 0
\(874\) −3.69202 −0.124884
\(875\) 0 0
\(876\) 0 0
\(877\) −2.37675 −0.0802570 −0.0401285 0.999195i \(-0.512777\pi\)
−0.0401285 + 0.999195i \(0.512777\pi\)
\(878\) 37.1269 1.25297
\(879\) 0 0
\(880\) 0 0
\(881\) 7.99330 0.269301 0.134650 0.990893i \(-0.457009\pi\)
0.134650 + 0.990893i \(0.457009\pi\)
\(882\) 0 0
\(883\) −1.76377 −0.0593557 −0.0296779 0.999560i \(-0.509448\pi\)
−0.0296779 + 0.999560i \(0.509448\pi\)
\(884\) 0.0198513 0.000667672 0
\(885\) 0 0
\(886\) −39.5439 −1.32850
\(887\) −45.9197 −1.54183 −0.770917 0.636936i \(-0.780202\pi\)
−0.770917 + 0.636936i \(0.780202\pi\)
\(888\) 0 0
\(889\) 27.6926 0.928780
\(890\) 0 0
\(891\) 0 0
\(892\) 0.703155 0.0235434
\(893\) 2.69202 0.0900851
\(894\) 0 0
\(895\) 0 0
\(896\) −16.2874 −0.544125
\(897\) 0 0
\(898\) 10.9215 0.364457
\(899\) 25.7482 0.858752
\(900\) 0 0
\(901\) −14.6431 −0.487833
\(902\) 82.3682 2.74256
\(903\) 0 0
\(904\) −23.5599 −0.783589
\(905\) 0 0
\(906\) 0 0
\(907\) 55.0549 1.82807 0.914034 0.405638i \(-0.132951\pi\)
0.914034 + 0.405638i \(0.132951\pi\)
\(908\) −1.74478 −0.0579024
\(909\) 0 0
\(910\) 0 0
\(911\) −51.8998 −1.71952 −0.859758 0.510702i \(-0.829386\pi\)
−0.859758 + 0.510702i \(0.829386\pi\)
\(912\) 0 0
\(913\) 18.3110 0.606004
\(914\) 11.3526 0.375510
\(915\) 0 0
\(916\) −0.355568 −0.0117483
\(917\) 17.9288 0.592062
\(918\) 0 0
\(919\) 11.4614 0.378078 0.189039 0.981970i \(-0.439463\pi\)
0.189039 + 0.981970i \(0.439463\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 5.60541 0.184604
\(923\) 1.74764 0.0575244
\(924\) 0 0
\(925\) 0 0
\(926\) 18.9235 0.621864
\(927\) 0 0
\(928\) 5.09975 0.167408
\(929\) −36.5295 −1.19849 −0.599246 0.800565i \(-0.704533\pi\)
−0.599246 + 0.800565i \(0.704533\pi\)
\(930\) 0 0
\(931\) 5.15883 0.169074
\(932\) −2.36372 −0.0774261
\(933\) 0 0
\(934\) 9.30644 0.304516
\(935\) 0 0
\(936\) 0 0
\(937\) −48.7845 −1.59372 −0.796860 0.604164i \(-0.793507\pi\)
−0.796860 + 0.604164i \(0.793507\pi\)
\(938\) −15.7157 −0.513136
\(939\) 0 0
\(940\) 0 0
\(941\) 18.1817 0.592705 0.296353 0.955079i \(-0.404230\pi\)
0.296353 + 0.955079i \(0.404230\pi\)
\(942\) 0 0
\(943\) −30.0224 −0.977663
\(944\) 24.2763 0.790125
\(945\) 0 0
\(946\) −53.2161 −1.73021
\(947\) 7.55150 0.245391 0.122695 0.992444i \(-0.460846\pi\)
0.122695 + 0.992444i \(0.460846\pi\)
\(948\) 0 0
\(949\) −2.37090 −0.0769626
\(950\) 0 0
\(951\) 0 0
\(952\) 4.26252 0.138149
\(953\) −13.8592 −0.448944 −0.224472 0.974481i \(-0.572066\pi\)
−0.224472 + 0.974481i \(0.572066\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −0.296371 −0.00958532
\(957\) 0 0
\(958\) 8.22367 0.265695
\(959\) 9.30904 0.300605
\(960\) 0 0
\(961\) −24.6711 −0.795842
\(962\) 0.0392287 0.00126478
\(963\) 0 0
\(964\) 2.44611 0.0787838
\(965\) 0 0
\(966\) 0 0
\(967\) 4.89977 0.157566 0.0787830 0.996892i \(-0.474897\pi\)
0.0787830 + 0.996892i \(0.474897\pi\)
\(968\) 34.6189 1.11269
\(969\) 0 0
\(970\) 0 0
\(971\) −14.5133 −0.465755 −0.232878 0.972506i \(-0.574814\pi\)
−0.232878 + 0.972506i \(0.574814\pi\)
\(972\) 0 0
\(973\) 5.81594 0.186450
\(974\) 18.7323 0.600222
\(975\) 0 0
\(976\) 31.6062 1.01169
\(977\) 19.6644 0.629120 0.314560 0.949238i \(-0.398143\pi\)
0.314560 + 0.949238i \(0.398143\pi\)
\(978\) 0 0
\(979\) 45.4359 1.45214
\(980\) 0 0
\(981\) 0 0
\(982\) −28.3293 −0.904023
\(983\) 15.4397 0.492449 0.246224 0.969213i \(-0.420810\pi\)
0.246224 + 0.969213i \(0.420810\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −16.8170 −0.535562
\(987\) 0 0
\(988\) −0.0174584 −0.000555426 0
\(989\) 19.3967 0.616780
\(990\) 0 0
\(991\) 11.9377 0.379213 0.189606 0.981860i \(-0.439279\pi\)
0.189606 + 0.981860i \(0.439279\pi\)
\(992\) 1.25352 0.0397991
\(993\) 0 0
\(994\) −17.3013 −0.548763
\(995\) 0 0
\(996\) 0 0
\(997\) 17.9390 0.568134 0.284067 0.958804i \(-0.408316\pi\)
0.284067 + 0.958804i \(0.408316\pi\)
\(998\) −7.94523 −0.251502
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.z.1.2 3
3.2 odd 2 475.2.a.h.1.2 yes 3
5.4 even 2 4275.2.a.bn.1.2 3
12.11 even 2 7600.2.a.bn.1.1 3
15.2 even 4 475.2.b.c.324.5 6
15.8 even 4 475.2.b.c.324.2 6
15.14 odd 2 475.2.a.d.1.2 3
57.56 even 2 9025.2.a.w.1.2 3
60.59 even 2 7600.2.a.bw.1.3 3
285.284 even 2 9025.2.a.be.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.d.1.2 3 15.14 odd 2
475.2.a.h.1.2 yes 3 3.2 odd 2
475.2.b.c.324.2 6 15.8 even 4
475.2.b.c.324.5 6 15.2 even 4
4275.2.a.z.1.2 3 1.1 even 1 trivial
4275.2.a.bn.1.2 3 5.4 even 2
7600.2.a.bn.1.1 3 12.11 even 2
7600.2.a.bw.1.3 3 60.59 even 2
9025.2.a.w.1.2 3 57.56 even 2
9025.2.a.be.1.2 3 285.284 even 2