Properties

Label 4275.2.a.x.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{2} +3.82843 q^{4} -3.41421 q^{7} +4.41421 q^{8} +1.41421 q^{11} -2.58579 q^{13} -8.24264 q^{14} +3.00000 q^{16} -6.82843 q^{17} +1.00000 q^{19} +3.41421 q^{22} -3.65685 q^{23} -6.24264 q^{26} -13.0711 q^{28} -5.07107 q^{29} -10.4853 q^{31} -1.58579 q^{32} -16.4853 q^{34} +3.07107 q^{37} +2.41421 q^{38} +4.58579 q^{41} -3.41421 q^{43} +5.41421 q^{44} -8.82843 q^{46} +11.6569 q^{47} +4.65685 q^{49} -9.89949 q^{52} +4.00000 q^{53} -15.0711 q^{56} -12.2426 q^{58} +8.48528 q^{59} -5.65685 q^{61} -25.3137 q^{62} -9.82843 q^{64} -12.0000 q^{67} -26.1421 q^{68} -12.4853 q^{71} +2.00000 q^{73} +7.41421 q^{74} +3.82843 q^{76} -4.82843 q^{77} +11.3137 q^{79} +11.0711 q^{82} +6.48528 q^{83} -8.24264 q^{86} +6.24264 q^{88} +14.7279 q^{89} +8.82843 q^{91} -14.0000 q^{92} +28.1421 q^{94} -4.24264 q^{97} +11.2426 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 4 q^{7} + 6 q^{8} - 8 q^{13} - 8 q^{14} + 6 q^{16} - 8 q^{17} + 2 q^{19} + 4 q^{22} + 4 q^{23} - 4 q^{26} - 12 q^{28} + 4 q^{29} - 4 q^{31} - 6 q^{32} - 16 q^{34} - 8 q^{37} + 2 q^{38}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421 1.70711 0.853553 0.521005i \(-0.174443\pi\)
0.853553 + 0.521005i \(0.174443\pi\)
\(3\) 0 0
\(4\) 3.82843 1.91421
\(5\) 0 0
\(6\) 0 0
\(7\) −3.41421 −1.29045 −0.645226 0.763992i \(-0.723237\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(8\) 4.41421 1.56066
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421 0.426401 0.213201 0.977008i \(-0.431611\pi\)
0.213201 + 0.977008i \(0.431611\pi\)
\(12\) 0 0
\(13\) −2.58579 −0.717168 −0.358584 0.933497i \(-0.616740\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(14\) −8.24264 −2.20294
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −6.82843 −1.65614 −0.828068 0.560627i \(-0.810560\pi\)
−0.828068 + 0.560627i \(0.810560\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 3.41421 0.727913
\(23\) −3.65685 −0.762507 −0.381253 0.924471i \(-0.624507\pi\)
−0.381253 + 0.924471i \(0.624507\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.24264 −1.22428
\(27\) 0 0
\(28\) −13.0711 −2.47020
\(29\) −5.07107 −0.941674 −0.470837 0.882220i \(-0.656048\pi\)
−0.470837 + 0.882220i \(0.656048\pi\)
\(30\) 0 0
\(31\) −10.4853 −1.88321 −0.941606 0.336717i \(-0.890684\pi\)
−0.941606 + 0.336717i \(0.890684\pi\)
\(32\) −1.58579 −0.280330
\(33\) 0 0
\(34\) −16.4853 −2.82720
\(35\) 0 0
\(36\) 0 0
\(37\) 3.07107 0.504880 0.252440 0.967612i \(-0.418767\pi\)
0.252440 + 0.967612i \(0.418767\pi\)
\(38\) 2.41421 0.391637
\(39\) 0 0
\(40\) 0 0
\(41\) 4.58579 0.716180 0.358090 0.933687i \(-0.383428\pi\)
0.358090 + 0.933687i \(0.383428\pi\)
\(42\) 0 0
\(43\) −3.41421 −0.520663 −0.260331 0.965519i \(-0.583832\pi\)
−0.260331 + 0.965519i \(0.583832\pi\)
\(44\) 5.41421 0.816223
\(45\) 0 0
\(46\) −8.82843 −1.30168
\(47\) 11.6569 1.70033 0.850163 0.526519i \(-0.176503\pi\)
0.850163 + 0.526519i \(0.176503\pi\)
\(48\) 0 0
\(49\) 4.65685 0.665265
\(50\) 0 0
\(51\) 0 0
\(52\) −9.89949 −1.37281
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.0711 −2.01396
\(57\) 0 0
\(58\) −12.2426 −1.60754
\(59\) 8.48528 1.10469 0.552345 0.833616i \(-0.313733\pi\)
0.552345 + 0.833616i \(0.313733\pi\)
\(60\) 0 0
\(61\) −5.65685 −0.724286 −0.362143 0.932123i \(-0.617955\pi\)
−0.362143 + 0.932123i \(0.617955\pi\)
\(62\) −25.3137 −3.21484
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −26.1421 −3.17020
\(69\) 0 0
\(70\) 0 0
\(71\) −12.4853 −1.48173 −0.740865 0.671654i \(-0.765584\pi\)
−0.740865 + 0.671654i \(0.765584\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 7.41421 0.861885
\(75\) 0 0
\(76\) 3.82843 0.439151
\(77\) −4.82843 −0.550250
\(78\) 0 0
\(79\) 11.3137 1.27289 0.636446 0.771321i \(-0.280404\pi\)
0.636446 + 0.771321i \(0.280404\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 11.0711 1.22259
\(83\) 6.48528 0.711852 0.355926 0.934514i \(-0.384165\pi\)
0.355926 + 0.934514i \(0.384165\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.24264 −0.888827
\(87\) 0 0
\(88\) 6.24264 0.665468
\(89\) 14.7279 1.56116 0.780578 0.625058i \(-0.214925\pi\)
0.780578 + 0.625058i \(0.214925\pi\)
\(90\) 0 0
\(91\) 8.82843 0.925471
\(92\) −14.0000 −1.45960
\(93\) 0 0
\(94\) 28.1421 2.90264
\(95\) 0 0
\(96\) 0 0
\(97\) −4.24264 −0.430775 −0.215387 0.976529i \(-0.569101\pi\)
−0.215387 + 0.976529i \(0.569101\pi\)
\(98\) 11.2426 1.13568
\(99\) 0 0
\(100\) 0 0
\(101\) −0.828427 −0.0824316 −0.0412158 0.999150i \(-0.513123\pi\)
−0.0412158 + 0.999150i \(0.513123\pi\)
\(102\) 0 0
\(103\) −9.65685 −0.951518 −0.475759 0.879576i \(-0.657827\pi\)
−0.475759 + 0.879576i \(0.657827\pi\)
\(104\) −11.4142 −1.11926
\(105\) 0 0
\(106\) 9.65685 0.937957
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) 8.82843 0.845610 0.422805 0.906221i \(-0.361046\pi\)
0.422805 + 0.906221i \(0.361046\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −10.2426 −0.967839
\(113\) −4.48528 −0.421940 −0.210970 0.977493i \(-0.567662\pi\)
−0.210970 + 0.977493i \(0.567662\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −19.4142 −1.80256
\(117\) 0 0
\(118\) 20.4853 1.88582
\(119\) 23.3137 2.13716
\(120\) 0 0
\(121\) −9.00000 −0.818182
\(122\) −13.6569 −1.23643
\(123\) 0 0
\(124\) −40.1421 −3.60487
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −20.5563 −1.81694
\(129\) 0 0
\(130\) 0 0
\(131\) 8.72792 0.762562 0.381281 0.924459i \(-0.375483\pi\)
0.381281 + 0.924459i \(0.375483\pi\)
\(132\) 0 0
\(133\) −3.41421 −0.296050
\(134\) −28.9706 −2.50268
\(135\) 0 0
\(136\) −30.1421 −2.58467
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) 6.82843 0.579180 0.289590 0.957151i \(-0.406481\pi\)
0.289590 + 0.957151i \(0.406481\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −30.1421 −2.52947
\(143\) −3.65685 −0.305802
\(144\) 0 0
\(145\) 0 0
\(146\) 4.82843 0.399603
\(147\) 0 0
\(148\) 11.7574 0.966449
\(149\) −7.65685 −0.627274 −0.313637 0.949543i \(-0.601547\pi\)
−0.313637 + 0.949543i \(0.601547\pi\)
\(150\) 0 0
\(151\) −21.7990 −1.77398 −0.886988 0.461792i \(-0.847207\pi\)
−0.886988 + 0.461792i \(0.847207\pi\)
\(152\) 4.41421 0.358040
\(153\) 0 0
\(154\) −11.6569 −0.939336
\(155\) 0 0
\(156\) 0 0
\(157\) −17.7990 −1.42051 −0.710257 0.703942i \(-0.751421\pi\)
−0.710257 + 0.703942i \(0.751421\pi\)
\(158\) 27.3137 2.17296
\(159\) 0 0
\(160\) 0 0
\(161\) 12.4853 0.983978
\(162\) 0 0
\(163\) 11.8995 0.932040 0.466020 0.884774i \(-0.345687\pi\)
0.466020 + 0.884774i \(0.345687\pi\)
\(164\) 17.5563 1.37092
\(165\) 0 0
\(166\) 15.6569 1.21521
\(167\) 10.0000 0.773823 0.386912 0.922117i \(-0.373542\pi\)
0.386912 + 0.922117i \(0.373542\pi\)
\(168\) 0 0
\(169\) −6.31371 −0.485670
\(170\) 0 0
\(171\) 0 0
\(172\) −13.0711 −0.996660
\(173\) 22.1421 1.68344 0.841718 0.539918i \(-0.181545\pi\)
0.841718 + 0.539918i \(0.181545\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.24264 0.319801
\(177\) 0 0
\(178\) 35.5563 2.66506
\(179\) −22.8284 −1.70628 −0.853138 0.521685i \(-0.825304\pi\)
−0.853138 + 0.521685i \(0.825304\pi\)
\(180\) 0 0
\(181\) −24.8284 −1.84548 −0.922741 0.385420i \(-0.874057\pi\)
−0.922741 + 0.385420i \(0.874057\pi\)
\(182\) 21.3137 1.57988
\(183\) 0 0
\(184\) −16.1421 −1.19001
\(185\) 0 0
\(186\) 0 0
\(187\) −9.65685 −0.706179
\(188\) 44.6274 3.25479
\(189\) 0 0
\(190\) 0 0
\(191\) 17.8995 1.29516 0.647581 0.761997i \(-0.275781\pi\)
0.647581 + 0.761997i \(0.275781\pi\)
\(192\) 0 0
\(193\) 0.928932 0.0668660 0.0334330 0.999441i \(-0.489356\pi\)
0.0334330 + 0.999441i \(0.489356\pi\)
\(194\) −10.2426 −0.735379
\(195\) 0 0
\(196\) 17.8284 1.27346
\(197\) −9.17157 −0.653448 −0.326724 0.945120i \(-0.605945\pi\)
−0.326724 + 0.945120i \(0.605945\pi\)
\(198\) 0 0
\(199\) 0.485281 0.0344007 0.0172003 0.999852i \(-0.494525\pi\)
0.0172003 + 0.999852i \(0.494525\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −2.00000 −0.140720
\(203\) 17.3137 1.21518
\(204\) 0 0
\(205\) 0 0
\(206\) −23.3137 −1.62434
\(207\) 0 0
\(208\) −7.75736 −0.537876
\(209\) 1.41421 0.0978232
\(210\) 0 0
\(211\) 7.31371 0.503496 0.251748 0.967793i \(-0.418995\pi\)
0.251748 + 0.967793i \(0.418995\pi\)
\(212\) 15.3137 1.05175
\(213\) 0 0
\(214\) 19.3137 1.32026
\(215\) 0 0
\(216\) 0 0
\(217\) 35.7990 2.43019
\(218\) 21.3137 1.44355
\(219\) 0 0
\(220\) 0 0
\(221\) 17.6569 1.18773
\(222\) 0 0
\(223\) −17.6569 −1.18239 −0.591195 0.806529i \(-0.701344\pi\)
−0.591195 + 0.806529i \(0.701344\pi\)
\(224\) 5.41421 0.361752
\(225\) 0 0
\(226\) −10.8284 −0.720296
\(227\) 14.9706 0.993631 0.496816 0.867856i \(-0.334503\pi\)
0.496816 + 0.867856i \(0.334503\pi\)
\(228\) 0 0
\(229\) 9.65685 0.638143 0.319071 0.947731i \(-0.396629\pi\)
0.319071 + 0.947731i \(0.396629\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −22.3848 −1.46963
\(233\) −19.6569 −1.28776 −0.643882 0.765125i \(-0.722677\pi\)
−0.643882 + 0.765125i \(0.722677\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 32.4853 2.11461
\(237\) 0 0
\(238\) 56.2843 3.64837
\(239\) −5.41421 −0.350216 −0.175108 0.984549i \(-0.556028\pi\)
−0.175108 + 0.984549i \(0.556028\pi\)
\(240\) 0 0
\(241\) 18.9706 1.22200 0.611001 0.791630i \(-0.290767\pi\)
0.611001 + 0.791630i \(0.290767\pi\)
\(242\) −21.7279 −1.39672
\(243\) 0 0
\(244\) −21.6569 −1.38644
\(245\) 0 0
\(246\) 0 0
\(247\) −2.58579 −0.164530
\(248\) −46.2843 −2.93905
\(249\) 0 0
\(250\) 0 0
\(251\) −27.0711 −1.70871 −0.854355 0.519689i \(-0.826048\pi\)
−0.854355 + 0.519689i \(0.826048\pi\)
\(252\) 0 0
\(253\) −5.17157 −0.325134
\(254\) −19.3137 −1.21185
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 6.82843 0.425946 0.212973 0.977058i \(-0.431685\pi\)
0.212973 + 0.977058i \(0.431685\pi\)
\(258\) 0 0
\(259\) −10.4853 −0.651524
\(260\) 0 0
\(261\) 0 0
\(262\) 21.0711 1.30177
\(263\) −3.85786 −0.237886 −0.118943 0.992901i \(-0.537951\pi\)
−0.118943 + 0.992901i \(0.537951\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.24264 −0.505389
\(267\) 0 0
\(268\) −45.9411 −2.80630
\(269\) 28.3848 1.73065 0.865325 0.501211i \(-0.167112\pi\)
0.865325 + 0.501211i \(0.167112\pi\)
\(270\) 0 0
\(271\) −25.1716 −1.52906 −0.764532 0.644586i \(-0.777030\pi\)
−0.764532 + 0.644586i \(0.777030\pi\)
\(272\) −20.4853 −1.24210
\(273\) 0 0
\(274\) −33.7990 −2.04187
\(275\) 0 0
\(276\) 0 0
\(277\) 22.9706 1.38017 0.690084 0.723730i \(-0.257574\pi\)
0.690084 + 0.723730i \(0.257574\pi\)
\(278\) 16.4853 0.988721
\(279\) 0 0
\(280\) 0 0
\(281\) −10.7279 −0.639974 −0.319987 0.947422i \(-0.603679\pi\)
−0.319987 + 0.947422i \(0.603679\pi\)
\(282\) 0 0
\(283\) 2.24264 0.133311 0.0666556 0.997776i \(-0.478767\pi\)
0.0666556 + 0.997776i \(0.478767\pi\)
\(284\) −47.7990 −2.83635
\(285\) 0 0
\(286\) −8.82843 −0.522036
\(287\) −15.6569 −0.924195
\(288\) 0 0
\(289\) 29.6274 1.74279
\(290\) 0 0
\(291\) 0 0
\(292\) 7.65685 0.448084
\(293\) 7.79899 0.455622 0.227811 0.973705i \(-0.426843\pi\)
0.227811 + 0.973705i \(0.426843\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 13.5563 0.787947
\(297\) 0 0
\(298\) −18.4853 −1.07082
\(299\) 9.45584 0.546846
\(300\) 0 0
\(301\) 11.6569 0.671890
\(302\) −52.6274 −3.02837
\(303\) 0 0
\(304\) 3.00000 0.172062
\(305\) 0 0
\(306\) 0 0
\(307\) 31.7990 1.81486 0.907432 0.420199i \(-0.138040\pi\)
0.907432 + 0.420199i \(0.138040\pi\)
\(308\) −18.4853 −1.05330
\(309\) 0 0
\(310\) 0 0
\(311\) 23.7574 1.34716 0.673578 0.739116i \(-0.264756\pi\)
0.673578 + 0.739116i \(0.264756\pi\)
\(312\) 0 0
\(313\) 26.4853 1.49704 0.748518 0.663114i \(-0.230766\pi\)
0.748518 + 0.663114i \(0.230766\pi\)
\(314\) −42.9706 −2.42497
\(315\) 0 0
\(316\) 43.3137 2.43659
\(317\) −11.3137 −0.635441 −0.317721 0.948184i \(-0.602917\pi\)
−0.317721 + 0.948184i \(0.602917\pi\)
\(318\) 0 0
\(319\) −7.17157 −0.401531
\(320\) 0 0
\(321\) 0 0
\(322\) 30.1421 1.67976
\(323\) −6.82843 −0.379944
\(324\) 0 0
\(325\) 0 0
\(326\) 28.7279 1.59109
\(327\) 0 0
\(328\) 20.2426 1.11771
\(329\) −39.7990 −2.19419
\(330\) 0 0
\(331\) 12.8284 0.705114 0.352557 0.935790i \(-0.385312\pi\)
0.352557 + 0.935790i \(0.385312\pi\)
\(332\) 24.8284 1.36264
\(333\) 0 0
\(334\) 24.1421 1.32100
\(335\) 0 0
\(336\) 0 0
\(337\) −19.7574 −1.07625 −0.538126 0.842864i \(-0.680868\pi\)
−0.538126 + 0.842864i \(0.680868\pi\)
\(338\) −15.2426 −0.829090
\(339\) 0 0
\(340\) 0 0
\(341\) −14.8284 −0.803004
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) −15.0711 −0.812578
\(345\) 0 0
\(346\) 53.4558 2.87380
\(347\) −6.48528 −0.348148 −0.174074 0.984733i \(-0.555693\pi\)
−0.174074 + 0.984733i \(0.555693\pi\)
\(348\) 0 0
\(349\) 6.68629 0.357909 0.178954 0.983857i \(-0.442729\pi\)
0.178954 + 0.983857i \(0.442729\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −2.24264 −0.119533
\(353\) −7.65685 −0.407533 −0.203767 0.979019i \(-0.565318\pi\)
−0.203767 + 0.979019i \(0.565318\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 56.3848 2.98839
\(357\) 0 0
\(358\) −55.1127 −2.91280
\(359\) 9.89949 0.522475 0.261238 0.965275i \(-0.415869\pi\)
0.261238 + 0.965275i \(0.415869\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −59.9411 −3.15044
\(363\) 0 0
\(364\) 33.7990 1.77155
\(365\) 0 0
\(366\) 0 0
\(367\) 16.5858 0.865771 0.432886 0.901449i \(-0.357495\pi\)
0.432886 + 0.901449i \(0.357495\pi\)
\(368\) −10.9706 −0.571880
\(369\) 0 0
\(370\) 0 0
\(371\) −13.6569 −0.709029
\(372\) 0 0
\(373\) −9.89949 −0.512576 −0.256288 0.966600i \(-0.582500\pi\)
−0.256288 + 0.966600i \(0.582500\pi\)
\(374\) −23.3137 −1.20552
\(375\) 0 0
\(376\) 51.4558 2.65363
\(377\) 13.1127 0.675338
\(378\) 0 0
\(379\) −4.14214 −0.212767 −0.106384 0.994325i \(-0.533927\pi\)
−0.106384 + 0.994325i \(0.533927\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 43.2132 2.21098
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.24264 0.114147
\(387\) 0 0
\(388\) −16.2426 −0.824595
\(389\) 18.9706 0.961846 0.480923 0.876763i \(-0.340302\pi\)
0.480923 + 0.876763i \(0.340302\pi\)
\(390\) 0 0
\(391\) 24.9706 1.26282
\(392\) 20.5563 1.03825
\(393\) 0 0
\(394\) −22.1421 −1.11550
\(395\) 0 0
\(396\) 0 0
\(397\) −24.3431 −1.22175 −0.610874 0.791728i \(-0.709182\pi\)
−0.610874 + 0.791728i \(0.709182\pi\)
\(398\) 1.17157 0.0587256
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0416 0.900956 0.450478 0.892788i \(-0.351254\pi\)
0.450478 + 0.892788i \(0.351254\pi\)
\(402\) 0 0
\(403\) 27.1127 1.35058
\(404\) −3.17157 −0.157792
\(405\) 0 0
\(406\) 41.7990 2.07445
\(407\) 4.34315 0.215282
\(408\) 0 0
\(409\) 26.4853 1.30961 0.654806 0.755797i \(-0.272750\pi\)
0.654806 + 0.755797i \(0.272750\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −36.9706 −1.82141
\(413\) −28.9706 −1.42555
\(414\) 0 0
\(415\) 0 0
\(416\) 4.10051 0.201044
\(417\) 0 0
\(418\) 3.41421 0.166995
\(419\) −18.8701 −0.921863 −0.460931 0.887436i \(-0.652485\pi\)
−0.460931 + 0.887436i \(0.652485\pi\)
\(420\) 0 0
\(421\) −37.3137 −1.81856 −0.909279 0.416186i \(-0.863366\pi\)
−0.909279 + 0.416186i \(0.863366\pi\)
\(422\) 17.6569 0.859522
\(423\) 0 0
\(424\) 17.6569 0.857493
\(425\) 0 0
\(426\) 0 0
\(427\) 19.3137 0.934656
\(428\) 30.6274 1.48043
\(429\) 0 0
\(430\) 0 0
\(431\) −20.4853 −0.986741 −0.493371 0.869819i \(-0.664235\pi\)
−0.493371 + 0.869819i \(0.664235\pi\)
\(432\) 0 0
\(433\) −15.0711 −0.724269 −0.362135 0.932126i \(-0.617952\pi\)
−0.362135 + 0.932126i \(0.617952\pi\)
\(434\) 86.4264 4.14860
\(435\) 0 0
\(436\) 33.7990 1.61868
\(437\) −3.65685 −0.174931
\(438\) 0 0
\(439\) −32.9706 −1.57360 −0.786800 0.617209i \(-0.788263\pi\)
−0.786800 + 0.617209i \(0.788263\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 42.6274 2.02758
\(443\) 21.3137 1.01264 0.506322 0.862344i \(-0.331005\pi\)
0.506322 + 0.862344i \(0.331005\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −42.6274 −2.01847
\(447\) 0 0
\(448\) 33.5563 1.58539
\(449\) 11.8995 0.561572 0.280786 0.959770i \(-0.409405\pi\)
0.280786 + 0.959770i \(0.409405\pi\)
\(450\) 0 0
\(451\) 6.48528 0.305380
\(452\) −17.1716 −0.807683
\(453\) 0 0
\(454\) 36.1421 1.69623
\(455\) 0 0
\(456\) 0 0
\(457\) −23.1716 −1.08392 −0.541960 0.840404i \(-0.682318\pi\)
−0.541960 + 0.840404i \(0.682318\pi\)
\(458\) 23.3137 1.08938
\(459\) 0 0
\(460\) 0 0
\(461\) −33.3137 −1.55157 −0.775787 0.630995i \(-0.782647\pi\)
−0.775787 + 0.630995i \(0.782647\pi\)
\(462\) 0 0
\(463\) 27.8995 1.29660 0.648300 0.761385i \(-0.275480\pi\)
0.648300 + 0.761385i \(0.275480\pi\)
\(464\) −15.2132 −0.706255
\(465\) 0 0
\(466\) −47.4558 −2.19835
\(467\) 27.6569 1.27981 0.639903 0.768455i \(-0.278974\pi\)
0.639903 + 0.768455i \(0.278974\pi\)
\(468\) 0 0
\(469\) 40.9706 1.89184
\(470\) 0 0
\(471\) 0 0
\(472\) 37.4558 1.72404
\(473\) −4.82843 −0.222011
\(474\) 0 0
\(475\) 0 0
\(476\) 89.2548 4.09099
\(477\) 0 0
\(478\) −13.0711 −0.597857
\(479\) −38.1838 −1.74466 −0.872330 0.488917i \(-0.837392\pi\)
−0.872330 + 0.488917i \(0.837392\pi\)
\(480\) 0 0
\(481\) −7.94113 −0.362084
\(482\) 45.7990 2.08609
\(483\) 0 0
\(484\) −34.4558 −1.56617
\(485\) 0 0
\(486\) 0 0
\(487\) −2.82843 −0.128168 −0.0640841 0.997944i \(-0.520413\pi\)
−0.0640841 + 0.997944i \(0.520413\pi\)
\(488\) −24.9706 −1.13036
\(489\) 0 0
\(490\) 0 0
\(491\) −2.10051 −0.0947945 −0.0473972 0.998876i \(-0.515093\pi\)
−0.0473972 + 0.998876i \(0.515093\pi\)
\(492\) 0 0
\(493\) 34.6274 1.55954
\(494\) −6.24264 −0.280870
\(495\) 0 0
\(496\) −31.4558 −1.41241
\(497\) 42.6274 1.91210
\(498\) 0 0
\(499\) 15.7990 0.707260 0.353630 0.935385i \(-0.384947\pi\)
0.353630 + 0.935385i \(0.384947\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −65.3553 −2.91695
\(503\) −4.82843 −0.215289 −0.107644 0.994189i \(-0.534331\pi\)
−0.107644 + 0.994189i \(0.534331\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.4853 −0.555038
\(507\) 0 0
\(508\) −30.6274 −1.35887
\(509\) 4.38478 0.194352 0.0971759 0.995267i \(-0.469019\pi\)
0.0971759 + 0.995267i \(0.469019\pi\)
\(510\) 0 0
\(511\) −6.82843 −0.302072
\(512\) −31.2426 −1.38074
\(513\) 0 0
\(514\) 16.4853 0.727135
\(515\) 0 0
\(516\) 0 0
\(517\) 16.4853 0.725022
\(518\) −25.3137 −1.11222
\(519\) 0 0
\(520\) 0 0
\(521\) −12.3848 −0.542587 −0.271293 0.962497i \(-0.587451\pi\)
−0.271293 + 0.962497i \(0.587451\pi\)
\(522\) 0 0
\(523\) −23.7990 −1.04066 −0.520329 0.853966i \(-0.674191\pi\)
−0.520329 + 0.853966i \(0.674191\pi\)
\(524\) 33.4142 1.45971
\(525\) 0 0
\(526\) −9.31371 −0.406097
\(527\) 71.5980 3.11886
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) 0 0
\(532\) −13.0711 −0.566703
\(533\) −11.8579 −0.513621
\(534\) 0 0
\(535\) 0 0
\(536\) −52.9706 −2.28798
\(537\) 0 0
\(538\) 68.5269 2.95440
\(539\) 6.58579 0.283670
\(540\) 0 0
\(541\) 12.6274 0.542895 0.271448 0.962453i \(-0.412498\pi\)
0.271448 + 0.962453i \(0.412498\pi\)
\(542\) −60.7696 −2.61028
\(543\) 0 0
\(544\) 10.8284 0.464265
\(545\) 0 0
\(546\) 0 0
\(547\) 5.85786 0.250464 0.125232 0.992127i \(-0.460032\pi\)
0.125232 + 0.992127i \(0.460032\pi\)
\(548\) −53.5980 −2.28959
\(549\) 0 0
\(550\) 0 0
\(551\) −5.07107 −0.216035
\(552\) 0 0
\(553\) −38.6274 −1.64260
\(554\) 55.4558 2.35609
\(555\) 0 0
\(556\) 26.1421 1.10867
\(557\) 10.0000 0.423714 0.211857 0.977301i \(-0.432049\pi\)
0.211857 + 0.977301i \(0.432049\pi\)
\(558\) 0 0
\(559\) 8.82843 0.373403
\(560\) 0 0
\(561\) 0 0
\(562\) −25.8995 −1.09250
\(563\) −14.2843 −0.602010 −0.301005 0.953623i \(-0.597322\pi\)
−0.301005 + 0.953623i \(0.597322\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 5.41421 0.227576
\(567\) 0 0
\(568\) −55.1127 −2.31248
\(569\) −18.7279 −0.785115 −0.392558 0.919727i \(-0.628410\pi\)
−0.392558 + 0.919727i \(0.628410\pi\)
\(570\) 0 0
\(571\) −19.7990 −0.828562 −0.414281 0.910149i \(-0.635967\pi\)
−0.414281 + 0.910149i \(0.635967\pi\)
\(572\) −14.0000 −0.585369
\(573\) 0 0
\(574\) −37.7990 −1.57770
\(575\) 0 0
\(576\) 0 0
\(577\) −1.79899 −0.0748929 −0.0374465 0.999299i \(-0.511922\pi\)
−0.0374465 + 0.999299i \(0.511922\pi\)
\(578\) 71.5269 2.97513
\(579\) 0 0
\(580\) 0 0
\(581\) −22.1421 −0.918611
\(582\) 0 0
\(583\) 5.65685 0.234283
\(584\) 8.82843 0.365323
\(585\) 0 0
\(586\) 18.8284 0.777795
\(587\) 0.343146 0.0141631 0.00708157 0.999975i \(-0.497746\pi\)
0.00708157 + 0.999975i \(0.497746\pi\)
\(588\) 0 0
\(589\) −10.4853 −0.432038
\(590\) 0 0
\(591\) 0 0
\(592\) 9.21320 0.378660
\(593\) −6.68629 −0.274573 −0.137287 0.990531i \(-0.543838\pi\)
−0.137287 + 0.990531i \(0.543838\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −29.3137 −1.20074
\(597\) 0 0
\(598\) 22.8284 0.933524
\(599\) −45.9411 −1.87710 −0.938552 0.345139i \(-0.887832\pi\)
−0.938552 + 0.345139i \(0.887832\pi\)
\(600\) 0 0
\(601\) −23.1716 −0.945188 −0.472594 0.881280i \(-0.656682\pi\)
−0.472594 + 0.881280i \(0.656682\pi\)
\(602\) 28.1421 1.14699
\(603\) 0 0
\(604\) −83.4558 −3.39577
\(605\) 0 0
\(606\) 0 0
\(607\) −26.1421 −1.06108 −0.530538 0.847661i \(-0.678010\pi\)
−0.530538 + 0.847661i \(0.678010\pi\)
\(608\) −1.58579 −0.0643121
\(609\) 0 0
\(610\) 0 0
\(611\) −30.1421 −1.21942
\(612\) 0 0
\(613\) 37.1127 1.49897 0.749484 0.662023i \(-0.230302\pi\)
0.749484 + 0.662023i \(0.230302\pi\)
\(614\) 76.7696 3.09817
\(615\) 0 0
\(616\) −21.3137 −0.858754
\(617\) −18.1421 −0.730375 −0.365187 0.930934i \(-0.618995\pi\)
−0.365187 + 0.930934i \(0.618995\pi\)
\(618\) 0 0
\(619\) −4.20101 −0.168853 −0.0844264 0.996430i \(-0.526906\pi\)
−0.0844264 + 0.996430i \(0.526906\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 57.3553 2.29974
\(623\) −50.2843 −2.01460
\(624\) 0 0
\(625\) 0 0
\(626\) 63.9411 2.55560
\(627\) 0 0
\(628\) −68.1421 −2.71917
\(629\) −20.9706 −0.836151
\(630\) 0 0
\(631\) −22.6274 −0.900783 −0.450392 0.892831i \(-0.648716\pi\)
−0.450392 + 0.892831i \(0.648716\pi\)
\(632\) 49.9411 1.98655
\(633\) 0 0
\(634\) −27.3137 −1.08477
\(635\) 0 0
\(636\) 0 0
\(637\) −12.0416 −0.477107
\(638\) −17.3137 −0.685456
\(639\) 0 0
\(640\) 0 0
\(641\) 11.4142 0.450834 0.225417 0.974262i \(-0.427625\pi\)
0.225417 + 0.974262i \(0.427625\pi\)
\(642\) 0 0
\(643\) 42.0416 1.65796 0.828980 0.559278i \(-0.188922\pi\)
0.828980 + 0.559278i \(0.188922\pi\)
\(644\) 47.7990 1.88354
\(645\) 0 0
\(646\) −16.4853 −0.648605
\(647\) −17.1127 −0.672770 −0.336385 0.941725i \(-0.609204\pi\)
−0.336385 + 0.941725i \(0.609204\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 0 0
\(652\) 45.5563 1.78412
\(653\) −42.4264 −1.66027 −0.830137 0.557560i \(-0.811738\pi\)
−0.830137 + 0.557560i \(0.811738\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 13.7574 0.537135
\(657\) 0 0
\(658\) −96.0833 −3.74572
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 1.51472 0.0589157 0.0294579 0.999566i \(-0.490622\pi\)
0.0294579 + 0.999566i \(0.490622\pi\)
\(662\) 30.9706 1.20371
\(663\) 0 0
\(664\) 28.6274 1.11096
\(665\) 0 0
\(666\) 0 0
\(667\) 18.5442 0.718033
\(668\) 38.2843 1.48126
\(669\) 0 0
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) −2.10051 −0.0809685 −0.0404843 0.999180i \(-0.512890\pi\)
−0.0404843 + 0.999180i \(0.512890\pi\)
\(674\) −47.6985 −1.83728
\(675\) 0 0
\(676\) −24.1716 −0.929676
\(677\) −11.0294 −0.423896 −0.211948 0.977281i \(-0.567981\pi\)
−0.211948 + 0.977281i \(0.567981\pi\)
\(678\) 0 0
\(679\) 14.4853 0.555894
\(680\) 0 0
\(681\) 0 0
\(682\) −35.7990 −1.37081
\(683\) −5.65685 −0.216454 −0.108227 0.994126i \(-0.534517\pi\)
−0.108227 + 0.994126i \(0.534517\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 19.3137 0.737401
\(687\) 0 0
\(688\) −10.2426 −0.390497
\(689\) −10.3431 −0.394042
\(690\) 0 0
\(691\) 39.1127 1.48792 0.743959 0.668226i \(-0.232946\pi\)
0.743959 + 0.668226i \(0.232946\pi\)
\(692\) 84.7696 3.22245
\(693\) 0 0
\(694\) −15.6569 −0.594326
\(695\) 0 0
\(696\) 0 0
\(697\) −31.3137 −1.18609
\(698\) 16.1421 0.610989
\(699\) 0 0
\(700\) 0 0
\(701\) 11.6569 0.440273 0.220137 0.975469i \(-0.429350\pi\)
0.220137 + 0.975469i \(0.429350\pi\)
\(702\) 0 0
\(703\) 3.07107 0.115828
\(704\) −13.8995 −0.523857
\(705\) 0 0
\(706\) −18.4853 −0.695703
\(707\) 2.82843 0.106374
\(708\) 0 0
\(709\) −12.6863 −0.476444 −0.238222 0.971211i \(-0.576565\pi\)
−0.238222 + 0.971211i \(0.576565\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 65.0122 2.43643
\(713\) 38.3431 1.43596
\(714\) 0 0
\(715\) 0 0
\(716\) −87.3970 −3.26618
\(717\) 0 0
\(718\) 23.8995 0.891921
\(719\) 47.5563 1.77355 0.886776 0.462199i \(-0.152939\pi\)
0.886776 + 0.462199i \(0.152939\pi\)
\(720\) 0 0
\(721\) 32.9706 1.22789
\(722\) 2.41421 0.0898477
\(723\) 0 0
\(724\) −95.0538 −3.53265
\(725\) 0 0
\(726\) 0 0
\(727\) 7.41421 0.274978 0.137489 0.990503i \(-0.456097\pi\)
0.137489 + 0.990503i \(0.456097\pi\)
\(728\) 38.9706 1.44435
\(729\) 0 0
\(730\) 0 0
\(731\) 23.3137 0.862289
\(732\) 0 0
\(733\) −21.3137 −0.787240 −0.393620 0.919273i \(-0.628777\pi\)
−0.393620 + 0.919273i \(0.628777\pi\)
\(734\) 40.0416 1.47796
\(735\) 0 0
\(736\) 5.79899 0.213754
\(737\) −16.9706 −0.625119
\(738\) 0 0
\(739\) 1.65685 0.0609484 0.0304742 0.999536i \(-0.490298\pi\)
0.0304742 + 0.999536i \(0.490298\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −32.9706 −1.21039
\(743\) 7.31371 0.268314 0.134157 0.990960i \(-0.457167\pi\)
0.134157 + 0.990960i \(0.457167\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −23.8995 −0.875023
\(747\) 0 0
\(748\) −36.9706 −1.35178
\(749\) −27.3137 −0.998021
\(750\) 0 0
\(751\) 25.1127 0.916375 0.458188 0.888855i \(-0.348499\pi\)
0.458188 + 0.888855i \(0.348499\pi\)
\(752\) 34.9706 1.27525
\(753\) 0 0
\(754\) 31.6569 1.15287
\(755\) 0 0
\(756\) 0 0
\(757\) −11.1716 −0.406038 −0.203019 0.979175i \(-0.565075\pi\)
−0.203019 + 0.979175i \(0.565075\pi\)
\(758\) −10.0000 −0.363216
\(759\) 0 0
\(760\) 0 0
\(761\) −46.2843 −1.67780 −0.838902 0.544283i \(-0.816802\pi\)
−0.838902 + 0.544283i \(0.816802\pi\)
\(762\) 0 0
\(763\) −30.1421 −1.09122
\(764\) 68.5269 2.47922
\(765\) 0 0
\(766\) 28.9706 1.04675
\(767\) −21.9411 −0.792248
\(768\) 0 0
\(769\) −24.3431 −0.877836 −0.438918 0.898527i \(-0.644638\pi\)
−0.438918 + 0.898527i \(0.644638\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.55635 0.127996
\(773\) 0.970563 0.0349087 0.0174544 0.999848i \(-0.494444\pi\)
0.0174544 + 0.999848i \(0.494444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −18.7279 −0.672293
\(777\) 0 0
\(778\) 45.7990 1.64197
\(779\) 4.58579 0.164303
\(780\) 0 0
\(781\) −17.6569 −0.631812
\(782\) 60.2843 2.15576
\(783\) 0 0
\(784\) 13.9706 0.498949
\(785\) 0 0
\(786\) 0 0
\(787\) 37.4558 1.33516 0.667578 0.744540i \(-0.267331\pi\)
0.667578 + 0.744540i \(0.267331\pi\)
\(788\) −35.1127 −1.25084
\(789\) 0 0
\(790\) 0 0
\(791\) 15.3137 0.544493
\(792\) 0 0
\(793\) 14.6274 0.519435
\(794\) −58.7696 −2.08565
\(795\) 0 0
\(796\) 1.85786 0.0658503
\(797\) 5.17157 0.183187 0.0915933 0.995797i \(-0.470804\pi\)
0.0915933 + 0.995797i \(0.470804\pi\)
\(798\) 0 0
\(799\) −79.5980 −2.81597
\(800\) 0 0
\(801\) 0 0
\(802\) 43.5563 1.53803
\(803\) 2.82843 0.0998130
\(804\) 0 0
\(805\) 0 0
\(806\) 65.4558 2.30558
\(807\) 0 0
\(808\) −3.65685 −0.128648
\(809\) −26.6863 −0.938240 −0.469120 0.883134i \(-0.655429\pi\)
−0.469120 + 0.883134i \(0.655429\pi\)
\(810\) 0 0
\(811\) 7.31371 0.256819 0.128410 0.991721i \(-0.459013\pi\)
0.128410 + 0.991721i \(0.459013\pi\)
\(812\) 66.2843 2.32612
\(813\) 0 0
\(814\) 10.4853 0.367509
\(815\) 0 0
\(816\) 0 0
\(817\) −3.41421 −0.119448
\(818\) 63.9411 2.23565
\(819\) 0 0
\(820\) 0 0
\(821\) −0.544156 −0.0189912 −0.00949559 0.999955i \(-0.503023\pi\)
−0.00949559 + 0.999955i \(0.503023\pi\)
\(822\) 0 0
\(823\) −22.7279 −0.792246 −0.396123 0.918198i \(-0.629645\pi\)
−0.396123 + 0.918198i \(0.629645\pi\)
\(824\) −42.6274 −1.48500
\(825\) 0 0
\(826\) −69.9411 −2.43356
\(827\) 3.37258 0.117276 0.0586381 0.998279i \(-0.481324\pi\)
0.0586381 + 0.998279i \(0.481324\pi\)
\(828\) 0 0
\(829\) −21.5147 −0.747237 −0.373619 0.927582i \(-0.621883\pi\)
−0.373619 + 0.927582i \(0.621883\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 25.4142 0.881079
\(833\) −31.7990 −1.10177
\(834\) 0 0
\(835\) 0 0
\(836\) 5.41421 0.187254
\(837\) 0 0
\(838\) −45.5563 −1.57372
\(839\) 35.1127 1.21222 0.606112 0.795379i \(-0.292728\pi\)
0.606112 + 0.795379i \(0.292728\pi\)
\(840\) 0 0
\(841\) −3.28427 −0.113251
\(842\) −90.0833 −3.10447
\(843\) 0 0
\(844\) 28.0000 0.963800
\(845\) 0 0
\(846\) 0 0
\(847\) 30.7279 1.05582
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) 0 0
\(851\) −11.2304 −0.384975
\(852\) 0 0
\(853\) 26.4853 0.906839 0.453419 0.891297i \(-0.350204\pi\)
0.453419 + 0.891297i \(0.350204\pi\)
\(854\) 46.6274 1.59556
\(855\) 0 0
\(856\) 35.3137 1.20700
\(857\) −29.9411 −1.02277 −0.511385 0.859352i \(-0.670867\pi\)
−0.511385 + 0.859352i \(0.670867\pi\)
\(858\) 0 0
\(859\) −41.9411 −1.43101 −0.715506 0.698606i \(-0.753804\pi\)
−0.715506 + 0.698606i \(0.753804\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −49.4558 −1.68447
\(863\) −8.68629 −0.295685 −0.147842 0.989011i \(-0.547233\pi\)
−0.147842 + 0.989011i \(0.547233\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −36.3848 −1.23641
\(867\) 0 0
\(868\) 137.054 4.65191
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 31.0294 1.05139
\(872\) 38.9706 1.31971
\(873\) 0 0
\(874\) −8.82843 −0.298626
\(875\) 0 0
\(876\) 0 0
\(877\) 1.89949 0.0641414 0.0320707 0.999486i \(-0.489790\pi\)
0.0320707 + 0.999486i \(0.489790\pi\)
\(878\) −79.5980 −2.68630
\(879\) 0 0
\(880\) 0 0
\(881\) −3.45584 −0.116430 −0.0582152 0.998304i \(-0.518541\pi\)
−0.0582152 + 0.998304i \(0.518541\pi\)
\(882\) 0 0
\(883\) 18.5269 0.623480 0.311740 0.950167i \(-0.399088\pi\)
0.311740 + 0.950167i \(0.399088\pi\)
\(884\) 67.5980 2.27357
\(885\) 0 0
\(886\) 51.4558 1.72869
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 27.3137 0.916072
\(890\) 0 0
\(891\) 0 0
\(892\) −67.5980 −2.26335
\(893\) 11.6569 0.390082
\(894\) 0 0
\(895\) 0 0
\(896\) 70.1838 2.34468
\(897\) 0 0
\(898\) 28.7279 0.958663
\(899\) 53.1716 1.77337
\(900\) 0 0
\(901\) −27.3137 −0.909952
\(902\) 15.6569 0.521316
\(903\) 0 0
\(904\) −19.7990 −0.658505
\(905\) 0 0
\(906\) 0 0
\(907\) −9.85786 −0.327325 −0.163663 0.986516i \(-0.552331\pi\)
−0.163663 + 0.986516i \(0.552331\pi\)
\(908\) 57.3137 1.90202
\(909\) 0 0
\(910\) 0 0
\(911\) 0.686292 0.0227379 0.0113689 0.999935i \(-0.496381\pi\)
0.0113689 + 0.999935i \(0.496381\pi\)
\(912\) 0 0
\(913\) 9.17157 0.303535
\(914\) −55.9411 −1.85037
\(915\) 0 0
\(916\) 36.9706 1.22154
\(917\) −29.7990 −0.984049
\(918\) 0 0
\(919\) −12.0000 −0.395843 −0.197922 0.980218i \(-0.563419\pi\)
−0.197922 + 0.980218i \(0.563419\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −80.4264 −2.64870
\(923\) 32.2843 1.06265
\(924\) 0 0
\(925\) 0 0
\(926\) 67.3553 2.21343
\(927\) 0 0
\(928\) 8.04163 0.263979
\(929\) 0.544156 0.0178532 0.00892659 0.999960i \(-0.497159\pi\)
0.00892659 + 0.999960i \(0.497159\pi\)
\(930\) 0 0
\(931\) 4.65685 0.152622
\(932\) −75.2548 −2.46505
\(933\) 0 0
\(934\) 66.7696 2.18477
\(935\) 0 0
\(936\) 0 0
\(937\) −54.7696 −1.78924 −0.894622 0.446824i \(-0.852555\pi\)
−0.894622 + 0.446824i \(0.852555\pi\)
\(938\) 98.9117 3.22958
\(939\) 0 0
\(940\) 0 0
\(941\) −13.5563 −0.441924 −0.220962 0.975282i \(-0.570920\pi\)
−0.220962 + 0.975282i \(0.570920\pi\)
\(942\) 0 0
\(943\) −16.7696 −0.546092
\(944\) 25.4558 0.828517
\(945\) 0 0
\(946\) −11.6569 −0.378997
\(947\) 7.17157 0.233045 0.116522 0.993188i \(-0.462825\pi\)
0.116522 + 0.993188i \(0.462825\pi\)
\(948\) 0 0
\(949\) −5.17157 −0.167876
\(950\) 0 0
\(951\) 0 0
\(952\) 102.912 3.33539
\(953\) −34.1421 −1.10597 −0.552986 0.833190i \(-0.686512\pi\)
−0.552986 + 0.833190i \(0.686512\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −20.7279 −0.670389
\(957\) 0 0
\(958\) −92.1838 −2.97832
\(959\) 47.7990 1.54351
\(960\) 0 0
\(961\) 78.9411 2.54649
\(962\) −19.1716 −0.618116
\(963\) 0 0
\(964\) 72.6274 2.33917
\(965\) 0 0
\(966\) 0 0
\(967\) 8.10051 0.260495 0.130247 0.991482i \(-0.458423\pi\)
0.130247 + 0.991482i \(0.458423\pi\)
\(968\) −39.7279 −1.27690
\(969\) 0 0
\(970\) 0 0
\(971\) −6.34315 −0.203561 −0.101781 0.994807i \(-0.532454\pi\)
−0.101781 + 0.994807i \(0.532454\pi\)
\(972\) 0 0
\(973\) −23.3137 −0.747403
\(974\) −6.82843 −0.218797
\(975\) 0 0
\(976\) −16.9706 −0.543214
\(977\) −39.5980 −1.26685 −0.633426 0.773803i \(-0.718352\pi\)
−0.633426 + 0.773803i \(0.718352\pi\)
\(978\) 0 0
\(979\) 20.8284 0.665679
\(980\) 0 0
\(981\) 0 0
\(982\) −5.07107 −0.161824
\(983\) −35.9411 −1.14634 −0.573172 0.819435i \(-0.694287\pi\)
−0.573172 + 0.819435i \(0.694287\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 83.5980 2.66230
\(987\) 0 0
\(988\) −9.89949 −0.314945
\(989\) 12.4853 0.397009
\(990\) 0 0
\(991\) −50.3431 −1.59920 −0.799601 0.600531i \(-0.794956\pi\)
−0.799601 + 0.600531i \(0.794956\pi\)
\(992\) 16.6274 0.527921
\(993\) 0 0
\(994\) 102.912 3.26416
\(995\) 0 0
\(996\) 0 0
\(997\) 33.5147 1.06142 0.530711 0.847553i \(-0.321925\pi\)
0.530711 + 0.847553i \(0.321925\pi\)
\(998\) 38.1421 1.20737
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.x.1.2 2
3.2 odd 2 1425.2.a.l.1.1 2
5.4 even 2 855.2.a.e.1.1 2
15.2 even 4 1425.2.c.j.799.1 4
15.8 even 4 1425.2.c.j.799.4 4
15.14 odd 2 285.2.a.f.1.2 2
60.59 even 2 4560.2.a.bj.1.1 2
285.284 even 2 5415.2.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.a.f.1.2 2 15.14 odd 2
855.2.a.e.1.1 2 5.4 even 2
1425.2.a.l.1.1 2 3.2 odd 2
1425.2.c.j.799.1 4 15.2 even 4
1425.2.c.j.799.4 4 15.8 even 4
4275.2.a.x.1.2 2 1.1 even 1 trivial
4560.2.a.bj.1.1 2 60.59 even 2
5415.2.a.p.1.1 2 285.284 even 2