Properties

Label 4275.2.a.v.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} +0.618034 q^{4} -2.23607 q^{7} -2.23607 q^{8} +4.00000 q^{11} +2.47214 q^{13} -3.61803 q^{14} -4.85410 q^{16} -3.23607 q^{17} -1.00000 q^{19} +6.47214 q^{22} -1.23607 q^{23} +4.00000 q^{26} -1.38197 q^{28} +1.47214 q^{29} -1.52786 q^{31} -3.38197 q^{32} -5.23607 q^{34} -7.23607 q^{37} -1.61803 q^{38} +5.00000 q^{41} -4.00000 q^{43} +2.47214 q^{44} -2.00000 q^{46} -8.47214 q^{47} -2.00000 q^{49} +1.52786 q^{52} -5.00000 q^{53} +5.00000 q^{56} +2.38197 q^{58} +1.29180 q^{59} -9.94427 q^{61} -2.47214 q^{62} +4.23607 q^{64} -6.94427 q^{67} -2.00000 q^{68} +13.1803 q^{71} +5.47214 q^{73} -11.7082 q^{74} -0.618034 q^{76} -8.94427 q^{77} -15.7082 q^{79} +8.09017 q^{82} +10.9443 q^{83} -6.47214 q^{86} -8.94427 q^{88} -7.94427 q^{89} -5.52786 q^{91} -0.763932 q^{92} -13.7082 q^{94} -11.7082 q^{97} -3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 8 q^{11} - 4 q^{13} - 5 q^{14} - 3 q^{16} - 2 q^{17} - 2 q^{19} + 4 q^{22} + 2 q^{23} + 8 q^{26} - 5 q^{28} - 6 q^{29} - 12 q^{31} - 9 q^{32} - 6 q^{34} - 10 q^{37} - q^{38} + 10 q^{41}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) 0 0
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) 0 0
\(7\) −2.23607 −0.845154 −0.422577 0.906327i \(-0.638874\pi\)
−0.422577 + 0.906327i \(0.638874\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 2.47214 0.685647 0.342824 0.939400i \(-0.388617\pi\)
0.342824 + 0.939400i \(0.388617\pi\)
\(14\) −3.61803 −0.966960
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) −3.23607 −0.784862 −0.392431 0.919781i \(-0.628366\pi\)
−0.392431 + 0.919781i \(0.628366\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 6.47214 1.37986
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) −1.38197 −0.261167
\(29\) 1.47214 0.273369 0.136684 0.990615i \(-0.456355\pi\)
0.136684 + 0.990615i \(0.456355\pi\)
\(30\) 0 0
\(31\) −1.52786 −0.274412 −0.137206 0.990543i \(-0.543812\pi\)
−0.137206 + 0.990543i \(0.543812\pi\)
\(32\) −3.38197 −0.597853
\(33\) 0 0
\(34\) −5.23607 −0.897978
\(35\) 0 0
\(36\) 0 0
\(37\) −7.23607 −1.18960 −0.594801 0.803873i \(-0.702769\pi\)
−0.594801 + 0.803873i \(0.702769\pi\)
\(38\) −1.61803 −0.262480
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 2.47214 0.372689
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) −8.47214 −1.23579 −0.617894 0.786261i \(-0.712014\pi\)
−0.617894 + 0.786261i \(0.712014\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 1.52786 0.211877
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.00000 0.668153
\(57\) 0 0
\(58\) 2.38197 0.312767
\(59\) 1.29180 0.168178 0.0840888 0.996458i \(-0.473202\pi\)
0.0840888 + 0.996458i \(0.473202\pi\)
\(60\) 0 0
\(61\) −9.94427 −1.27323 −0.636617 0.771180i \(-0.719667\pi\)
−0.636617 + 0.771180i \(0.719667\pi\)
\(62\) −2.47214 −0.313962
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) 0 0
\(67\) −6.94427 −0.848378 −0.424189 0.905574i \(-0.639441\pi\)
−0.424189 + 0.905574i \(0.639441\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 13.1803 1.56422 0.782109 0.623141i \(-0.214144\pi\)
0.782109 + 0.623141i \(0.214144\pi\)
\(72\) 0 0
\(73\) 5.47214 0.640465 0.320233 0.947339i \(-0.396239\pi\)
0.320233 + 0.947339i \(0.396239\pi\)
\(74\) −11.7082 −1.36105
\(75\) 0 0
\(76\) −0.618034 −0.0708934
\(77\) −8.94427 −1.01929
\(78\) 0 0
\(79\) −15.7082 −1.76731 −0.883656 0.468138i \(-0.844925\pi\)
−0.883656 + 0.468138i \(0.844925\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.09017 0.893410
\(83\) 10.9443 1.20129 0.600645 0.799516i \(-0.294911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.47214 −0.697908
\(87\) 0 0
\(88\) −8.94427 −0.953463
\(89\) −7.94427 −0.842091 −0.421046 0.907039i \(-0.638337\pi\)
−0.421046 + 0.907039i \(0.638337\pi\)
\(90\) 0 0
\(91\) −5.52786 −0.579478
\(92\) −0.763932 −0.0796454
\(93\) 0 0
\(94\) −13.7082 −1.41389
\(95\) 0 0
\(96\) 0 0
\(97\) −11.7082 −1.18879 −0.594394 0.804174i \(-0.702608\pi\)
−0.594394 + 0.804174i \(0.702608\pi\)
\(98\) −3.23607 −0.326892
\(99\) 0 0
\(100\) 0 0
\(101\) −8.18034 −0.813974 −0.406987 0.913434i \(-0.633421\pi\)
−0.406987 + 0.913434i \(0.633421\pi\)
\(102\) 0 0
\(103\) 0.944272 0.0930419 0.0465209 0.998917i \(-0.485187\pi\)
0.0465209 + 0.998917i \(0.485187\pi\)
\(104\) −5.52786 −0.542052
\(105\) 0 0
\(106\) −8.09017 −0.785787
\(107\) −11.7639 −1.13726 −0.568631 0.822593i \(-0.692527\pi\)
−0.568631 + 0.822593i \(0.692527\pi\)
\(108\) 0 0
\(109\) 5.70820 0.546747 0.273373 0.961908i \(-0.411861\pi\)
0.273373 + 0.961908i \(0.411861\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.8541 1.02562
\(113\) −3.52786 −0.331874 −0.165937 0.986136i \(-0.553065\pi\)
−0.165937 + 0.986136i \(0.553065\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.909830 0.0844756
\(117\) 0 0
\(118\) 2.09017 0.192416
\(119\) 7.23607 0.663329
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −16.0902 −1.45674
\(123\) 0 0
\(124\) −0.944272 −0.0847981
\(125\) 0 0
\(126\) 0 0
\(127\) −15.2361 −1.35198 −0.675991 0.736910i \(-0.736284\pi\)
−0.675991 + 0.736910i \(0.736284\pi\)
\(128\) 13.6180 1.20368
\(129\) 0 0
\(130\) 0 0
\(131\) −10.9443 −0.956205 −0.478103 0.878304i \(-0.658675\pi\)
−0.478103 + 0.878304i \(0.658675\pi\)
\(132\) 0 0
\(133\) 2.23607 0.193892
\(134\) −11.2361 −0.970648
\(135\) 0 0
\(136\) 7.23607 0.620488
\(137\) 17.7082 1.51291 0.756457 0.654043i \(-0.226929\pi\)
0.756457 + 0.654043i \(0.226929\pi\)
\(138\) 0 0
\(139\) −20.2361 −1.71640 −0.858200 0.513315i \(-0.828417\pi\)
−0.858200 + 0.513315i \(0.828417\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 21.3262 1.78966
\(143\) 9.88854 0.826922
\(144\) 0 0
\(145\) 0 0
\(146\) 8.85410 0.732771
\(147\) 0 0
\(148\) −4.47214 −0.367607
\(149\) −7.41641 −0.607576 −0.303788 0.952740i \(-0.598251\pi\)
−0.303788 + 0.952740i \(0.598251\pi\)
\(150\) 0 0
\(151\) −1.70820 −0.139012 −0.0695058 0.997582i \(-0.522142\pi\)
−0.0695058 + 0.997582i \(0.522142\pi\)
\(152\) 2.23607 0.181369
\(153\) 0 0
\(154\) −14.4721 −1.16620
\(155\) 0 0
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) −25.4164 −2.02202
\(159\) 0 0
\(160\) 0 0
\(161\) 2.76393 0.217828
\(162\) 0 0
\(163\) −11.1803 −0.875712 −0.437856 0.899045i \(-0.644262\pi\)
−0.437856 + 0.899045i \(0.644262\pi\)
\(164\) 3.09017 0.241302
\(165\) 0 0
\(166\) 17.7082 1.37442
\(167\) 24.5967 1.90335 0.951677 0.307102i \(-0.0993591\pi\)
0.951677 + 0.307102i \(0.0993591\pi\)
\(168\) 0 0
\(169\) −6.88854 −0.529888
\(170\) 0 0
\(171\) 0 0
\(172\) −2.47214 −0.188499
\(173\) −4.52786 −0.344247 −0.172124 0.985075i \(-0.555063\pi\)
−0.172124 + 0.985075i \(0.555063\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −19.4164 −1.46357
\(177\) 0 0
\(178\) −12.8541 −0.963456
\(179\) 18.1246 1.35470 0.677349 0.735662i \(-0.263129\pi\)
0.677349 + 0.735662i \(0.263129\pi\)
\(180\) 0 0
\(181\) 1.52786 0.113565 0.0567826 0.998387i \(-0.481916\pi\)
0.0567826 + 0.998387i \(0.481916\pi\)
\(182\) −8.94427 −0.662994
\(183\) 0 0
\(184\) 2.76393 0.203760
\(185\) 0 0
\(186\) 0 0
\(187\) −12.9443 −0.946579
\(188\) −5.23607 −0.381880
\(189\) 0 0
\(190\) 0 0
\(191\) 19.4164 1.40492 0.702461 0.711722i \(-0.252085\pi\)
0.702461 + 0.711722i \(0.252085\pi\)
\(192\) 0 0
\(193\) −1.23607 −0.0889741 −0.0444871 0.999010i \(-0.514165\pi\)
−0.0444871 + 0.999010i \(0.514165\pi\)
\(194\) −18.9443 −1.36012
\(195\) 0 0
\(196\) −1.23607 −0.0882906
\(197\) 8.65248 0.616463 0.308232 0.951311i \(-0.400263\pi\)
0.308232 + 0.951311i \(0.400263\pi\)
\(198\) 0 0
\(199\) 6.23607 0.442063 0.221032 0.975267i \(-0.429058\pi\)
0.221032 + 0.975267i \(0.429058\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −13.2361 −0.931286
\(203\) −3.29180 −0.231039
\(204\) 0 0
\(205\) 0 0
\(206\) 1.52786 0.106451
\(207\) 0 0
\(208\) −12.0000 −0.832050
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 28.1803 1.94001 0.970007 0.243076i \(-0.0781564\pi\)
0.970007 + 0.243076i \(0.0781564\pi\)
\(212\) −3.09017 −0.212234
\(213\) 0 0
\(214\) −19.0344 −1.30117
\(215\) 0 0
\(216\) 0 0
\(217\) 3.41641 0.231921
\(218\) 9.23607 0.625545
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −4.76393 −0.319016 −0.159508 0.987197i \(-0.550991\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(224\) 7.56231 0.505278
\(225\) 0 0
\(226\) −5.70820 −0.379704
\(227\) −12.1246 −0.804739 −0.402369 0.915477i \(-0.631813\pi\)
−0.402369 + 0.915477i \(0.631813\pi\)
\(228\) 0 0
\(229\) 4.47214 0.295527 0.147764 0.989023i \(-0.452793\pi\)
0.147764 + 0.989023i \(0.452793\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.29180 −0.216117
\(233\) −14.9443 −0.979032 −0.489516 0.871994i \(-0.662826\pi\)
−0.489516 + 0.871994i \(0.662826\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.798374 0.0519697
\(237\) 0 0
\(238\) 11.7082 0.758930
\(239\) −13.7082 −0.886710 −0.443355 0.896346i \(-0.646212\pi\)
−0.443355 + 0.896346i \(0.646212\pi\)
\(240\) 0 0
\(241\) 6.18034 0.398111 0.199055 0.979988i \(-0.436213\pi\)
0.199055 + 0.979988i \(0.436213\pi\)
\(242\) 8.09017 0.520056
\(243\) 0 0
\(244\) −6.14590 −0.393451
\(245\) 0 0
\(246\) 0 0
\(247\) −2.47214 −0.157298
\(248\) 3.41641 0.216942
\(249\) 0 0
\(250\) 0 0
\(251\) 9.70820 0.612776 0.306388 0.951907i \(-0.400879\pi\)
0.306388 + 0.951907i \(0.400879\pi\)
\(252\) 0 0
\(253\) −4.94427 −0.310844
\(254\) −24.6525 −1.54683
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) −13.0000 −0.810918 −0.405459 0.914113i \(-0.632888\pi\)
−0.405459 + 0.914113i \(0.632888\pi\)
\(258\) 0 0
\(259\) 16.1803 1.00540
\(260\) 0 0
\(261\) 0 0
\(262\) −17.7082 −1.09402
\(263\) −23.7082 −1.46191 −0.730955 0.682425i \(-0.760925\pi\)
−0.730955 + 0.682425i \(0.760925\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3.61803 0.221836
\(267\) 0 0
\(268\) −4.29180 −0.262163
\(269\) −11.5279 −0.702866 −0.351433 0.936213i \(-0.614306\pi\)
−0.351433 + 0.936213i \(0.614306\pi\)
\(270\) 0 0
\(271\) −19.1803 −1.16512 −0.582561 0.812787i \(-0.697949\pi\)
−0.582561 + 0.812787i \(0.697949\pi\)
\(272\) 15.7082 0.952450
\(273\) 0 0
\(274\) 28.6525 1.73096
\(275\) 0 0
\(276\) 0 0
\(277\) −32.4164 −1.94771 −0.973857 0.227164i \(-0.927055\pi\)
−0.973857 + 0.227164i \(0.927055\pi\)
\(278\) −32.7426 −1.96377
\(279\) 0 0
\(280\) 0 0
\(281\) 27.8885 1.66369 0.831846 0.555007i \(-0.187285\pi\)
0.831846 + 0.555007i \(0.187285\pi\)
\(282\) 0 0
\(283\) 25.8885 1.53891 0.769457 0.638699i \(-0.220527\pi\)
0.769457 + 0.638699i \(0.220527\pi\)
\(284\) 8.14590 0.483370
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) −11.1803 −0.659955
\(288\) 0 0
\(289\) −6.52786 −0.383992
\(290\) 0 0
\(291\) 0 0
\(292\) 3.38197 0.197915
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 16.1803 0.940463
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −3.05573 −0.176717
\(300\) 0 0
\(301\) 8.94427 0.515539
\(302\) −2.76393 −0.159046
\(303\) 0 0
\(304\) 4.85410 0.278402
\(305\) 0 0
\(306\) 0 0
\(307\) 20.9443 1.19535 0.597676 0.801737i \(-0.296091\pi\)
0.597676 + 0.801737i \(0.296091\pi\)
\(308\) −5.52786 −0.314979
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) 13.0557 0.737953 0.368977 0.929439i \(-0.379708\pi\)
0.368977 + 0.929439i \(0.379708\pi\)
\(314\) −11.3262 −0.639177
\(315\) 0 0
\(316\) −9.70820 −0.546129
\(317\) 9.94427 0.558526 0.279263 0.960215i \(-0.409910\pi\)
0.279263 + 0.960215i \(0.409910\pi\)
\(318\) 0 0
\(319\) 5.88854 0.329695
\(320\) 0 0
\(321\) 0 0
\(322\) 4.47214 0.249222
\(323\) 3.23607 0.180060
\(324\) 0 0
\(325\) 0 0
\(326\) −18.0902 −1.00192
\(327\) 0 0
\(328\) −11.1803 −0.617331
\(329\) 18.9443 1.04443
\(330\) 0 0
\(331\) 18.3607 1.00919 0.504597 0.863355i \(-0.331641\pi\)
0.504597 + 0.863355i \(0.331641\pi\)
\(332\) 6.76393 0.371219
\(333\) 0 0
\(334\) 39.7984 2.17767
\(335\) 0 0
\(336\) 0 0
\(337\) −0.472136 −0.0257189 −0.0128594 0.999917i \(-0.504093\pi\)
−0.0128594 + 0.999917i \(0.504093\pi\)
\(338\) −11.1459 −0.606257
\(339\) 0 0
\(340\) 0 0
\(341\) −6.11146 −0.330954
\(342\) 0 0
\(343\) 20.1246 1.08663
\(344\) 8.94427 0.482243
\(345\) 0 0
\(346\) −7.32624 −0.393861
\(347\) 11.7082 0.628529 0.314265 0.949335i \(-0.398242\pi\)
0.314265 + 0.949335i \(0.398242\pi\)
\(348\) 0 0
\(349\) 35.8328 1.91809 0.959043 0.283259i \(-0.0914157\pi\)
0.959043 + 0.283259i \(0.0914157\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −13.5279 −0.721038
\(353\) −17.5279 −0.932914 −0.466457 0.884544i \(-0.654470\pi\)
−0.466457 + 0.884544i \(0.654470\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −4.90983 −0.260220
\(357\) 0 0
\(358\) 29.3262 1.54994
\(359\) 20.7639 1.09588 0.547939 0.836518i \(-0.315413\pi\)
0.547939 + 0.836518i \(0.315413\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 2.47214 0.129933
\(363\) 0 0
\(364\) −3.41641 −0.179068
\(365\) 0 0
\(366\) 0 0
\(367\) 29.3050 1.52971 0.764853 0.644205i \(-0.222812\pi\)
0.764853 + 0.644205i \(0.222812\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 11.1803 0.580454
\(372\) 0 0
\(373\) 10.1803 0.527118 0.263559 0.964643i \(-0.415104\pi\)
0.263559 + 0.964643i \(0.415104\pi\)
\(374\) −20.9443 −1.08300
\(375\) 0 0
\(376\) 18.9443 0.976976
\(377\) 3.63932 0.187435
\(378\) 0 0
\(379\) 11.2361 0.577158 0.288579 0.957456i \(-0.406817\pi\)
0.288579 + 0.957456i \(0.406817\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 31.4164 1.60740
\(383\) −24.1246 −1.23271 −0.616355 0.787468i \(-0.711391\pi\)
−0.616355 + 0.787468i \(0.711391\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −7.23607 −0.367356
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 4.47214 0.225877
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 0 0
\(396\) 0 0
\(397\) 22.3607 1.12225 0.561125 0.827731i \(-0.310369\pi\)
0.561125 + 0.827731i \(0.310369\pi\)
\(398\) 10.0902 0.505775
\(399\) 0 0
\(400\) 0 0
\(401\) −32.8328 −1.63959 −0.819796 0.572655i \(-0.805913\pi\)
−0.819796 + 0.572655i \(0.805913\pi\)
\(402\) 0 0
\(403\) −3.77709 −0.188150
\(404\) −5.05573 −0.251532
\(405\) 0 0
\(406\) −5.32624 −0.264337
\(407\) −28.9443 −1.43471
\(408\) 0 0
\(409\) 13.2361 0.654481 0.327241 0.944941i \(-0.393881\pi\)
0.327241 + 0.944941i \(0.393881\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.583592 0.0287515
\(413\) −2.88854 −0.142136
\(414\) 0 0
\(415\) 0 0
\(416\) −8.36068 −0.409916
\(417\) 0 0
\(418\) −6.47214 −0.316563
\(419\) 23.3050 1.13852 0.569261 0.822157i \(-0.307230\pi\)
0.569261 + 0.822157i \(0.307230\pi\)
\(420\) 0 0
\(421\) 20.4721 0.997751 0.498875 0.866674i \(-0.333747\pi\)
0.498875 + 0.866674i \(0.333747\pi\)
\(422\) 45.5967 2.21961
\(423\) 0 0
\(424\) 11.1803 0.542965
\(425\) 0 0
\(426\) 0 0
\(427\) 22.2361 1.07608
\(428\) −7.27051 −0.351433
\(429\) 0 0
\(430\) 0 0
\(431\) −17.1803 −0.827548 −0.413774 0.910380i \(-0.635790\pi\)
−0.413774 + 0.910380i \(0.635790\pi\)
\(432\) 0 0
\(433\) 28.4721 1.36828 0.684142 0.729349i \(-0.260177\pi\)
0.684142 + 0.729349i \(0.260177\pi\)
\(434\) 5.52786 0.265346
\(435\) 0 0
\(436\) 3.52786 0.168954
\(437\) 1.23607 0.0591292
\(438\) 0 0
\(439\) −21.2361 −1.01354 −0.506771 0.862081i \(-0.669161\pi\)
−0.506771 + 0.862081i \(0.669161\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.9443 −0.615696
\(443\) −13.4164 −0.637433 −0.318716 0.947850i \(-0.603252\pi\)
−0.318716 + 0.947850i \(0.603252\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −7.70820 −0.364994
\(447\) 0 0
\(448\) −9.47214 −0.447516
\(449\) 16.5279 0.779998 0.389999 0.920815i \(-0.372475\pi\)
0.389999 + 0.920815i \(0.372475\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) −2.18034 −0.102555
\(453\) 0 0
\(454\) −19.6180 −0.920720
\(455\) 0 0
\(456\) 0 0
\(457\) 26.8885 1.25779 0.628897 0.777489i \(-0.283507\pi\)
0.628897 + 0.777489i \(0.283507\pi\)
\(458\) 7.23607 0.338119
\(459\) 0 0
\(460\) 0 0
\(461\) 24.1803 1.12619 0.563095 0.826392i \(-0.309610\pi\)
0.563095 + 0.826392i \(0.309610\pi\)
\(462\) 0 0
\(463\) −35.4164 −1.64594 −0.822970 0.568085i \(-0.807685\pi\)
−0.822970 + 0.568085i \(0.807685\pi\)
\(464\) −7.14590 −0.331740
\(465\) 0 0
\(466\) −24.1803 −1.12013
\(467\) −3.81966 −0.176753 −0.0883764 0.996087i \(-0.528168\pi\)
−0.0883764 + 0.996087i \(0.528168\pi\)
\(468\) 0 0
\(469\) 15.5279 0.717010
\(470\) 0 0
\(471\) 0 0
\(472\) −2.88854 −0.132956
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) 4.47214 0.204980
\(477\) 0 0
\(478\) −22.1803 −1.01451
\(479\) 43.2361 1.97551 0.987753 0.156025i \(-0.0498679\pi\)
0.987753 + 0.156025i \(0.0498679\pi\)
\(480\) 0 0
\(481\) −17.8885 −0.815647
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 3.09017 0.140462
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 22.2361 1.00658
\(489\) 0 0
\(490\) 0 0
\(491\) 21.7082 0.979678 0.489839 0.871813i \(-0.337056\pi\)
0.489839 + 0.871813i \(0.337056\pi\)
\(492\) 0 0
\(493\) −4.76393 −0.214557
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) 7.41641 0.333007
\(497\) −29.4721 −1.32201
\(498\) 0 0
\(499\) −8.81966 −0.394822 −0.197411 0.980321i \(-0.563253\pi\)
−0.197411 + 0.980321i \(0.563253\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15.7082 0.701091
\(503\) −18.4721 −0.823632 −0.411816 0.911267i \(-0.635105\pi\)
−0.411816 + 0.911267i \(0.635105\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) −9.41641 −0.417786
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) −12.2361 −0.541292
\(512\) −5.29180 −0.233867
\(513\) 0 0
\(514\) −21.0344 −0.927789
\(515\) 0 0
\(516\) 0 0
\(517\) −33.8885 −1.49042
\(518\) 26.1803 1.15030
\(519\) 0 0
\(520\) 0 0
\(521\) −17.8328 −0.781270 −0.390635 0.920546i \(-0.627745\pi\)
−0.390635 + 0.920546i \(0.627745\pi\)
\(522\) 0 0
\(523\) −0.875388 −0.0382781 −0.0191390 0.999817i \(-0.506093\pi\)
−0.0191390 + 0.999817i \(0.506093\pi\)
\(524\) −6.76393 −0.295484
\(525\) 0 0
\(526\) −38.3607 −1.67261
\(527\) 4.94427 0.215376
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) 0 0
\(531\) 0 0
\(532\) 1.38197 0.0599158
\(533\) 12.3607 0.535400
\(534\) 0 0
\(535\) 0 0
\(536\) 15.5279 0.670702
\(537\) 0 0
\(538\) −18.6525 −0.804165
\(539\) −8.00000 −0.344584
\(540\) 0 0
\(541\) −28.8328 −1.23962 −0.619810 0.784752i \(-0.712790\pi\)
−0.619810 + 0.784752i \(0.712790\pi\)
\(542\) −31.0344 −1.33304
\(543\) 0 0
\(544\) 10.9443 0.469232
\(545\) 0 0
\(546\) 0 0
\(547\) −5.70820 −0.244065 −0.122033 0.992526i \(-0.538941\pi\)
−0.122033 + 0.992526i \(0.538941\pi\)
\(548\) 10.9443 0.467516
\(549\) 0 0
\(550\) 0 0
\(551\) −1.47214 −0.0627151
\(552\) 0 0
\(553\) 35.1246 1.49365
\(554\) −52.4508 −2.22842
\(555\) 0 0
\(556\) −12.5066 −0.530397
\(557\) 1.88854 0.0800202 0.0400101 0.999199i \(-0.487261\pi\)
0.0400101 + 0.999199i \(0.487261\pi\)
\(558\) 0 0
\(559\) −9.88854 −0.418241
\(560\) 0 0
\(561\) 0 0
\(562\) 45.1246 1.90347
\(563\) −7.65248 −0.322513 −0.161257 0.986912i \(-0.551555\pi\)
−0.161257 + 0.986912i \(0.551555\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 41.8885 1.76071
\(567\) 0 0
\(568\) −29.4721 −1.23662
\(569\) −14.8885 −0.624160 −0.312080 0.950056i \(-0.601026\pi\)
−0.312080 + 0.950056i \(0.601026\pi\)
\(570\) 0 0
\(571\) 15.6525 0.655036 0.327518 0.944845i \(-0.393788\pi\)
0.327518 + 0.944845i \(0.393788\pi\)
\(572\) 6.11146 0.255533
\(573\) 0 0
\(574\) −18.0902 −0.755069
\(575\) 0 0
\(576\) 0 0
\(577\) −25.4164 −1.05810 −0.529049 0.848591i \(-0.677451\pi\)
−0.529049 + 0.848591i \(0.677451\pi\)
\(578\) −10.5623 −0.439334
\(579\) 0 0
\(580\) 0 0
\(581\) −24.4721 −1.01528
\(582\) 0 0
\(583\) −20.0000 −0.828315
\(584\) −12.2361 −0.506332
\(585\) 0 0
\(586\) 3.23607 0.133681
\(587\) −18.6525 −0.769870 −0.384935 0.922944i \(-0.625776\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(588\) 0 0
\(589\) 1.52786 0.0629545
\(590\) 0 0
\(591\) 0 0
\(592\) 35.1246 1.44361
\(593\) 21.8885 0.898855 0.449427 0.893317i \(-0.351628\pi\)
0.449427 + 0.893317i \(0.351628\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.58359 −0.187751
\(597\) 0 0
\(598\) −4.94427 −0.202186
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) 35.7771 1.45938 0.729689 0.683779i \(-0.239665\pi\)
0.729689 + 0.683779i \(0.239665\pi\)
\(602\) 14.4721 0.589840
\(603\) 0 0
\(604\) −1.05573 −0.0429570
\(605\) 0 0
\(606\) 0 0
\(607\) −21.1246 −0.857422 −0.428711 0.903442i \(-0.641032\pi\)
−0.428711 + 0.903442i \(0.641032\pi\)
\(608\) 3.38197 0.137157
\(609\) 0 0
\(610\) 0 0
\(611\) −20.9443 −0.847315
\(612\) 0 0
\(613\) −23.0000 −0.928961 −0.464481 0.885583i \(-0.653759\pi\)
−0.464481 + 0.885583i \(0.653759\pi\)
\(614\) 33.8885 1.36763
\(615\) 0 0
\(616\) 20.0000 0.805823
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 17.2918 0.695016 0.347508 0.937677i \(-0.387028\pi\)
0.347508 + 0.937677i \(0.387028\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.47214 −0.259509
\(623\) 17.7639 0.711697
\(624\) 0 0
\(625\) 0 0
\(626\) 21.1246 0.844309
\(627\) 0 0
\(628\) −4.32624 −0.172636
\(629\) 23.4164 0.933673
\(630\) 0 0
\(631\) −16.5836 −0.660182 −0.330091 0.943949i \(-0.607080\pi\)
−0.330091 + 0.943949i \(0.607080\pi\)
\(632\) 35.1246 1.39718
\(633\) 0 0
\(634\) 16.0902 0.639022
\(635\) 0 0
\(636\) 0 0
\(637\) −4.94427 −0.195899
\(638\) 9.52786 0.377212
\(639\) 0 0
\(640\) 0 0
\(641\) 10.9443 0.432273 0.216136 0.976363i \(-0.430654\pi\)
0.216136 + 0.976363i \(0.430654\pi\)
\(642\) 0 0
\(643\) −5.18034 −0.204293 −0.102146 0.994769i \(-0.532571\pi\)
−0.102146 + 0.994769i \(0.532571\pi\)
\(644\) 1.70820 0.0673127
\(645\) 0 0
\(646\) 5.23607 0.206010
\(647\) −45.3050 −1.78112 −0.890561 0.454864i \(-0.849688\pi\)
−0.890561 + 0.454864i \(0.849688\pi\)
\(648\) 0 0
\(649\) 5.16718 0.202830
\(650\) 0 0
\(651\) 0 0
\(652\) −6.90983 −0.270610
\(653\) −9.88854 −0.386969 −0.193484 0.981103i \(-0.561979\pi\)
−0.193484 + 0.981103i \(0.561979\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.2705 −0.947604
\(657\) 0 0
\(658\) 30.6525 1.19496
\(659\) −7.05573 −0.274852 −0.137426 0.990512i \(-0.543883\pi\)
−0.137426 + 0.990512i \(0.543883\pi\)
\(660\) 0 0
\(661\) 17.1246 0.666070 0.333035 0.942914i \(-0.391927\pi\)
0.333035 + 0.942914i \(0.391927\pi\)
\(662\) 29.7082 1.15464
\(663\) 0 0
\(664\) −24.4721 −0.949703
\(665\) 0 0
\(666\) 0 0
\(667\) −1.81966 −0.0704575
\(668\) 15.2016 0.588169
\(669\) 0 0
\(670\) 0 0
\(671\) −39.7771 −1.53558
\(672\) 0 0
\(673\) −46.2492 −1.78278 −0.891388 0.453240i \(-0.850268\pi\)
−0.891388 + 0.453240i \(0.850268\pi\)
\(674\) −0.763932 −0.0294256
\(675\) 0 0
\(676\) −4.25735 −0.163744
\(677\) −47.8328 −1.83836 −0.919182 0.393833i \(-0.871149\pi\)
−0.919182 + 0.393833i \(0.871149\pi\)
\(678\) 0 0
\(679\) 26.1803 1.00471
\(680\) 0 0
\(681\) 0 0
\(682\) −9.88854 −0.378652
\(683\) 39.6525 1.51726 0.758630 0.651522i \(-0.225869\pi\)
0.758630 + 0.651522i \(0.225869\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 32.5623 1.24323
\(687\) 0 0
\(688\) 19.4164 0.740244
\(689\) −12.3607 −0.470904
\(690\) 0 0
\(691\) −24.9443 −0.948925 −0.474462 0.880276i \(-0.657358\pi\)
−0.474462 + 0.880276i \(0.657358\pi\)
\(692\) −2.79837 −0.106378
\(693\) 0 0
\(694\) 18.9443 0.719115
\(695\) 0 0
\(696\) 0 0
\(697\) −16.1803 −0.612874
\(698\) 57.9787 2.19453
\(699\) 0 0
\(700\) 0 0
\(701\) −48.6525 −1.83758 −0.918789 0.394748i \(-0.870832\pi\)
−0.918789 + 0.394748i \(0.870832\pi\)
\(702\) 0 0
\(703\) 7.23607 0.272913
\(704\) 16.9443 0.638611
\(705\) 0 0
\(706\) −28.3607 −1.06737
\(707\) 18.2918 0.687934
\(708\) 0 0
\(709\) −13.5836 −0.510143 −0.255071 0.966922i \(-0.582099\pi\)
−0.255071 + 0.966922i \(0.582099\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 17.7639 0.665731
\(713\) 1.88854 0.0707265
\(714\) 0 0
\(715\) 0 0
\(716\) 11.2016 0.418624
\(717\) 0 0
\(718\) 33.5967 1.25382
\(719\) 46.4721 1.73312 0.866559 0.499074i \(-0.166327\pi\)
0.866559 + 0.499074i \(0.166327\pi\)
\(720\) 0 0
\(721\) −2.11146 −0.0786347
\(722\) 1.61803 0.0602170
\(723\) 0 0
\(724\) 0.944272 0.0350936
\(725\) 0 0
\(726\) 0 0
\(727\) 20.2361 0.750514 0.375257 0.926921i \(-0.377554\pi\)
0.375257 + 0.926921i \(0.377554\pi\)
\(728\) 12.3607 0.458117
\(729\) 0 0
\(730\) 0 0
\(731\) 12.9443 0.478761
\(732\) 0 0
\(733\) −14.4164 −0.532482 −0.266241 0.963906i \(-0.585782\pi\)
−0.266241 + 0.963906i \(0.585782\pi\)
\(734\) 47.4164 1.75017
\(735\) 0 0
\(736\) 4.18034 0.154089
\(737\) −27.7771 −1.02318
\(738\) 0 0
\(739\) 44.5967 1.64052 0.820259 0.571992i \(-0.193829\pi\)
0.820259 + 0.571992i \(0.193829\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 18.0902 0.664111
\(743\) 1.87539 0.0688013 0.0344007 0.999408i \(-0.489048\pi\)
0.0344007 + 0.999408i \(0.489048\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 16.4721 0.603088
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 26.3050 0.961162
\(750\) 0 0
\(751\) −11.5279 −0.420658 −0.210329 0.977631i \(-0.567453\pi\)
−0.210329 + 0.977631i \(0.567453\pi\)
\(752\) 41.1246 1.49966
\(753\) 0 0
\(754\) 5.88854 0.214448
\(755\) 0 0
\(756\) 0 0
\(757\) −23.0000 −0.835949 −0.417975 0.908459i \(-0.637260\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(758\) 18.1803 0.660340
\(759\) 0 0
\(760\) 0 0
\(761\) −15.1246 −0.548267 −0.274133 0.961692i \(-0.588391\pi\)
−0.274133 + 0.961692i \(0.588391\pi\)
\(762\) 0 0
\(763\) −12.7639 −0.462085
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −39.0344 −1.41037
\(767\) 3.19350 0.115310
\(768\) 0 0
\(769\) −32.4164 −1.16897 −0.584483 0.811406i \(-0.698703\pi\)
−0.584483 + 0.811406i \(0.698703\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.763932 −0.0274945
\(773\) 13.9443 0.501541 0.250770 0.968047i \(-0.419316\pi\)
0.250770 + 0.968047i \(0.419316\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 26.1803 0.939819
\(777\) 0 0
\(778\) −12.9443 −0.464075
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) 52.7214 1.88652
\(782\) 6.47214 0.231443
\(783\) 0 0
\(784\) 9.70820 0.346722
\(785\) 0 0
\(786\) 0 0
\(787\) 50.6525 1.80557 0.902783 0.430097i \(-0.141520\pi\)
0.902783 + 0.430097i \(0.141520\pi\)
\(788\) 5.34752 0.190498
\(789\) 0 0
\(790\) 0 0
\(791\) 7.88854 0.280484
\(792\) 0 0
\(793\) −24.5836 −0.872989
\(794\) 36.1803 1.28399
\(795\) 0 0
\(796\) 3.85410 0.136605
\(797\) 13.3607 0.473260 0.236630 0.971600i \(-0.423957\pi\)
0.236630 + 0.971600i \(0.423957\pi\)
\(798\) 0 0
\(799\) 27.4164 0.969923
\(800\) 0 0
\(801\) 0 0
\(802\) −53.1246 −1.87590
\(803\) 21.8885 0.772430
\(804\) 0 0
\(805\) 0 0
\(806\) −6.11146 −0.215267
\(807\) 0 0
\(808\) 18.2918 0.643503
\(809\) −36.8328 −1.29497 −0.647486 0.762077i \(-0.724180\pi\)
−0.647486 + 0.762077i \(0.724180\pi\)
\(810\) 0 0
\(811\) −42.7214 −1.50015 −0.750075 0.661353i \(-0.769983\pi\)
−0.750075 + 0.661353i \(0.769983\pi\)
\(812\) −2.03444 −0.0713949
\(813\) 0 0
\(814\) −46.8328 −1.64149
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 21.4164 0.748807
\(819\) 0 0
\(820\) 0 0
\(821\) 35.1246 1.22586 0.612929 0.790138i \(-0.289991\pi\)
0.612929 + 0.790138i \(0.289991\pi\)
\(822\) 0 0
\(823\) 10.8197 0.377150 0.188575 0.982059i \(-0.439613\pi\)
0.188575 + 0.982059i \(0.439613\pi\)
\(824\) −2.11146 −0.0735561
\(825\) 0 0
\(826\) −4.67376 −0.162621
\(827\) −19.0557 −0.662633 −0.331316 0.943520i \(-0.607493\pi\)
−0.331316 + 0.943520i \(0.607493\pi\)
\(828\) 0 0
\(829\) −51.6656 −1.79442 −0.897211 0.441603i \(-0.854410\pi\)
−0.897211 + 0.441603i \(0.854410\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 10.4721 0.363056
\(833\) 6.47214 0.224246
\(834\) 0 0
\(835\) 0 0
\(836\) −2.47214 −0.0855006
\(837\) 0 0
\(838\) 37.7082 1.30261
\(839\) 33.7639 1.16566 0.582830 0.812594i \(-0.301945\pi\)
0.582830 + 0.812594i \(0.301945\pi\)
\(840\) 0 0
\(841\) −26.8328 −0.925270
\(842\) 33.1246 1.14155
\(843\) 0 0
\(844\) 17.4164 0.599497
\(845\) 0 0
\(846\) 0 0
\(847\) −11.1803 −0.384161
\(848\) 24.2705 0.833453
\(849\) 0 0
\(850\) 0 0
\(851\) 8.94427 0.306606
\(852\) 0 0
\(853\) 1.11146 0.0380555 0.0190278 0.999819i \(-0.493943\pi\)
0.0190278 + 0.999819i \(0.493943\pi\)
\(854\) 35.9787 1.23117
\(855\) 0 0
\(856\) 26.3050 0.899085
\(857\) −38.7771 −1.32460 −0.662300 0.749239i \(-0.730420\pi\)
−0.662300 + 0.749239i \(0.730420\pi\)
\(858\) 0 0
\(859\) −34.7082 −1.18423 −0.592114 0.805854i \(-0.701707\pi\)
−0.592114 + 0.805854i \(0.701707\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −27.7984 −0.946816
\(863\) 57.1803 1.94644 0.973221 0.229873i \(-0.0738310\pi\)
0.973221 + 0.229873i \(0.0738310\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 46.0689 1.56548
\(867\) 0 0
\(868\) 2.11146 0.0716675
\(869\) −62.8328 −2.13146
\(870\) 0 0
\(871\) −17.1672 −0.581688
\(872\) −12.7639 −0.432241
\(873\) 0 0
\(874\) 2.00000 0.0676510
\(875\) 0 0
\(876\) 0 0
\(877\) 27.0557 0.913607 0.456804 0.889568i \(-0.348994\pi\)
0.456804 + 0.889568i \(0.348994\pi\)
\(878\) −34.3607 −1.15962
\(879\) 0 0
\(880\) 0 0
\(881\) −16.9443 −0.570867 −0.285434 0.958399i \(-0.592138\pi\)
−0.285434 + 0.958399i \(0.592138\pi\)
\(882\) 0 0
\(883\) −14.3475 −0.482833 −0.241416 0.970422i \(-0.577612\pi\)
−0.241416 + 0.970422i \(0.577612\pi\)
\(884\) −4.94427 −0.166294
\(885\) 0 0
\(886\) −21.7082 −0.729301
\(887\) 34.8328 1.16957 0.584786 0.811188i \(-0.301179\pi\)
0.584786 + 0.811188i \(0.301179\pi\)
\(888\) 0 0
\(889\) 34.0689 1.14263
\(890\) 0 0
\(891\) 0 0
\(892\) −2.94427 −0.0985815
\(893\) 8.47214 0.283509
\(894\) 0 0
\(895\) 0 0
\(896\) −30.4508 −1.01729
\(897\) 0 0
\(898\) 26.7426 0.892414
\(899\) −2.24922 −0.0750158
\(900\) 0 0
\(901\) 16.1803 0.539045
\(902\) 32.3607 1.07749
\(903\) 0 0
\(904\) 7.88854 0.262369
\(905\) 0 0
\(906\) 0 0
\(907\) 52.1803 1.73262 0.866310 0.499507i \(-0.166485\pi\)
0.866310 + 0.499507i \(0.166485\pi\)
\(908\) −7.49342 −0.248678
\(909\) 0 0
\(910\) 0 0
\(911\) −16.2361 −0.537925 −0.268962 0.963151i \(-0.586681\pi\)
−0.268962 + 0.963151i \(0.586681\pi\)
\(912\) 0 0
\(913\) 43.7771 1.44881
\(914\) 43.5066 1.43907
\(915\) 0 0
\(916\) 2.76393 0.0913229
\(917\) 24.4721 0.808141
\(918\) 0 0
\(919\) 54.7082 1.80466 0.902329 0.431049i \(-0.141856\pi\)
0.902329 + 0.431049i \(0.141856\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 39.1246 1.28850
\(923\) 32.5836 1.07250
\(924\) 0 0
\(925\) 0 0
\(926\) −57.3050 −1.88316
\(927\) 0 0
\(928\) −4.97871 −0.163434
\(929\) 1.59675 0.0523876 0.0261938 0.999657i \(-0.491661\pi\)
0.0261938 + 0.999657i \(0.491661\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) −9.23607 −0.302537
\(933\) 0 0
\(934\) −6.18034 −0.202227
\(935\) 0 0
\(936\) 0 0
\(937\) −22.0557 −0.720529 −0.360265 0.932850i \(-0.617314\pi\)
−0.360265 + 0.932850i \(0.617314\pi\)
\(938\) 25.1246 0.820348
\(939\) 0 0
\(940\) 0 0
\(941\) −27.5279 −0.897383 −0.448691 0.893687i \(-0.648110\pi\)
−0.448691 + 0.893687i \(0.648110\pi\)
\(942\) 0 0
\(943\) −6.18034 −0.201260
\(944\) −6.27051 −0.204088
\(945\) 0 0
\(946\) −25.8885 −0.841709
\(947\) −19.0557 −0.619228 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(948\) 0 0
\(949\) 13.5279 0.439133
\(950\) 0 0
\(951\) 0 0
\(952\) −16.1803 −0.524408
\(953\) −27.2492 −0.882689 −0.441344 0.897338i \(-0.645498\pi\)
−0.441344 + 0.897338i \(0.645498\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.47214 −0.274008
\(957\) 0 0
\(958\) 69.9574 2.26022
\(959\) −39.5967 −1.27865
\(960\) 0 0
\(961\) −28.6656 −0.924698
\(962\) −28.9443 −0.933201
\(963\) 0 0
\(964\) 3.81966 0.123023
\(965\) 0 0
\(966\) 0 0
\(967\) 26.5967 0.855294 0.427647 0.903946i \(-0.359343\pi\)
0.427647 + 0.903946i \(0.359343\pi\)
\(968\) −11.1803 −0.359350
\(969\) 0 0
\(970\) 0 0
\(971\) 37.0689 1.18960 0.594799 0.803875i \(-0.297232\pi\)
0.594799 + 0.803875i \(0.297232\pi\)
\(972\) 0 0
\(973\) 45.2492 1.45062
\(974\) −38.8328 −1.24428
\(975\) 0 0
\(976\) 48.2705 1.54510
\(977\) 22.9443 0.734052 0.367026 0.930211i \(-0.380376\pi\)
0.367026 + 0.930211i \(0.380376\pi\)
\(978\) 0 0
\(979\) −31.7771 −1.01560
\(980\) 0 0
\(981\) 0 0
\(982\) 35.1246 1.12087
\(983\) −5.30495 −0.169202 −0.0846008 0.996415i \(-0.526962\pi\)
−0.0846008 + 0.996415i \(0.526962\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −7.70820 −0.245479
\(987\) 0 0
\(988\) −1.52786 −0.0486078
\(989\) 4.94427 0.157219
\(990\) 0 0
\(991\) −54.9443 −1.74536 −0.872681 0.488290i \(-0.837621\pi\)
−0.872681 + 0.488290i \(0.837621\pi\)
\(992\) 5.16718 0.164058
\(993\) 0 0
\(994\) −47.6869 −1.51254
\(995\) 0 0
\(996\) 0 0
\(997\) −3.52786 −0.111729 −0.0558643 0.998438i \(-0.517791\pi\)
−0.0558643 + 0.998438i \(0.517791\pi\)
\(998\) −14.2705 −0.451725
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.v.1.2 2
3.2 odd 2 1425.2.a.n.1.1 2
5.4 even 2 4275.2.a.s.1.1 2
15.2 even 4 1425.2.c.m.799.1 4
15.8 even 4 1425.2.c.m.799.4 4
15.14 odd 2 1425.2.a.q.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.n.1.1 2 3.2 odd 2
1425.2.a.q.1.2 yes 2 15.14 odd 2
1425.2.c.m.799.1 4 15.2 even 4
1425.2.c.m.799.4 4 15.8 even 4
4275.2.a.s.1.1 2 5.4 even 2
4275.2.a.v.1.2 2 1.1 even 1 trivial