Properties

Label 4275.2.a.v.1.1
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.61803 q^{4} +2.23607 q^{7} +2.23607 q^{8} +4.00000 q^{11} -6.47214 q^{13} -1.38197 q^{14} +1.85410 q^{16} +1.23607 q^{17} -1.00000 q^{19} -2.47214 q^{22} +3.23607 q^{23} +4.00000 q^{26} -3.61803 q^{28} -7.47214 q^{29} -10.4721 q^{31} -5.61803 q^{32} -0.763932 q^{34} -2.76393 q^{37} +0.618034 q^{38} +5.00000 q^{41} -4.00000 q^{43} -6.47214 q^{44} -2.00000 q^{46} +0.472136 q^{47} -2.00000 q^{49} +10.4721 q^{52} -5.00000 q^{53} +5.00000 q^{56} +4.61803 q^{58} +14.7082 q^{59} +7.94427 q^{61} +6.47214 q^{62} -0.236068 q^{64} +10.9443 q^{67} -2.00000 q^{68} -9.18034 q^{71} -3.47214 q^{73} +1.70820 q^{74} +1.61803 q^{76} +8.94427 q^{77} -2.29180 q^{79} -3.09017 q^{82} -6.94427 q^{83} +2.47214 q^{86} +8.94427 q^{88} +9.94427 q^{89} -14.4721 q^{91} -5.23607 q^{92} -0.291796 q^{94} +1.70820 q^{97} +1.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} + 8 q^{11} - 4 q^{13} - 5 q^{14} - 3 q^{16} - 2 q^{17} - 2 q^{19} + 4 q^{22} + 2 q^{23} + 8 q^{26} - 5 q^{28} - 6 q^{29} - 12 q^{31} - 9 q^{32} - 6 q^{34} - 10 q^{37} - q^{38} + 10 q^{41}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) 0 0
\(7\) 2.23607 0.845154 0.422577 0.906327i \(-0.361126\pi\)
0.422577 + 0.906327i \(0.361126\pi\)
\(8\) 2.23607 0.790569
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −6.47214 −1.79505 −0.897524 0.440966i \(-0.854636\pi\)
−0.897524 + 0.440966i \(0.854636\pi\)
\(14\) −1.38197 −0.369346
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 1.23607 0.299791 0.149895 0.988702i \(-0.452106\pi\)
0.149895 + 0.988702i \(0.452106\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −2.47214 −0.527061
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) −3.61803 −0.683744
\(29\) −7.47214 −1.38754 −0.693770 0.720196i \(-0.744052\pi\)
−0.693770 + 0.720196i \(0.744052\pi\)
\(30\) 0 0
\(31\) −10.4721 −1.88085 −0.940426 0.340000i \(-0.889573\pi\)
−0.940426 + 0.340000i \(0.889573\pi\)
\(32\) −5.61803 −0.993137
\(33\) 0 0
\(34\) −0.763932 −0.131013
\(35\) 0 0
\(36\) 0 0
\(37\) −2.76393 −0.454388 −0.227194 0.973850i \(-0.572955\pi\)
−0.227194 + 0.973850i \(0.572955\pi\)
\(38\) 0.618034 0.100258
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −6.47214 −0.975711
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 0.472136 0.0688681 0.0344341 0.999407i \(-0.489037\pi\)
0.0344341 + 0.999407i \(0.489037\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 10.4721 1.45222
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.00000 0.668153
\(57\) 0 0
\(58\) 4.61803 0.606378
\(59\) 14.7082 1.91485 0.957423 0.288690i \(-0.0932198\pi\)
0.957423 + 0.288690i \(0.0932198\pi\)
\(60\) 0 0
\(61\) 7.94427 1.01716 0.508580 0.861015i \(-0.330171\pi\)
0.508580 + 0.861015i \(0.330171\pi\)
\(62\) 6.47214 0.821962
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) 0 0
\(67\) 10.9443 1.33706 0.668528 0.743687i \(-0.266925\pi\)
0.668528 + 0.743687i \(0.266925\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) −9.18034 −1.08951 −0.544753 0.838597i \(-0.683377\pi\)
−0.544753 + 0.838597i \(0.683377\pi\)
\(72\) 0 0
\(73\) −3.47214 −0.406383 −0.203191 0.979139i \(-0.565131\pi\)
−0.203191 + 0.979139i \(0.565131\pi\)
\(74\) 1.70820 0.198575
\(75\) 0 0
\(76\) 1.61803 0.185601
\(77\) 8.94427 1.01929
\(78\) 0 0
\(79\) −2.29180 −0.257847 −0.128924 0.991655i \(-0.541152\pi\)
−0.128924 + 0.991655i \(0.541152\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −3.09017 −0.341252
\(83\) −6.94427 −0.762233 −0.381116 0.924527i \(-0.624460\pi\)
−0.381116 + 0.924527i \(0.624460\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.47214 0.266577
\(87\) 0 0
\(88\) 8.94427 0.953463
\(89\) 9.94427 1.05409 0.527045 0.849837i \(-0.323300\pi\)
0.527045 + 0.849837i \(0.323300\pi\)
\(90\) 0 0
\(91\) −14.4721 −1.51709
\(92\) −5.23607 −0.545898
\(93\) 0 0
\(94\) −0.291796 −0.0300965
\(95\) 0 0
\(96\) 0 0
\(97\) 1.70820 0.173442 0.0867209 0.996233i \(-0.472361\pi\)
0.0867209 + 0.996233i \(0.472361\pi\)
\(98\) 1.23607 0.124862
\(99\) 0 0
\(100\) 0 0
\(101\) 14.1803 1.41100 0.705498 0.708712i \(-0.250723\pi\)
0.705498 + 0.708712i \(0.250723\pi\)
\(102\) 0 0
\(103\) −16.9443 −1.66957 −0.834784 0.550577i \(-0.814408\pi\)
−0.834784 + 0.550577i \(0.814408\pi\)
\(104\) −14.4721 −1.41911
\(105\) 0 0
\(106\) 3.09017 0.300144
\(107\) −16.2361 −1.56960 −0.784800 0.619749i \(-0.787234\pi\)
−0.784800 + 0.619749i \(0.787234\pi\)
\(108\) 0 0
\(109\) −7.70820 −0.738312 −0.369156 0.929367i \(-0.620353\pi\)
−0.369156 + 0.929367i \(0.620353\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.14590 0.391751
\(113\) −12.4721 −1.17328 −0.586640 0.809848i \(-0.699550\pi\)
−0.586640 + 0.809848i \(0.699550\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0902 1.12254
\(117\) 0 0
\(118\) −9.09017 −0.836818
\(119\) 2.76393 0.253369
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −4.90983 −0.444515
\(123\) 0 0
\(124\) 16.9443 1.52164
\(125\) 0 0
\(126\) 0 0
\(127\) −10.7639 −0.955145 −0.477572 0.878592i \(-0.658483\pi\)
−0.477572 + 0.878592i \(0.658483\pi\)
\(128\) 11.3820 1.00603
\(129\) 0 0
\(130\) 0 0
\(131\) 6.94427 0.606724 0.303362 0.952875i \(-0.401891\pi\)
0.303362 + 0.952875i \(0.401891\pi\)
\(132\) 0 0
\(133\) −2.23607 −0.193892
\(134\) −6.76393 −0.584315
\(135\) 0 0
\(136\) 2.76393 0.237005
\(137\) 4.29180 0.366673 0.183336 0.983050i \(-0.441310\pi\)
0.183336 + 0.983050i \(0.441310\pi\)
\(138\) 0 0
\(139\) −15.7639 −1.33708 −0.668540 0.743677i \(-0.733080\pi\)
−0.668540 + 0.743677i \(0.733080\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.67376 0.476132
\(143\) −25.8885 −2.16491
\(144\) 0 0
\(145\) 0 0
\(146\) 2.14590 0.177596
\(147\) 0 0
\(148\) 4.47214 0.367607
\(149\) 19.4164 1.59065 0.795327 0.606181i \(-0.207299\pi\)
0.795327 + 0.606181i \(0.207299\pi\)
\(150\) 0 0
\(151\) 11.7082 0.952800 0.476400 0.879229i \(-0.341941\pi\)
0.476400 + 0.879229i \(0.341941\pi\)
\(152\) −2.23607 −0.181369
\(153\) 0 0
\(154\) −5.52786 −0.445448
\(155\) 0 0
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 1.41641 0.112683
\(159\) 0 0
\(160\) 0 0
\(161\) 7.23607 0.570282
\(162\) 0 0
\(163\) 11.1803 0.875712 0.437856 0.899045i \(-0.355738\pi\)
0.437856 + 0.899045i \(0.355738\pi\)
\(164\) −8.09017 −0.631736
\(165\) 0 0
\(166\) 4.29180 0.333108
\(167\) −24.5967 −1.90335 −0.951677 0.307102i \(-0.900641\pi\)
−0.951677 + 0.307102i \(0.900641\pi\)
\(168\) 0 0
\(169\) 28.8885 2.22220
\(170\) 0 0
\(171\) 0 0
\(172\) 6.47214 0.493496
\(173\) −13.4721 −1.02427 −0.512134 0.858906i \(-0.671145\pi\)
−0.512134 + 0.858906i \(0.671145\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.41641 0.559033
\(177\) 0 0
\(178\) −6.14590 −0.460655
\(179\) −22.1246 −1.65367 −0.826836 0.562444i \(-0.809861\pi\)
−0.826836 + 0.562444i \(0.809861\pi\)
\(180\) 0 0
\(181\) 10.4721 0.778388 0.389194 0.921156i \(-0.372754\pi\)
0.389194 + 0.921156i \(0.372754\pi\)
\(182\) 8.94427 0.662994
\(183\) 0 0
\(184\) 7.23607 0.533450
\(185\) 0 0
\(186\) 0 0
\(187\) 4.94427 0.361561
\(188\) −0.763932 −0.0557155
\(189\) 0 0
\(190\) 0 0
\(191\) −7.41641 −0.536632 −0.268316 0.963331i \(-0.586467\pi\)
−0.268316 + 0.963331i \(0.586467\pi\)
\(192\) 0 0
\(193\) 3.23607 0.232937 0.116469 0.993194i \(-0.462843\pi\)
0.116469 + 0.993194i \(0.462843\pi\)
\(194\) −1.05573 −0.0757969
\(195\) 0 0
\(196\) 3.23607 0.231148
\(197\) −22.6525 −1.61392 −0.806961 0.590605i \(-0.798889\pi\)
−0.806961 + 0.590605i \(0.798889\pi\)
\(198\) 0 0
\(199\) 1.76393 0.125042 0.0625209 0.998044i \(-0.480086\pi\)
0.0625209 + 0.998044i \(0.480086\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8.76393 −0.616628
\(203\) −16.7082 −1.17269
\(204\) 0 0
\(205\) 0 0
\(206\) 10.4721 0.729628
\(207\) 0 0
\(208\) −12.0000 −0.832050
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 5.81966 0.400642 0.200321 0.979730i \(-0.435802\pi\)
0.200321 + 0.979730i \(0.435802\pi\)
\(212\) 8.09017 0.555635
\(213\) 0 0
\(214\) 10.0344 0.685940
\(215\) 0 0
\(216\) 0 0
\(217\) −23.4164 −1.58961
\(218\) 4.76393 0.322654
\(219\) 0 0
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) −9.23607 −0.618493 −0.309246 0.950982i \(-0.600077\pi\)
−0.309246 + 0.950982i \(0.600077\pi\)
\(224\) −12.5623 −0.839354
\(225\) 0 0
\(226\) 7.70820 0.512742
\(227\) 28.1246 1.86670 0.933348 0.358973i \(-0.116873\pi\)
0.933348 + 0.358973i \(0.116873\pi\)
\(228\) 0 0
\(229\) −4.47214 −0.295527 −0.147764 0.989023i \(-0.547207\pi\)
−0.147764 + 0.989023i \(0.547207\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −16.7082 −1.09695
\(233\) 2.94427 0.192886 0.0964428 0.995339i \(-0.469254\pi\)
0.0964428 + 0.995339i \(0.469254\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −23.7984 −1.54914
\(237\) 0 0
\(238\) −1.70820 −0.110726
\(239\) −0.291796 −0.0188747 −0.00943736 0.999955i \(-0.503004\pi\)
−0.00943736 + 0.999955i \(0.503004\pi\)
\(240\) 0 0
\(241\) −16.1803 −1.04227 −0.521134 0.853475i \(-0.674491\pi\)
−0.521134 + 0.853475i \(0.674491\pi\)
\(242\) −3.09017 −0.198644
\(243\) 0 0
\(244\) −12.8541 −0.822900
\(245\) 0 0
\(246\) 0 0
\(247\) 6.47214 0.411812
\(248\) −23.4164 −1.48694
\(249\) 0 0
\(250\) 0 0
\(251\) −3.70820 −0.234060 −0.117030 0.993128i \(-0.537337\pi\)
−0.117030 + 0.993128i \(0.537337\pi\)
\(252\) 0 0
\(253\) 12.9443 0.813799
\(254\) 6.65248 0.417413
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −13.0000 −0.810918 −0.405459 0.914113i \(-0.632888\pi\)
−0.405459 + 0.914113i \(0.632888\pi\)
\(258\) 0 0
\(259\) −6.18034 −0.384028
\(260\) 0 0
\(261\) 0 0
\(262\) −4.29180 −0.265148
\(263\) −10.2918 −0.634619 −0.317310 0.948322i \(-0.602779\pi\)
−0.317310 + 0.948322i \(0.602779\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.38197 0.0847338
\(267\) 0 0
\(268\) −17.7082 −1.08170
\(269\) −20.4721 −1.24821 −0.624104 0.781341i \(-0.714536\pi\)
−0.624104 + 0.781341i \(0.714536\pi\)
\(270\) 0 0
\(271\) 3.18034 0.193192 0.0965959 0.995324i \(-0.469205\pi\)
0.0965959 + 0.995324i \(0.469205\pi\)
\(272\) 2.29180 0.138961
\(273\) 0 0
\(274\) −2.65248 −0.160242
\(275\) 0 0
\(276\) 0 0
\(277\) −5.58359 −0.335486 −0.167743 0.985831i \(-0.553648\pi\)
−0.167743 + 0.985831i \(0.553648\pi\)
\(278\) 9.74265 0.584325
\(279\) 0 0
\(280\) 0 0
\(281\) −7.88854 −0.470591 −0.235296 0.971924i \(-0.575606\pi\)
−0.235296 + 0.971924i \(0.575606\pi\)
\(282\) 0 0
\(283\) −9.88854 −0.587813 −0.293906 0.955834i \(-0.594955\pi\)
−0.293906 + 0.955834i \(0.594955\pi\)
\(284\) 14.8541 0.881429
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) 11.1803 0.659955
\(288\) 0 0
\(289\) −15.4721 −0.910126
\(290\) 0 0
\(291\) 0 0
\(292\) 5.61803 0.328771
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.18034 −0.359225
\(297\) 0 0
\(298\) −12.0000 −0.695141
\(299\) −20.9443 −1.21124
\(300\) 0 0
\(301\) −8.94427 −0.515539
\(302\) −7.23607 −0.416389
\(303\) 0 0
\(304\) −1.85410 −0.106340
\(305\) 0 0
\(306\) 0 0
\(307\) 3.05573 0.174400 0.0871998 0.996191i \(-0.472208\pi\)
0.0871998 + 0.996191i \(0.472208\pi\)
\(308\) −14.4721 −0.824626
\(309\) 0 0
\(310\) 0 0
\(311\) −4.00000 −0.226819 −0.113410 0.993548i \(-0.536177\pi\)
−0.113410 + 0.993548i \(0.536177\pi\)
\(312\) 0 0
\(313\) 30.9443 1.74907 0.874537 0.484959i \(-0.161166\pi\)
0.874537 + 0.484959i \(0.161166\pi\)
\(314\) 4.32624 0.244144
\(315\) 0 0
\(316\) 3.70820 0.208603
\(317\) −7.94427 −0.446195 −0.223097 0.974796i \(-0.571617\pi\)
−0.223097 + 0.974796i \(0.571617\pi\)
\(318\) 0 0
\(319\) −29.8885 −1.67344
\(320\) 0 0
\(321\) 0 0
\(322\) −4.47214 −0.249222
\(323\) −1.23607 −0.0687767
\(324\) 0 0
\(325\) 0 0
\(326\) −6.90983 −0.382700
\(327\) 0 0
\(328\) 11.1803 0.617331
\(329\) 1.05573 0.0582042
\(330\) 0 0
\(331\) −26.3607 −1.44891 −0.724457 0.689320i \(-0.757909\pi\)
−0.724457 + 0.689320i \(0.757909\pi\)
\(332\) 11.2361 0.616659
\(333\) 0 0
\(334\) 15.2016 0.831796
\(335\) 0 0
\(336\) 0 0
\(337\) 8.47214 0.461507 0.230753 0.973012i \(-0.425881\pi\)
0.230753 + 0.973012i \(0.425881\pi\)
\(338\) −17.8541 −0.971135
\(339\) 0 0
\(340\) 0 0
\(341\) −41.8885 −2.26839
\(342\) 0 0
\(343\) −20.1246 −1.08663
\(344\) −8.94427 −0.482243
\(345\) 0 0
\(346\) 8.32624 0.447621
\(347\) −1.70820 −0.0917012 −0.0458506 0.998948i \(-0.514600\pi\)
−0.0458506 + 0.998948i \(0.514600\pi\)
\(348\) 0 0
\(349\) −17.8328 −0.954569 −0.477284 0.878749i \(-0.658379\pi\)
−0.477284 + 0.878749i \(0.658379\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −22.4721 −1.19777
\(353\) −26.4721 −1.40897 −0.704485 0.709719i \(-0.748822\pi\)
−0.704485 + 0.709719i \(0.748822\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −16.0902 −0.852777
\(357\) 0 0
\(358\) 13.6738 0.722681
\(359\) 25.2361 1.33191 0.665954 0.745992i \(-0.268025\pi\)
0.665954 + 0.745992i \(0.268025\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −6.47214 −0.340168
\(363\) 0 0
\(364\) 23.4164 1.22735
\(365\) 0 0
\(366\) 0 0
\(367\) −33.3050 −1.73850 −0.869252 0.494369i \(-0.835399\pi\)
−0.869252 + 0.494369i \(0.835399\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) −11.1803 −0.580454
\(372\) 0 0
\(373\) −12.1803 −0.630674 −0.315337 0.948980i \(-0.602118\pi\)
−0.315337 + 0.948980i \(0.602118\pi\)
\(374\) −3.05573 −0.158008
\(375\) 0 0
\(376\) 1.05573 0.0544450
\(377\) 48.3607 2.49070
\(378\) 0 0
\(379\) 6.76393 0.347440 0.173720 0.984795i \(-0.444421\pi\)
0.173720 + 0.984795i \(0.444421\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.58359 0.234517
\(383\) 16.1246 0.823929 0.411965 0.911200i \(-0.364843\pi\)
0.411965 + 0.911200i \(0.364843\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 0 0
\(388\) −2.76393 −0.140317
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) −4.47214 −0.225877
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 0 0
\(396\) 0 0
\(397\) −22.3607 −1.12225 −0.561125 0.827731i \(-0.689631\pi\)
−0.561125 + 0.827731i \(0.689631\pi\)
\(398\) −1.09017 −0.0546453
\(399\) 0 0
\(400\) 0 0
\(401\) 20.8328 1.04034 0.520171 0.854062i \(-0.325868\pi\)
0.520171 + 0.854062i \(0.325868\pi\)
\(402\) 0 0
\(403\) 67.7771 3.37622
\(404\) −22.9443 −1.14152
\(405\) 0 0
\(406\) 10.3262 0.512483
\(407\) −11.0557 −0.548012
\(408\) 0 0
\(409\) 8.76393 0.433349 0.216674 0.976244i \(-0.430479\pi\)
0.216674 + 0.976244i \(0.430479\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 27.4164 1.35071
\(413\) 32.8885 1.61834
\(414\) 0 0
\(415\) 0 0
\(416\) 36.3607 1.78273
\(417\) 0 0
\(418\) 2.47214 0.120916
\(419\) −39.3050 −1.92017 −0.960086 0.279704i \(-0.909764\pi\)
−0.960086 + 0.279704i \(0.909764\pi\)
\(420\) 0 0
\(421\) 11.5279 0.561834 0.280917 0.959732i \(-0.409361\pi\)
0.280917 + 0.959732i \(0.409361\pi\)
\(422\) −3.59675 −0.175087
\(423\) 0 0
\(424\) −11.1803 −0.542965
\(425\) 0 0
\(426\) 0 0
\(427\) 17.7639 0.859657
\(428\) 26.2705 1.26983
\(429\) 0 0
\(430\) 0 0
\(431\) 5.18034 0.249528 0.124764 0.992186i \(-0.460183\pi\)
0.124764 + 0.992186i \(0.460183\pi\)
\(432\) 0 0
\(433\) 19.5279 0.938449 0.469225 0.883079i \(-0.344533\pi\)
0.469225 + 0.883079i \(0.344533\pi\)
\(434\) 14.4721 0.694685
\(435\) 0 0
\(436\) 12.4721 0.597307
\(437\) −3.23607 −0.154802
\(438\) 0 0
\(439\) −16.7639 −0.800099 −0.400049 0.916494i \(-0.631007\pi\)
−0.400049 + 0.916494i \(0.631007\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 4.94427 0.235175
\(443\) 13.4164 0.637433 0.318716 0.947850i \(-0.396748\pi\)
0.318716 + 0.947850i \(0.396748\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5.70820 0.270291
\(447\) 0 0
\(448\) −0.527864 −0.0249392
\(449\) 25.4721 1.20210 0.601052 0.799210i \(-0.294748\pi\)
0.601052 + 0.799210i \(0.294748\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 20.1803 0.949203
\(453\) 0 0
\(454\) −17.3820 −0.815776
\(455\) 0 0
\(456\) 0 0
\(457\) −8.88854 −0.415789 −0.207894 0.978151i \(-0.566661\pi\)
−0.207894 + 0.978151i \(0.566661\pi\)
\(458\) 2.76393 0.129150
\(459\) 0 0
\(460\) 0 0
\(461\) 1.81966 0.0847500 0.0423750 0.999102i \(-0.486508\pi\)
0.0423750 + 0.999102i \(0.486508\pi\)
\(462\) 0 0
\(463\) −8.58359 −0.398913 −0.199457 0.979907i \(-0.563918\pi\)
−0.199457 + 0.979907i \(0.563918\pi\)
\(464\) −13.8541 −0.643161
\(465\) 0 0
\(466\) −1.81966 −0.0842941
\(467\) −26.1803 −1.21148 −0.605741 0.795662i \(-0.707123\pi\)
−0.605741 + 0.795662i \(0.707123\pi\)
\(468\) 0 0
\(469\) 24.4721 1.13002
\(470\) 0 0
\(471\) 0 0
\(472\) 32.8885 1.51382
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) −4.47214 −0.204980
\(477\) 0 0
\(478\) 0.180340 0.00824855
\(479\) 38.7639 1.77117 0.885585 0.464478i \(-0.153758\pi\)
0.885585 + 0.464478i \(0.153758\pi\)
\(480\) 0 0
\(481\) 17.8885 0.815647
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −8.09017 −0.367735
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 17.7639 0.804135
\(489\) 0 0
\(490\) 0 0
\(491\) 8.29180 0.374204 0.187102 0.982341i \(-0.440091\pi\)
0.187102 + 0.982341i \(0.440091\pi\)
\(492\) 0 0
\(493\) −9.23607 −0.415972
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −19.4164 −0.871822
\(497\) −20.5279 −0.920801
\(498\) 0 0
\(499\) −31.1803 −1.39582 −0.697912 0.716184i \(-0.745887\pi\)
−0.697912 + 0.716184i \(0.745887\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.29180 0.102288
\(503\) −9.52786 −0.424826 −0.212413 0.977180i \(-0.568132\pi\)
−0.212413 + 0.977180i \(0.568132\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) 17.4164 0.772728
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) −7.76393 −0.343456
\(512\) −18.7082 −0.826794
\(513\) 0 0
\(514\) 8.03444 0.354384
\(515\) 0 0
\(516\) 0 0
\(517\) 1.88854 0.0830581
\(518\) 3.81966 0.167826
\(519\) 0 0
\(520\) 0 0
\(521\) 35.8328 1.56986 0.784932 0.619582i \(-0.212698\pi\)
0.784932 + 0.619582i \(0.212698\pi\)
\(522\) 0 0
\(523\) −41.1246 −1.79825 −0.899127 0.437688i \(-0.855797\pi\)
−0.899127 + 0.437688i \(0.855797\pi\)
\(524\) −11.2361 −0.490850
\(525\) 0 0
\(526\) 6.36068 0.277339
\(527\) −12.9443 −0.563861
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) 0 0
\(531\) 0 0
\(532\) 3.61803 0.156862
\(533\) −32.3607 −1.40170
\(534\) 0 0
\(535\) 0 0
\(536\) 24.4721 1.05704
\(537\) 0 0
\(538\) 12.6525 0.545487
\(539\) −8.00000 −0.344584
\(540\) 0 0
\(541\) 24.8328 1.06765 0.533823 0.845596i \(-0.320755\pi\)
0.533823 + 0.845596i \(0.320755\pi\)
\(542\) −1.96556 −0.0844280
\(543\) 0 0
\(544\) −6.94427 −0.297733
\(545\) 0 0
\(546\) 0 0
\(547\) 7.70820 0.329579 0.164790 0.986329i \(-0.447306\pi\)
0.164790 + 0.986329i \(0.447306\pi\)
\(548\) −6.94427 −0.296645
\(549\) 0 0
\(550\) 0 0
\(551\) 7.47214 0.318324
\(552\) 0 0
\(553\) −5.12461 −0.217921
\(554\) 3.45085 0.146613
\(555\) 0 0
\(556\) 25.5066 1.08172
\(557\) −33.8885 −1.43590 −0.717952 0.696093i \(-0.754920\pi\)
−0.717952 + 0.696093i \(0.754920\pi\)
\(558\) 0 0
\(559\) 25.8885 1.09497
\(560\) 0 0
\(561\) 0 0
\(562\) 4.87539 0.205656
\(563\) 23.6525 0.996833 0.498417 0.866938i \(-0.333915\pi\)
0.498417 + 0.866938i \(0.333915\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.11146 0.256884
\(567\) 0 0
\(568\) −20.5279 −0.861330
\(569\) 20.8885 0.875693 0.437847 0.899050i \(-0.355741\pi\)
0.437847 + 0.899050i \(0.355741\pi\)
\(570\) 0 0
\(571\) −15.6525 −0.655036 −0.327518 0.944845i \(-0.606212\pi\)
−0.327518 + 0.944845i \(0.606212\pi\)
\(572\) 41.8885 1.75145
\(573\) 0 0
\(574\) −6.90983 −0.288411
\(575\) 0 0
\(576\) 0 0
\(577\) 1.41641 0.0589658 0.0294829 0.999565i \(-0.490614\pi\)
0.0294829 + 0.999565i \(0.490614\pi\)
\(578\) 9.56231 0.397739
\(579\) 0 0
\(580\) 0 0
\(581\) −15.5279 −0.644204
\(582\) 0 0
\(583\) −20.0000 −0.828315
\(584\) −7.76393 −0.321274
\(585\) 0 0
\(586\) −1.23607 −0.0510615
\(587\) 12.6525 0.522224 0.261112 0.965309i \(-0.415911\pi\)
0.261112 + 0.965309i \(0.415911\pi\)
\(588\) 0 0
\(589\) 10.4721 0.431497
\(590\) 0 0
\(591\) 0 0
\(592\) −5.12461 −0.210620
\(593\) −13.8885 −0.570334 −0.285167 0.958478i \(-0.592049\pi\)
−0.285167 + 0.958478i \(0.592049\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −31.4164 −1.28687
\(597\) 0 0
\(598\) 12.9443 0.529331
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) −35.7771 −1.45938 −0.729689 0.683779i \(-0.760335\pi\)
−0.729689 + 0.683779i \(0.760335\pi\)
\(602\) 5.52786 0.225299
\(603\) 0 0
\(604\) −18.9443 −0.770831
\(605\) 0 0
\(606\) 0 0
\(607\) 19.1246 0.776244 0.388122 0.921608i \(-0.373124\pi\)
0.388122 + 0.921608i \(0.373124\pi\)
\(608\) 5.61803 0.227841
\(609\) 0 0
\(610\) 0 0
\(611\) −3.05573 −0.123622
\(612\) 0 0
\(613\) −23.0000 −0.928961 −0.464481 0.885583i \(-0.653759\pi\)
−0.464481 + 0.885583i \(0.653759\pi\)
\(614\) −1.88854 −0.0762154
\(615\) 0 0
\(616\) 20.0000 0.805823
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) 0 0
\(619\) 30.7082 1.23427 0.617133 0.786858i \(-0.288294\pi\)
0.617133 + 0.786858i \(0.288294\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 2.47214 0.0991236
\(623\) 22.2361 0.890869
\(624\) 0 0
\(625\) 0 0
\(626\) −19.1246 −0.764373
\(627\) 0 0
\(628\) 11.3262 0.451966
\(629\) −3.41641 −0.136221
\(630\) 0 0
\(631\) −43.4164 −1.72838 −0.864190 0.503166i \(-0.832169\pi\)
−0.864190 + 0.503166i \(0.832169\pi\)
\(632\) −5.12461 −0.203846
\(633\) 0 0
\(634\) 4.90983 0.194994
\(635\) 0 0
\(636\) 0 0
\(637\) 12.9443 0.512871
\(638\) 18.4721 0.731319
\(639\) 0 0
\(640\) 0 0
\(641\) −6.94427 −0.274282 −0.137141 0.990552i \(-0.543791\pi\)
−0.137141 + 0.990552i \(0.543791\pi\)
\(642\) 0 0
\(643\) 17.1803 0.677526 0.338763 0.940872i \(-0.389991\pi\)
0.338763 + 0.940872i \(0.389991\pi\)
\(644\) −11.7082 −0.461368
\(645\) 0 0
\(646\) 0.763932 0.0300565
\(647\) 17.3050 0.680328 0.340164 0.940366i \(-0.389517\pi\)
0.340164 + 0.940366i \(0.389517\pi\)
\(648\) 0 0
\(649\) 58.8328 2.30939
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0902 −0.708466
\(653\) 25.8885 1.01310 0.506549 0.862211i \(-0.330921\pi\)
0.506549 + 0.862211i \(0.330921\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 9.27051 0.361953
\(657\) 0 0
\(658\) −0.652476 −0.0254362
\(659\) −24.9443 −0.971691 −0.485845 0.874045i \(-0.661488\pi\)
−0.485845 + 0.874045i \(0.661488\pi\)
\(660\) 0 0
\(661\) −23.1246 −0.899443 −0.449722 0.893169i \(-0.648477\pi\)
−0.449722 + 0.893169i \(0.648477\pi\)
\(662\) 16.2918 0.633199
\(663\) 0 0
\(664\) −15.5279 −0.602598
\(665\) 0 0
\(666\) 0 0
\(667\) −24.1803 −0.936266
\(668\) 39.7984 1.53985
\(669\) 0 0
\(670\) 0 0
\(671\) 31.7771 1.22674
\(672\) 0 0
\(673\) 34.2492 1.32021 0.660105 0.751173i \(-0.270512\pi\)
0.660105 + 0.751173i \(0.270512\pi\)
\(674\) −5.23607 −0.201686
\(675\) 0 0
\(676\) −46.7426 −1.79779
\(677\) 5.83282 0.224173 0.112087 0.993698i \(-0.464247\pi\)
0.112087 + 0.993698i \(0.464247\pi\)
\(678\) 0 0
\(679\) 3.81966 0.146585
\(680\) 0 0
\(681\) 0 0
\(682\) 25.8885 0.991324
\(683\) 8.34752 0.319409 0.159705 0.987165i \(-0.448946\pi\)
0.159705 + 0.987165i \(0.448946\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 12.4377 0.474873
\(687\) 0 0
\(688\) −7.41641 −0.282748
\(689\) 32.3607 1.23284
\(690\) 0 0
\(691\) −7.05573 −0.268413 −0.134206 0.990953i \(-0.542848\pi\)
−0.134206 + 0.990953i \(0.542848\pi\)
\(692\) 21.7984 0.828650
\(693\) 0 0
\(694\) 1.05573 0.0400749
\(695\) 0 0
\(696\) 0 0
\(697\) 6.18034 0.234097
\(698\) 11.0213 0.417162
\(699\) 0 0
\(700\) 0 0
\(701\) −17.3475 −0.655207 −0.327603 0.944815i \(-0.606241\pi\)
−0.327603 + 0.944815i \(0.606241\pi\)
\(702\) 0 0
\(703\) 2.76393 0.104244
\(704\) −0.944272 −0.0355886
\(705\) 0 0
\(706\) 16.3607 0.615742
\(707\) 31.7082 1.19251
\(708\) 0 0
\(709\) −40.4164 −1.51787 −0.758935 0.651166i \(-0.774280\pi\)
−0.758935 + 0.651166i \(0.774280\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 22.2361 0.833332
\(713\) −33.8885 −1.26914
\(714\) 0 0
\(715\) 0 0
\(716\) 35.7984 1.33785
\(717\) 0 0
\(718\) −15.5967 −0.582065
\(719\) 37.5279 1.39955 0.699777 0.714362i \(-0.253283\pi\)
0.699777 + 0.714362i \(0.253283\pi\)
\(720\) 0 0
\(721\) −37.8885 −1.41104
\(722\) −0.618034 −0.0230008
\(723\) 0 0
\(724\) −16.9443 −0.629729
\(725\) 0 0
\(726\) 0 0
\(727\) 15.7639 0.584652 0.292326 0.956319i \(-0.405571\pi\)
0.292326 + 0.956319i \(0.405571\pi\)
\(728\) −32.3607 −1.19937
\(729\) 0 0
\(730\) 0 0
\(731\) −4.94427 −0.182871
\(732\) 0 0
\(733\) 12.4164 0.458610 0.229305 0.973355i \(-0.426355\pi\)
0.229305 + 0.973355i \(0.426355\pi\)
\(734\) 20.5836 0.759754
\(735\) 0 0
\(736\) −18.1803 −0.670136
\(737\) 43.7771 1.61255
\(738\) 0 0
\(739\) −4.59675 −0.169094 −0.0845470 0.996419i \(-0.526944\pi\)
−0.0845470 + 0.996419i \(0.526944\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.90983 0.253668
\(743\) 42.1246 1.54540 0.772701 0.634770i \(-0.218905\pi\)
0.772701 + 0.634770i \(0.218905\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 7.52786 0.275615
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) −36.3050 −1.32655
\(750\) 0 0
\(751\) −20.4721 −0.747039 −0.373519 0.927622i \(-0.621849\pi\)
−0.373519 + 0.927622i \(0.621849\pi\)
\(752\) 0.875388 0.0319221
\(753\) 0 0
\(754\) −29.8885 −1.08848
\(755\) 0 0
\(756\) 0 0
\(757\) −23.0000 −0.835949 −0.417975 0.908459i \(-0.637260\pi\)
−0.417975 + 0.908459i \(0.637260\pi\)
\(758\) −4.18034 −0.151837
\(759\) 0 0
\(760\) 0 0
\(761\) 25.1246 0.910766 0.455383 0.890296i \(-0.349502\pi\)
0.455383 + 0.890296i \(0.349502\pi\)
\(762\) 0 0
\(763\) −17.2361 −0.623988
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −9.96556 −0.360070
\(767\) −95.1935 −3.43724
\(768\) 0 0
\(769\) −5.58359 −0.201349 −0.100675 0.994919i \(-0.532100\pi\)
−0.100675 + 0.994919i \(0.532100\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.23607 −0.188450
\(773\) −3.94427 −0.141866 −0.0709328 0.997481i \(-0.522598\pi\)
−0.0709328 + 0.997481i \(0.522598\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.81966 0.137118
\(777\) 0 0
\(778\) 4.94427 0.177261
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) −36.7214 −1.31399
\(782\) −2.47214 −0.0884034
\(783\) 0 0
\(784\) −3.70820 −0.132436
\(785\) 0 0
\(786\) 0 0
\(787\) 19.3475 0.689665 0.344832 0.938664i \(-0.387936\pi\)
0.344832 + 0.938664i \(0.387936\pi\)
\(788\) 36.6525 1.30569
\(789\) 0 0
\(790\) 0 0
\(791\) −27.8885 −0.991602
\(792\) 0 0
\(793\) −51.4164 −1.82585
\(794\) 13.8197 0.490441
\(795\) 0 0
\(796\) −2.85410 −0.101161
\(797\) −31.3607 −1.11085 −0.555426 0.831566i \(-0.687445\pi\)
−0.555426 + 0.831566i \(0.687445\pi\)
\(798\) 0 0
\(799\) 0.583592 0.0206460
\(800\) 0 0
\(801\) 0 0
\(802\) −12.8754 −0.454646
\(803\) −13.8885 −0.490116
\(804\) 0 0
\(805\) 0 0
\(806\) −41.8885 −1.47546
\(807\) 0 0
\(808\) 31.7082 1.11549
\(809\) 16.8328 0.591810 0.295905 0.955217i \(-0.404379\pi\)
0.295905 + 0.955217i \(0.404379\pi\)
\(810\) 0 0
\(811\) 46.7214 1.64061 0.820304 0.571927i \(-0.193804\pi\)
0.820304 + 0.571927i \(0.193804\pi\)
\(812\) 27.0344 0.948723
\(813\) 0 0
\(814\) 6.83282 0.239490
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) −5.41641 −0.189380
\(819\) 0 0
\(820\) 0 0
\(821\) −5.12461 −0.178850 −0.0894251 0.995994i \(-0.528503\pi\)
−0.0894251 + 0.995994i \(0.528503\pi\)
\(822\) 0 0
\(823\) 33.1803 1.15659 0.578297 0.815826i \(-0.303718\pi\)
0.578297 + 0.815826i \(0.303718\pi\)
\(824\) −37.8885 −1.31991
\(825\) 0 0
\(826\) −20.3262 −0.707240
\(827\) −36.9443 −1.28468 −0.642339 0.766421i \(-0.722036\pi\)
−0.642339 + 0.766421i \(0.722036\pi\)
\(828\) 0 0
\(829\) 55.6656 1.93335 0.966674 0.256012i \(-0.0824086\pi\)
0.966674 + 0.256012i \(0.0824086\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.52786 0.0529692
\(833\) −2.47214 −0.0856544
\(834\) 0 0
\(835\) 0 0
\(836\) 6.47214 0.223844
\(837\) 0 0
\(838\) 24.2918 0.839146
\(839\) 38.2361 1.32006 0.660028 0.751241i \(-0.270544\pi\)
0.660028 + 0.751241i \(0.270544\pi\)
\(840\) 0 0
\(841\) 26.8328 0.925270
\(842\) −7.12461 −0.245530
\(843\) 0 0
\(844\) −9.41641 −0.324126
\(845\) 0 0
\(846\) 0 0
\(847\) 11.1803 0.384161
\(848\) −9.27051 −0.318351
\(849\) 0 0
\(850\) 0 0
\(851\) −8.94427 −0.306606
\(852\) 0 0
\(853\) 36.8885 1.26304 0.631520 0.775360i \(-0.282431\pi\)
0.631520 + 0.775360i \(0.282431\pi\)
\(854\) −10.9787 −0.375684
\(855\) 0 0
\(856\) −36.3050 −1.24088
\(857\) 32.7771 1.11964 0.559822 0.828613i \(-0.310870\pi\)
0.559822 + 0.828613i \(0.310870\pi\)
\(858\) 0 0
\(859\) −21.2918 −0.726467 −0.363233 0.931698i \(-0.618327\pi\)
−0.363233 + 0.931698i \(0.618327\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3.20163 −0.109048
\(863\) 34.8197 1.18528 0.592638 0.805469i \(-0.298087\pi\)
0.592638 + 0.805469i \(0.298087\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −12.0689 −0.410117
\(867\) 0 0
\(868\) 37.8885 1.28602
\(869\) −9.16718 −0.310975
\(870\) 0 0
\(871\) −70.8328 −2.40008
\(872\) −17.2361 −0.583687
\(873\) 0 0
\(874\) 2.00000 0.0676510
\(875\) 0 0
\(876\) 0 0
\(877\) 44.9443 1.51766 0.758830 0.651289i \(-0.225771\pi\)
0.758830 + 0.651289i \(0.225771\pi\)
\(878\) 10.3607 0.349656
\(879\) 0 0
\(880\) 0 0
\(881\) 0.944272 0.0318133 0.0159067 0.999873i \(-0.494937\pi\)
0.0159067 + 0.999873i \(0.494937\pi\)
\(882\) 0 0
\(883\) −45.6525 −1.53633 −0.768164 0.640253i \(-0.778829\pi\)
−0.768164 + 0.640253i \(0.778829\pi\)
\(884\) 12.9443 0.435363
\(885\) 0 0
\(886\) −8.29180 −0.278568
\(887\) −18.8328 −0.632344 −0.316172 0.948702i \(-0.602398\pi\)
−0.316172 + 0.948702i \(0.602398\pi\)
\(888\) 0 0
\(889\) −24.0689 −0.807244
\(890\) 0 0
\(891\) 0 0
\(892\) 14.9443 0.500371
\(893\) −0.472136 −0.0157994
\(894\) 0 0
\(895\) 0 0
\(896\) 25.4508 0.850253
\(897\) 0 0
\(898\) −15.7426 −0.525339
\(899\) 78.2492 2.60976
\(900\) 0 0
\(901\) −6.18034 −0.205897
\(902\) −12.3607 −0.411566
\(903\) 0 0
\(904\) −27.8885 −0.927559
\(905\) 0 0
\(906\) 0 0
\(907\) 29.8197 0.990146 0.495073 0.868852i \(-0.335141\pi\)
0.495073 + 0.868852i \(0.335141\pi\)
\(908\) −45.5066 −1.51019
\(909\) 0 0
\(910\) 0 0
\(911\) −11.7639 −0.389756 −0.194878 0.980827i \(-0.562431\pi\)
−0.194878 + 0.980827i \(0.562431\pi\)
\(912\) 0 0
\(913\) −27.7771 −0.919287
\(914\) 5.49342 0.181706
\(915\) 0 0
\(916\) 7.23607 0.239086
\(917\) 15.5279 0.512775
\(918\) 0 0
\(919\) 41.2918 1.36209 0.681045 0.732241i \(-0.261526\pi\)
0.681045 + 0.732241i \(0.261526\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.12461 −0.0370371
\(923\) 59.4164 1.95571
\(924\) 0 0
\(925\) 0 0
\(926\) 5.30495 0.174332
\(927\) 0 0
\(928\) 41.9787 1.37802
\(929\) −47.5967 −1.56160 −0.780799 0.624782i \(-0.785188\pi\)
−0.780799 + 0.624782i \(0.785188\pi\)
\(930\) 0 0
\(931\) 2.00000 0.0655474
\(932\) −4.76393 −0.156048
\(933\) 0 0
\(934\) 16.1803 0.529437
\(935\) 0 0
\(936\) 0 0
\(937\) −39.9443 −1.30492 −0.652461 0.757822i \(-0.726263\pi\)
−0.652461 + 0.757822i \(0.726263\pi\)
\(938\) −15.1246 −0.493836
\(939\) 0 0
\(940\) 0 0
\(941\) −36.4721 −1.18896 −0.594479 0.804111i \(-0.702642\pi\)
−0.594479 + 0.804111i \(0.702642\pi\)
\(942\) 0 0
\(943\) 16.1803 0.526904
\(944\) 27.2705 0.887579
\(945\) 0 0
\(946\) 9.88854 0.321504
\(947\) −36.9443 −1.20053 −0.600264 0.799802i \(-0.704938\pi\)
−0.600264 + 0.799802i \(0.704938\pi\)
\(948\) 0 0
\(949\) 22.4721 0.729476
\(950\) 0 0
\(951\) 0 0
\(952\) 6.18034 0.200306
\(953\) 53.2492 1.72491 0.862456 0.506132i \(-0.168925\pi\)
0.862456 + 0.506132i \(0.168925\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.472136 0.0152700
\(957\) 0 0
\(958\) −23.9574 −0.774029
\(959\) 9.59675 0.309895
\(960\) 0 0
\(961\) 78.6656 2.53760
\(962\) −11.0557 −0.356451
\(963\) 0 0
\(964\) 26.1803 0.843212
\(965\) 0 0
\(966\) 0 0
\(967\) −22.5967 −0.726662 −0.363331 0.931660i \(-0.618361\pi\)
−0.363331 + 0.931660i \(0.618361\pi\)
\(968\) 11.1803 0.359350
\(969\) 0 0
\(970\) 0 0
\(971\) −21.0689 −0.676133 −0.338066 0.941122i \(-0.609773\pi\)
−0.338066 + 0.941122i \(0.609773\pi\)
\(972\) 0 0
\(973\) −35.2492 −1.13004
\(974\) 14.8328 0.475274
\(975\) 0 0
\(976\) 14.7295 0.471479
\(977\) 5.05573 0.161747 0.0808735 0.996724i \(-0.474229\pi\)
0.0808735 + 0.996724i \(0.474229\pi\)
\(978\) 0 0
\(979\) 39.7771 1.27128
\(980\) 0 0
\(981\) 0 0
\(982\) −5.12461 −0.163533
\(983\) 57.3050 1.82774 0.913872 0.406002i \(-0.133078\pi\)
0.913872 + 0.406002i \(0.133078\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.70820 0.181786
\(987\) 0 0
\(988\) −10.4721 −0.333163
\(989\) −12.9443 −0.411604
\(990\) 0 0
\(991\) −37.0557 −1.17711 −0.588557 0.808456i \(-0.700304\pi\)
−0.588557 + 0.808456i \(0.700304\pi\)
\(992\) 58.8328 1.86794
\(993\) 0 0
\(994\) 12.6869 0.402405
\(995\) 0 0
\(996\) 0 0
\(997\) −12.4721 −0.394997 −0.197498 0.980303i \(-0.563282\pi\)
−0.197498 + 0.980303i \(0.563282\pi\)
\(998\) 19.2705 0.609997
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.v.1.1 2
3.2 odd 2 1425.2.a.n.1.2 2
5.4 even 2 4275.2.a.s.1.2 2
15.2 even 4 1425.2.c.m.799.3 4
15.8 even 4 1425.2.c.m.799.2 4
15.14 odd 2 1425.2.a.q.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.n.1.2 2 3.2 odd 2
1425.2.a.q.1.1 yes 2 15.14 odd 2
1425.2.c.m.799.2 4 15.8 even 4
1425.2.c.m.799.3 4 15.2 even 4
4275.2.a.s.1.2 2 5.4 even 2
4275.2.a.v.1.1 2 1.1 even 1 trivial