Properties

Label 4275.2.a.r.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{2} -1.61803 q^{4} +0.236068 q^{7} -2.23607 q^{8} +0.763932 q^{11} -3.23607 q^{13} +0.145898 q^{14} +1.85410 q^{16} +6.47214 q^{17} +1.00000 q^{19} +0.472136 q^{22} -8.47214 q^{23} -2.00000 q^{26} -0.381966 q^{28} +9.47214 q^{29} -8.00000 q^{31} +5.61803 q^{32} +4.00000 q^{34} -4.76393 q^{37} +0.618034 q^{38} -1.47214 q^{41} +12.9443 q^{43} -1.23607 q^{44} -5.23607 q^{46} -5.23607 q^{47} -6.94427 q^{49} +5.23607 q^{52} +1.00000 q^{53} -0.527864 q^{56} +5.85410 q^{58} +6.70820 q^{59} -7.47214 q^{61} -4.94427 q^{62} -0.236068 q^{64} -3.70820 q^{67} -10.4721 q^{68} +1.29180 q^{71} -14.4164 q^{73} -2.94427 q^{74} -1.61803 q^{76} +0.180340 q^{77} -4.47214 q^{79} -0.909830 q^{82} +7.70820 q^{83} +8.00000 q^{86} -1.70820 q^{88} +5.00000 q^{89} -0.763932 q^{91} +13.7082 q^{92} -3.23607 q^{94} -3.70820 q^{97} -4.29180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 4 q^{7} + 6 q^{11} - 2 q^{13} + 7 q^{14} - 3 q^{16} + 4 q^{17} + 2 q^{19} - 8 q^{22} - 8 q^{23} - 4 q^{26} - 3 q^{28} + 10 q^{29} - 16 q^{31} + 9 q^{32} + 8 q^{34} - 14 q^{37} - q^{38}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.618034 0.437016 0.218508 0.975835i \(-0.429881\pi\)
0.218508 + 0.975835i \(0.429881\pi\)
\(3\) 0 0
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) 0 0
\(7\) 0.236068 0.0892253 0.0446127 0.999004i \(-0.485795\pi\)
0.0446127 + 0.999004i \(0.485795\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 0 0
\(11\) 0.763932 0.230334 0.115167 0.993346i \(-0.463260\pi\)
0.115167 + 0.993346i \(0.463260\pi\)
\(12\) 0 0
\(13\) −3.23607 −0.897524 −0.448762 0.893651i \(-0.648135\pi\)
−0.448762 + 0.893651i \(0.648135\pi\)
\(14\) 0.145898 0.0389929
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 6.47214 1.56972 0.784862 0.619671i \(-0.212734\pi\)
0.784862 + 0.619671i \(0.212734\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0.472136 0.100660
\(23\) −8.47214 −1.76656 −0.883281 0.468844i \(-0.844671\pi\)
−0.883281 + 0.468844i \(0.844671\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −0.381966 −0.0721848
\(29\) 9.47214 1.75893 0.879466 0.475962i \(-0.157900\pi\)
0.879466 + 0.475962i \(0.157900\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 5.61803 0.993137
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) −4.76393 −0.783186 −0.391593 0.920139i \(-0.628076\pi\)
−0.391593 + 0.920139i \(0.628076\pi\)
\(38\) 0.618034 0.100258
\(39\) 0 0
\(40\) 0 0
\(41\) −1.47214 −0.229909 −0.114955 0.993371i \(-0.536672\pi\)
−0.114955 + 0.993371i \(0.536672\pi\)
\(42\) 0 0
\(43\) 12.9443 1.97398 0.986991 0.160773i \(-0.0513986\pi\)
0.986991 + 0.160773i \(0.0513986\pi\)
\(44\) −1.23607 −0.186344
\(45\) 0 0
\(46\) −5.23607 −0.772016
\(47\) −5.23607 −0.763759 −0.381880 0.924212i \(-0.624723\pi\)
−0.381880 + 0.924212i \(0.624723\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 0 0
\(51\) 0 0
\(52\) 5.23607 0.726112
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.527864 −0.0705388
\(57\) 0 0
\(58\) 5.85410 0.768681
\(59\) 6.70820 0.873334 0.436667 0.899623i \(-0.356159\pi\)
0.436667 + 0.899623i \(0.356159\pi\)
\(60\) 0 0
\(61\) −7.47214 −0.956709 −0.478354 0.878167i \(-0.658767\pi\)
−0.478354 + 0.878167i \(0.658767\pi\)
\(62\) −4.94427 −0.627923
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) 0 0
\(67\) −3.70820 −0.453029 −0.226515 0.974008i \(-0.572733\pi\)
−0.226515 + 0.974008i \(0.572733\pi\)
\(68\) −10.4721 −1.26993
\(69\) 0 0
\(70\) 0 0
\(71\) 1.29180 0.153308 0.0766540 0.997058i \(-0.475576\pi\)
0.0766540 + 0.997058i \(0.475576\pi\)
\(72\) 0 0
\(73\) −14.4164 −1.68731 −0.843656 0.536883i \(-0.819602\pi\)
−0.843656 + 0.536883i \(0.819602\pi\)
\(74\) −2.94427 −0.342265
\(75\) 0 0
\(76\) −1.61803 −0.185601
\(77\) 0.180340 0.0205516
\(78\) 0 0
\(79\) −4.47214 −0.503155 −0.251577 0.967837i \(-0.580949\pi\)
−0.251577 + 0.967837i \(0.580949\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.909830 −0.100474
\(83\) 7.70820 0.846085 0.423043 0.906110i \(-0.360962\pi\)
0.423043 + 0.906110i \(0.360962\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 0 0
\(88\) −1.70820 −0.182095
\(89\) 5.00000 0.529999 0.264999 0.964249i \(-0.414628\pi\)
0.264999 + 0.964249i \(0.414628\pi\)
\(90\) 0 0
\(91\) −0.763932 −0.0800818
\(92\) 13.7082 1.42918
\(93\) 0 0
\(94\) −3.23607 −0.333775
\(95\) 0 0
\(96\) 0 0
\(97\) −3.70820 −0.376511 −0.188256 0.982120i \(-0.560283\pi\)
−0.188256 + 0.982120i \(0.560283\pi\)
\(98\) −4.29180 −0.433537
\(99\) 0 0
\(100\) 0 0
\(101\) 4.18034 0.415959 0.207980 0.978133i \(-0.433311\pi\)
0.207980 + 0.978133i \(0.433311\pi\)
\(102\) 0 0
\(103\) −12.1803 −1.20016 −0.600082 0.799938i \(-0.704866\pi\)
−0.600082 + 0.799938i \(0.704866\pi\)
\(104\) 7.23607 0.709555
\(105\) 0 0
\(106\) 0.618034 0.0600288
\(107\) −4.70820 −0.455159 −0.227580 0.973759i \(-0.573081\pi\)
−0.227580 + 0.973759i \(0.573081\pi\)
\(108\) 0 0
\(109\) −12.7639 −1.22256 −0.611281 0.791413i \(-0.709346\pi\)
−0.611281 + 0.791413i \(0.709346\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.437694 0.0413582
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −15.3262 −1.42301
\(117\) 0 0
\(118\) 4.14590 0.381661
\(119\) 1.52786 0.140059
\(120\) 0 0
\(121\) −10.4164 −0.946946
\(122\) −4.61803 −0.418097
\(123\) 0 0
\(124\) 12.9443 1.16243
\(125\) 0 0
\(126\) 0 0
\(127\) 11.4164 1.01304 0.506521 0.862228i \(-0.330931\pi\)
0.506521 + 0.862228i \(0.330931\pi\)
\(128\) −11.3820 −1.00603
\(129\) 0 0
\(130\) 0 0
\(131\) −5.41641 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(132\) 0 0
\(133\) 0.236068 0.0204697
\(134\) −2.29180 −0.197981
\(135\) 0 0
\(136\) −14.4721 −1.24098
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) 12.2361 1.03785 0.518925 0.854820i \(-0.326332\pi\)
0.518925 + 0.854820i \(0.326332\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.798374 0.0669980
\(143\) −2.47214 −0.206730
\(144\) 0 0
\(145\) 0 0
\(146\) −8.90983 −0.737383
\(147\) 0 0
\(148\) 7.70820 0.633610
\(149\) −16.1803 −1.32555 −0.662773 0.748821i \(-0.730620\pi\)
−0.662773 + 0.748821i \(0.730620\pi\)
\(150\) 0 0
\(151\) −16.9443 −1.37891 −0.689453 0.724331i \(-0.742149\pi\)
−0.689453 + 0.724331i \(0.742149\pi\)
\(152\) −2.23607 −0.181369
\(153\) 0 0
\(154\) 0.111456 0.00898139
\(155\) 0 0
\(156\) 0 0
\(157\) −2.52786 −0.201746 −0.100873 0.994899i \(-0.532163\pi\)
−0.100873 + 0.994899i \(0.532163\pi\)
\(158\) −2.76393 −0.219887
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −18.2361 −1.42836 −0.714180 0.699963i \(-0.753200\pi\)
−0.714180 + 0.699963i \(0.753200\pi\)
\(164\) 2.38197 0.186000
\(165\) 0 0
\(166\) 4.76393 0.369753
\(167\) −1.29180 −0.0999622 −0.0499811 0.998750i \(-0.515916\pi\)
−0.0499811 + 0.998750i \(0.515916\pi\)
\(168\) 0 0
\(169\) −2.52786 −0.194451
\(170\) 0 0
\(171\) 0 0
\(172\) −20.9443 −1.59699
\(173\) −14.5279 −1.10453 −0.552267 0.833668i \(-0.686237\pi\)
−0.552267 + 0.833668i \(0.686237\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.41641 0.106766
\(177\) 0 0
\(178\) 3.09017 0.231618
\(179\) 7.76393 0.580304 0.290152 0.956981i \(-0.406294\pi\)
0.290152 + 0.956981i \(0.406294\pi\)
\(180\) 0 0
\(181\) 6.47214 0.481070 0.240535 0.970640i \(-0.422677\pi\)
0.240535 + 0.970640i \(0.422677\pi\)
\(182\) −0.472136 −0.0349970
\(183\) 0 0
\(184\) 18.9443 1.39659
\(185\) 0 0
\(186\) 0 0
\(187\) 4.94427 0.361561
\(188\) 8.47214 0.617894
\(189\) 0 0
\(190\) 0 0
\(191\) 25.8885 1.87323 0.936615 0.350361i \(-0.113941\pi\)
0.936615 + 0.350361i \(0.113941\pi\)
\(192\) 0 0
\(193\) −11.5279 −0.829794 −0.414897 0.909868i \(-0.636182\pi\)
−0.414897 + 0.909868i \(0.636182\pi\)
\(194\) −2.29180 −0.164541
\(195\) 0 0
\(196\) 11.2361 0.802576
\(197\) −14.1803 −1.01031 −0.505154 0.863029i \(-0.668564\pi\)
−0.505154 + 0.863029i \(0.668564\pi\)
\(198\) 0 0
\(199\) −13.2918 −0.942230 −0.471115 0.882072i \(-0.656148\pi\)
−0.471115 + 0.882072i \(0.656148\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.58359 0.181781
\(203\) 2.23607 0.156941
\(204\) 0 0
\(205\) 0 0
\(206\) −7.52786 −0.524491
\(207\) 0 0
\(208\) −6.00000 −0.416025
\(209\) 0.763932 0.0528423
\(210\) 0 0
\(211\) 24.3607 1.67706 0.838529 0.544857i \(-0.183416\pi\)
0.838529 + 0.544857i \(0.183416\pi\)
\(212\) −1.61803 −0.111127
\(213\) 0 0
\(214\) −2.90983 −0.198912
\(215\) 0 0
\(216\) 0 0
\(217\) −1.88854 −0.128203
\(218\) −7.88854 −0.534280
\(219\) 0 0
\(220\) 0 0
\(221\) −20.9443 −1.40886
\(222\) 0 0
\(223\) −10.4721 −0.701266 −0.350633 0.936513i \(-0.614034\pi\)
−0.350633 + 0.936513i \(0.614034\pi\)
\(224\) 1.32624 0.0886130
\(225\) 0 0
\(226\) −8.65248 −0.575554
\(227\) −1.29180 −0.0857395 −0.0428698 0.999081i \(-0.513650\pi\)
−0.0428698 + 0.999081i \(0.513650\pi\)
\(228\) 0 0
\(229\) 1.05573 0.0697645 0.0348822 0.999391i \(-0.488894\pi\)
0.0348822 + 0.999391i \(0.488894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −21.1803 −1.39056
\(233\) −10.1803 −0.666936 −0.333468 0.942761i \(-0.608219\pi\)
−0.333468 + 0.942761i \(0.608219\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.8541 −0.706542
\(237\) 0 0
\(238\) 0.944272 0.0612081
\(239\) −19.5967 −1.26761 −0.633804 0.773494i \(-0.718507\pi\)
−0.633804 + 0.773494i \(0.718507\pi\)
\(240\) 0 0
\(241\) 28.8328 1.85728 0.928642 0.370976i \(-0.120977\pi\)
0.928642 + 0.370976i \(0.120977\pi\)
\(242\) −6.43769 −0.413831
\(243\) 0 0
\(244\) 12.0902 0.773994
\(245\) 0 0
\(246\) 0 0
\(247\) −3.23607 −0.205906
\(248\) 17.8885 1.13592
\(249\) 0 0
\(250\) 0 0
\(251\) 2.47214 0.156040 0.0780199 0.996952i \(-0.475140\pi\)
0.0780199 + 0.996952i \(0.475140\pi\)
\(252\) 0 0
\(253\) −6.47214 −0.406900
\(254\) 7.05573 0.442716
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) 2.52786 0.157684 0.0788419 0.996887i \(-0.474878\pi\)
0.0788419 + 0.996887i \(0.474878\pi\)
\(258\) 0 0
\(259\) −1.12461 −0.0698800
\(260\) 0 0
\(261\) 0 0
\(262\) −3.34752 −0.206811
\(263\) −24.6525 −1.52014 −0.760068 0.649843i \(-0.774835\pi\)
−0.760068 + 0.649843i \(0.774835\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.145898 0.00894558
\(267\) 0 0
\(268\) 6.00000 0.366508
\(269\) 27.8885 1.70039 0.850197 0.526464i \(-0.176483\pi\)
0.850197 + 0.526464i \(0.176483\pi\)
\(270\) 0 0
\(271\) 17.6525 1.07231 0.536156 0.844119i \(-0.319876\pi\)
0.536156 + 0.844119i \(0.319876\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −4.94427 −0.298694
\(275\) 0 0
\(276\) 0 0
\(277\) 16.4164 0.986366 0.493183 0.869925i \(-0.335833\pi\)
0.493183 + 0.869925i \(0.335833\pi\)
\(278\) 7.56231 0.453557
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −2.09017 −0.124029
\(285\) 0 0
\(286\) −1.52786 −0.0903445
\(287\) −0.347524 −0.0205137
\(288\) 0 0
\(289\) 24.8885 1.46403
\(290\) 0 0
\(291\) 0 0
\(292\) 23.3262 1.36506
\(293\) 14.9443 0.873054 0.436527 0.899691i \(-0.356208\pi\)
0.436527 + 0.899691i \(0.356208\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.6525 0.619163
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) 27.4164 1.58553
\(300\) 0 0
\(301\) 3.05573 0.176129
\(302\) −10.4721 −0.602604
\(303\) 0 0
\(304\) 1.85410 0.106340
\(305\) 0 0
\(306\) 0 0
\(307\) −8.18034 −0.466877 −0.233438 0.972372i \(-0.574998\pi\)
−0.233438 + 0.972372i \(0.574998\pi\)
\(308\) −0.291796 −0.0166266
\(309\) 0 0
\(310\) 0 0
\(311\) −15.4164 −0.874184 −0.437092 0.899417i \(-0.643992\pi\)
−0.437092 + 0.899417i \(0.643992\pi\)
\(312\) 0 0
\(313\) −32.8328 −1.85582 −0.927910 0.372804i \(-0.878396\pi\)
−0.927910 + 0.372804i \(0.878396\pi\)
\(314\) −1.56231 −0.0881660
\(315\) 0 0
\(316\) 7.23607 0.407061
\(317\) −25.3607 −1.42440 −0.712199 0.701978i \(-0.752301\pi\)
−0.712199 + 0.701978i \(0.752301\pi\)
\(318\) 0 0
\(319\) 7.23607 0.405142
\(320\) 0 0
\(321\) 0 0
\(322\) −1.23607 −0.0688834
\(323\) 6.47214 0.360119
\(324\) 0 0
\(325\) 0 0
\(326\) −11.2705 −0.624216
\(327\) 0 0
\(328\) 3.29180 0.181759
\(329\) −1.23607 −0.0681466
\(330\) 0 0
\(331\) 14.3607 0.789334 0.394667 0.918824i \(-0.370860\pi\)
0.394667 + 0.918824i \(0.370860\pi\)
\(332\) −12.4721 −0.684497
\(333\) 0 0
\(334\) −0.798374 −0.0436851
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) −1.56231 −0.0849782
\(339\) 0 0
\(340\) 0 0
\(341\) −6.11146 −0.330954
\(342\) 0 0
\(343\) −3.29180 −0.177740
\(344\) −28.9443 −1.56057
\(345\) 0 0
\(346\) −8.97871 −0.482699
\(347\) −19.7082 −1.05799 −0.528996 0.848624i \(-0.677431\pi\)
−0.528996 + 0.848624i \(0.677431\pi\)
\(348\) 0 0
\(349\) −23.9443 −1.28171 −0.640854 0.767663i \(-0.721420\pi\)
−0.640854 + 0.767663i \(0.721420\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.29180 0.228753
\(353\) −1.88854 −0.100517 −0.0502585 0.998736i \(-0.516005\pi\)
−0.0502585 + 0.998736i \(0.516005\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8.09017 −0.428778
\(357\) 0 0
\(358\) 4.79837 0.253602
\(359\) −3.81966 −0.201594 −0.100797 0.994907i \(-0.532139\pi\)
−0.100797 + 0.994907i \(0.532139\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 4.00000 0.210235
\(363\) 0 0
\(364\) 1.23607 0.0647876
\(365\) 0 0
\(366\) 0 0
\(367\) −3.05573 −0.159508 −0.0797539 0.996815i \(-0.525413\pi\)
−0.0797539 + 0.996815i \(0.525413\pi\)
\(368\) −15.7082 −0.818847
\(369\) 0 0
\(370\) 0 0
\(371\) 0.236068 0.0122560
\(372\) 0 0
\(373\) 2.94427 0.152449 0.0762243 0.997091i \(-0.475713\pi\)
0.0762243 + 0.997091i \(0.475713\pi\)
\(374\) 3.05573 0.158008
\(375\) 0 0
\(376\) 11.7082 0.603805
\(377\) −30.6525 −1.57868
\(378\) 0 0
\(379\) 10.6525 0.547181 0.273590 0.961846i \(-0.411789\pi\)
0.273590 + 0.961846i \(0.411789\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16.0000 0.818631
\(383\) −0.708204 −0.0361875 −0.0180938 0.999836i \(-0.505760\pi\)
−0.0180938 + 0.999836i \(0.505760\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7.12461 −0.362633
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) −18.2918 −0.927431 −0.463715 0.885984i \(-0.653484\pi\)
−0.463715 + 0.885984i \(0.653484\pi\)
\(390\) 0 0
\(391\) −54.8328 −2.77301
\(392\) 15.5279 0.784276
\(393\) 0 0
\(394\) −8.76393 −0.441521
\(395\) 0 0
\(396\) 0 0
\(397\) −7.52786 −0.377813 −0.188906 0.981995i \(-0.560494\pi\)
−0.188906 + 0.981995i \(0.560494\pi\)
\(398\) −8.21478 −0.411770
\(399\) 0 0
\(400\) 0 0
\(401\) 0.111456 0.00556586 0.00278293 0.999996i \(-0.499114\pi\)
0.00278293 + 0.999996i \(0.499114\pi\)
\(402\) 0 0
\(403\) 25.8885 1.28960
\(404\) −6.76393 −0.336518
\(405\) 0 0
\(406\) 1.38197 0.0685858
\(407\) −3.63932 −0.180394
\(408\) 0 0
\(409\) −8.29180 −0.410003 −0.205001 0.978762i \(-0.565720\pi\)
−0.205001 + 0.978762i \(0.565720\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 19.7082 0.970954
\(413\) 1.58359 0.0779235
\(414\) 0 0
\(415\) 0 0
\(416\) −18.1803 −0.891364
\(417\) 0 0
\(418\) 0.472136 0.0230929
\(419\) 20.6525 1.00894 0.504470 0.863429i \(-0.331688\pi\)
0.504470 + 0.863429i \(0.331688\pi\)
\(420\) 0 0
\(421\) 18.1803 0.886056 0.443028 0.896508i \(-0.353904\pi\)
0.443028 + 0.896508i \(0.353904\pi\)
\(422\) 15.0557 0.732901
\(423\) 0 0
\(424\) −2.23607 −0.108593
\(425\) 0 0
\(426\) 0 0
\(427\) −1.76393 −0.0853627
\(428\) 7.61803 0.368232
\(429\) 0 0
\(430\) 0 0
\(431\) 38.1246 1.83640 0.918199 0.396120i \(-0.129643\pi\)
0.918199 + 0.396120i \(0.129643\pi\)
\(432\) 0 0
\(433\) −13.2361 −0.636085 −0.318042 0.948076i \(-0.603025\pi\)
−0.318042 + 0.948076i \(0.603025\pi\)
\(434\) −1.16718 −0.0560266
\(435\) 0 0
\(436\) 20.6525 0.989074
\(437\) −8.47214 −0.405277
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.9443 −0.615696
\(443\) −5.05573 −0.240205 −0.120102 0.992762i \(-0.538322\pi\)
−0.120102 + 0.992762i \(0.538322\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6.47214 −0.306465
\(447\) 0 0
\(448\) −0.0557281 −0.00263290
\(449\) 36.3050 1.71334 0.856668 0.515868i \(-0.172530\pi\)
0.856668 + 0.515868i \(0.172530\pi\)
\(450\) 0 0
\(451\) −1.12461 −0.0529559
\(452\) 22.6525 1.06548
\(453\) 0 0
\(454\) −0.798374 −0.0374695
\(455\) 0 0
\(456\) 0 0
\(457\) 8.52786 0.398917 0.199458 0.979906i \(-0.436082\pi\)
0.199458 + 0.979906i \(0.436082\pi\)
\(458\) 0.652476 0.0304882
\(459\) 0 0
\(460\) 0 0
\(461\) 4.18034 0.194698 0.0973489 0.995250i \(-0.468964\pi\)
0.0973489 + 0.995250i \(0.468964\pi\)
\(462\) 0 0
\(463\) −1.52786 −0.0710059 −0.0355029 0.999370i \(-0.511303\pi\)
−0.0355029 + 0.999370i \(0.511303\pi\)
\(464\) 17.5623 0.815310
\(465\) 0 0
\(466\) −6.29180 −0.291462
\(467\) 4.76393 0.220448 0.110224 0.993907i \(-0.464843\pi\)
0.110224 + 0.993907i \(0.464843\pi\)
\(468\) 0 0
\(469\) −0.875388 −0.0404217
\(470\) 0 0
\(471\) 0 0
\(472\) −15.0000 −0.690431
\(473\) 9.88854 0.454676
\(474\) 0 0
\(475\) 0 0
\(476\) −2.47214 −0.113310
\(477\) 0 0
\(478\) −12.1115 −0.553965
\(479\) −21.7082 −0.991873 −0.495937 0.868359i \(-0.665175\pi\)
−0.495937 + 0.868359i \(0.665175\pi\)
\(480\) 0 0
\(481\) 15.4164 0.702928
\(482\) 17.8197 0.811663
\(483\) 0 0
\(484\) 16.8541 0.766096
\(485\) 0 0
\(486\) 0 0
\(487\) −26.0689 −1.18129 −0.590647 0.806930i \(-0.701127\pi\)
−0.590647 + 0.806930i \(0.701127\pi\)
\(488\) 16.7082 0.756345
\(489\) 0 0
\(490\) 0 0
\(491\) −20.9443 −0.945202 −0.472601 0.881277i \(-0.656685\pi\)
−0.472601 + 0.881277i \(0.656685\pi\)
\(492\) 0 0
\(493\) 61.3050 2.76104
\(494\) −2.00000 −0.0899843
\(495\) 0 0
\(496\) −14.8328 −0.666013
\(497\) 0.304952 0.0136790
\(498\) 0 0
\(499\) 35.6525 1.59602 0.798012 0.602642i \(-0.205885\pi\)
0.798012 + 0.602642i \(0.205885\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.52786 0.0681919
\(503\) 12.1803 0.543095 0.271547 0.962425i \(-0.412465\pi\)
0.271547 + 0.962425i \(0.412465\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4.00000 −0.177822
\(507\) 0 0
\(508\) −18.4721 −0.819569
\(509\) −43.9443 −1.94780 −0.973898 0.226987i \(-0.927113\pi\)
−0.973898 + 0.226987i \(0.927113\pi\)
\(510\) 0 0
\(511\) −3.40325 −0.150551
\(512\) 18.7082 0.826794
\(513\) 0 0
\(514\) 1.56231 0.0689104
\(515\) 0 0
\(516\) 0 0
\(517\) −4.00000 −0.175920
\(518\) −0.695048 −0.0305387
\(519\) 0 0
\(520\) 0 0
\(521\) 25.3607 1.11107 0.555536 0.831493i \(-0.312513\pi\)
0.555536 + 0.831493i \(0.312513\pi\)
\(522\) 0 0
\(523\) 26.7639 1.17031 0.585153 0.810923i \(-0.301035\pi\)
0.585153 + 0.810923i \(0.301035\pi\)
\(524\) 8.76393 0.382854
\(525\) 0 0
\(526\) −15.2361 −0.664324
\(527\) −51.7771 −2.25545
\(528\) 0 0
\(529\) 48.7771 2.12074
\(530\) 0 0
\(531\) 0 0
\(532\) −0.381966 −0.0165603
\(533\) 4.76393 0.206349
\(534\) 0 0
\(535\) 0 0
\(536\) 8.29180 0.358151
\(537\) 0 0
\(538\) 17.2361 0.743100
\(539\) −5.30495 −0.228500
\(540\) 0 0
\(541\) 19.8885 0.855075 0.427538 0.903998i \(-0.359381\pi\)
0.427538 + 0.903998i \(0.359381\pi\)
\(542\) 10.9098 0.468617
\(543\) 0 0
\(544\) 36.3607 1.55895
\(545\) 0 0
\(546\) 0 0
\(547\) −4.76393 −0.203691 −0.101846 0.994800i \(-0.532475\pi\)
−0.101846 + 0.994800i \(0.532475\pi\)
\(548\) 12.9443 0.552952
\(549\) 0 0
\(550\) 0 0
\(551\) 9.47214 0.403527
\(552\) 0 0
\(553\) −1.05573 −0.0448941
\(554\) 10.1459 0.431058
\(555\) 0 0
\(556\) −19.7984 −0.839638
\(557\) 35.4164 1.50064 0.750321 0.661074i \(-0.229899\pi\)
0.750321 + 0.661074i \(0.229899\pi\)
\(558\) 0 0
\(559\) −41.8885 −1.77170
\(560\) 0 0
\(561\) 0 0
\(562\) −13.5967 −0.573544
\(563\) −19.6525 −0.828253 −0.414127 0.910219i \(-0.635913\pi\)
−0.414127 + 0.910219i \(0.635913\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.47214 0.103912
\(567\) 0 0
\(568\) −2.88854 −0.121201
\(569\) 41.8328 1.75372 0.876861 0.480743i \(-0.159633\pi\)
0.876861 + 0.480743i \(0.159633\pi\)
\(570\) 0 0
\(571\) −20.2361 −0.846853 −0.423427 0.905930i \(-0.639173\pi\)
−0.423427 + 0.905930i \(0.639173\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) −0.214782 −0.00896482
\(575\) 0 0
\(576\) 0 0
\(577\) 19.3050 0.803676 0.401838 0.915711i \(-0.368372\pi\)
0.401838 + 0.915711i \(0.368372\pi\)
\(578\) 15.3820 0.639805
\(579\) 0 0
\(580\) 0 0
\(581\) 1.81966 0.0754922
\(582\) 0 0
\(583\) 0.763932 0.0316388
\(584\) 32.2361 1.33394
\(585\) 0 0
\(586\) 9.23607 0.381538
\(587\) 20.9443 0.864463 0.432231 0.901763i \(-0.357726\pi\)
0.432231 + 0.901763i \(0.357726\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) −8.83282 −0.363026
\(593\) −36.7639 −1.50971 −0.754857 0.655890i \(-0.772294\pi\)
−0.754857 + 0.655890i \(0.772294\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 26.1803 1.07239
\(597\) 0 0
\(598\) 16.9443 0.692903
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −4.18034 −0.170520 −0.0852598 0.996359i \(-0.527172\pi\)
−0.0852598 + 0.996359i \(0.527172\pi\)
\(602\) 1.88854 0.0769713
\(603\) 0 0
\(604\) 27.4164 1.11556
\(605\) 0 0
\(606\) 0 0
\(607\) 18.6525 0.757081 0.378540 0.925585i \(-0.376426\pi\)
0.378540 + 0.925585i \(0.376426\pi\)
\(608\) 5.61803 0.227841
\(609\) 0 0
\(610\) 0 0
\(611\) 16.9443 0.685492
\(612\) 0 0
\(613\) −29.9443 −1.20944 −0.604719 0.796439i \(-0.706715\pi\)
−0.604719 + 0.796439i \(0.706715\pi\)
\(614\) −5.05573 −0.204033
\(615\) 0 0
\(616\) −0.403252 −0.0162475
\(617\) 16.0689 0.646909 0.323454 0.946244i \(-0.395156\pi\)
0.323454 + 0.946244i \(0.395156\pi\)
\(618\) 0 0
\(619\) −27.7639 −1.11593 −0.557963 0.829866i \(-0.688417\pi\)
−0.557963 + 0.829866i \(0.688417\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.52786 −0.382033
\(623\) 1.18034 0.0472893
\(624\) 0 0
\(625\) 0 0
\(626\) −20.2918 −0.811023
\(627\) 0 0
\(628\) 4.09017 0.163216
\(629\) −30.8328 −1.22938
\(630\) 0 0
\(631\) 37.5279 1.49396 0.746980 0.664846i \(-0.231503\pi\)
0.746980 + 0.664846i \(0.231503\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) −15.6738 −0.622485
\(635\) 0 0
\(636\) 0 0
\(637\) 22.4721 0.890378
\(638\) 4.47214 0.177054
\(639\) 0 0
\(640\) 0 0
\(641\) 15.8885 0.627560 0.313780 0.949496i \(-0.398405\pi\)
0.313780 + 0.949496i \(0.398405\pi\)
\(642\) 0 0
\(643\) 26.2361 1.03465 0.517325 0.855789i \(-0.326928\pi\)
0.517325 + 0.855789i \(0.326928\pi\)
\(644\) 3.23607 0.127519
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) 24.3607 0.957717 0.478859 0.877892i \(-0.341051\pi\)
0.478859 + 0.877892i \(0.341051\pi\)
\(648\) 0 0
\(649\) 5.12461 0.201159
\(650\) 0 0
\(651\) 0 0
\(652\) 29.5066 1.15557
\(653\) 41.1246 1.60933 0.804665 0.593729i \(-0.202345\pi\)
0.804665 + 0.593729i \(0.202345\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.72949 −0.106569
\(657\) 0 0
\(658\) −0.763932 −0.0297812
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −34.8328 −1.35484 −0.677420 0.735597i \(-0.736902\pi\)
−0.677420 + 0.735597i \(0.736902\pi\)
\(662\) 8.87539 0.344952
\(663\) 0 0
\(664\) −17.2361 −0.668889
\(665\) 0 0
\(666\) 0 0
\(667\) −80.2492 −3.10726
\(668\) 2.09017 0.0808711
\(669\) 0 0
\(670\) 0 0
\(671\) −5.70820 −0.220363
\(672\) 0 0
\(673\) −6.65248 −0.256434 −0.128217 0.991746i \(-0.540925\pi\)
−0.128217 + 0.991746i \(0.540925\pi\)
\(674\) 11.1246 0.428504
\(675\) 0 0
\(676\) 4.09017 0.157314
\(677\) −9.83282 −0.377906 −0.188953 0.981986i \(-0.560509\pi\)
−0.188953 + 0.981986i \(0.560509\pi\)
\(678\) 0 0
\(679\) −0.875388 −0.0335943
\(680\) 0 0
\(681\) 0 0
\(682\) −3.77709 −0.144632
\(683\) 8.23607 0.315144 0.157572 0.987507i \(-0.449633\pi\)
0.157572 + 0.987507i \(0.449633\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.03444 −0.0776754
\(687\) 0 0
\(688\) 24.0000 0.914991
\(689\) −3.23607 −0.123284
\(690\) 0 0
\(691\) −20.3607 −0.774557 −0.387278 0.921963i \(-0.626585\pi\)
−0.387278 + 0.921963i \(0.626585\pi\)
\(692\) 23.5066 0.893586
\(693\) 0 0
\(694\) −12.1803 −0.462359
\(695\) 0 0
\(696\) 0 0
\(697\) −9.52786 −0.360894
\(698\) −14.7984 −0.560127
\(699\) 0 0
\(700\) 0 0
\(701\) 9.05573 0.342030 0.171015 0.985268i \(-0.445295\pi\)
0.171015 + 0.985268i \(0.445295\pi\)
\(702\) 0 0
\(703\) −4.76393 −0.179675
\(704\) −0.180340 −0.00679682
\(705\) 0 0
\(706\) −1.16718 −0.0439276
\(707\) 0.986844 0.0371141
\(708\) 0 0
\(709\) −2.88854 −0.108482 −0.0542408 0.998528i \(-0.517274\pi\)
−0.0542408 + 0.998528i \(0.517274\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.1803 −0.419001
\(713\) 67.7771 2.53827
\(714\) 0 0
\(715\) 0 0
\(716\) −12.5623 −0.469475
\(717\) 0 0
\(718\) −2.36068 −0.0880998
\(719\) −14.4721 −0.539720 −0.269860 0.962900i \(-0.586977\pi\)
−0.269860 + 0.962900i \(0.586977\pi\)
\(720\) 0 0
\(721\) −2.87539 −0.107085
\(722\) 0.618034 0.0230008
\(723\) 0 0
\(724\) −10.4721 −0.389194
\(725\) 0 0
\(726\) 0 0
\(727\) 12.5967 0.467188 0.233594 0.972334i \(-0.424951\pi\)
0.233594 + 0.972334i \(0.424951\pi\)
\(728\) 1.70820 0.0633102
\(729\) 0 0
\(730\) 0 0
\(731\) 83.7771 3.09861
\(732\) 0 0
\(733\) −9.94427 −0.367300 −0.183650 0.982992i \(-0.558791\pi\)
−0.183650 + 0.982992i \(0.558791\pi\)
\(734\) −1.88854 −0.0697074
\(735\) 0 0
\(736\) −47.5967 −1.75444
\(737\) −2.83282 −0.104348
\(738\) 0 0
\(739\) −39.0689 −1.43717 −0.718586 0.695438i \(-0.755210\pi\)
−0.718586 + 0.695438i \(0.755210\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.145898 0.00535609
\(743\) 25.0689 0.919688 0.459844 0.888000i \(-0.347905\pi\)
0.459844 + 0.888000i \(0.347905\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.81966 0.0666225
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) −1.11146 −0.0406117
\(750\) 0 0
\(751\) −32.0689 −1.17021 −0.585105 0.810957i \(-0.698947\pi\)
−0.585105 + 0.810957i \(0.698947\pi\)
\(752\) −9.70820 −0.354022
\(753\) 0 0
\(754\) −18.9443 −0.689910
\(755\) 0 0
\(756\) 0 0
\(757\) −51.4721 −1.87079 −0.935393 0.353609i \(-0.884954\pi\)
−0.935393 + 0.353609i \(0.884954\pi\)
\(758\) 6.58359 0.239127
\(759\) 0 0
\(760\) 0 0
\(761\) −12.6525 −0.458652 −0.229326 0.973350i \(-0.573652\pi\)
−0.229326 + 0.973350i \(0.573652\pi\)
\(762\) 0 0
\(763\) −3.01316 −0.109084
\(764\) −41.8885 −1.51547
\(765\) 0 0
\(766\) −0.437694 −0.0158145
\(767\) −21.7082 −0.783838
\(768\) 0 0
\(769\) −10.5279 −0.379644 −0.189822 0.981818i \(-0.560791\pi\)
−0.189822 + 0.981818i \(0.560791\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 18.6525 0.671317
\(773\) −15.8328 −0.569467 −0.284733 0.958607i \(-0.591905\pi\)
−0.284733 + 0.958607i \(0.591905\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.29180 0.297658
\(777\) 0 0
\(778\) −11.3050 −0.405302
\(779\) −1.47214 −0.0527447
\(780\) 0 0
\(781\) 0.986844 0.0353121
\(782\) −33.8885 −1.21185
\(783\) 0 0
\(784\) −12.8754 −0.459835
\(785\) 0 0
\(786\) 0 0
\(787\) 53.1246 1.89369 0.946844 0.321693i \(-0.104252\pi\)
0.946844 + 0.321693i \(0.104252\pi\)
\(788\) 22.9443 0.817356
\(789\) 0 0
\(790\) 0 0
\(791\) −3.30495 −0.117511
\(792\) 0 0
\(793\) 24.1803 0.858669
\(794\) −4.65248 −0.165110
\(795\) 0 0
\(796\) 21.5066 0.762280
\(797\) 21.4721 0.760582 0.380291 0.924867i \(-0.375824\pi\)
0.380291 + 0.924867i \(0.375824\pi\)
\(798\) 0 0
\(799\) −33.8885 −1.19889
\(800\) 0 0
\(801\) 0 0
\(802\) 0.0688837 0.00243237
\(803\) −11.0132 −0.388646
\(804\) 0 0
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) −9.34752 −0.328845
\(809\) 24.0689 0.846217 0.423108 0.906079i \(-0.360939\pi\)
0.423108 + 0.906079i \(0.360939\pi\)
\(810\) 0 0
\(811\) −10.7639 −0.377973 −0.188986 0.981980i \(-0.560520\pi\)
−0.188986 + 0.981980i \(0.560520\pi\)
\(812\) −3.61803 −0.126968
\(813\) 0 0
\(814\) −2.24922 −0.0788352
\(815\) 0 0
\(816\) 0 0
\(817\) 12.9443 0.452863
\(818\) −5.12461 −0.179178
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) 37.2918 1.29991 0.649955 0.759973i \(-0.274788\pi\)
0.649955 + 0.759973i \(0.274788\pi\)
\(824\) 27.2361 0.948813
\(825\) 0 0
\(826\) 0.978714 0.0340538
\(827\) 40.9443 1.42377 0.711886 0.702295i \(-0.247841\pi\)
0.711886 + 0.702295i \(0.247841\pi\)
\(828\) 0 0
\(829\) 35.1246 1.21993 0.609964 0.792429i \(-0.291184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.763932 0.0264846
\(833\) −44.9443 −1.55723
\(834\) 0 0
\(835\) 0 0
\(836\) −1.23607 −0.0427503
\(837\) 0 0
\(838\) 12.7639 0.440923
\(839\) 34.5967 1.19441 0.597206 0.802088i \(-0.296277\pi\)
0.597206 + 0.802088i \(0.296277\pi\)
\(840\) 0 0
\(841\) 60.7214 2.09384
\(842\) 11.2361 0.387220
\(843\) 0 0
\(844\) −39.4164 −1.35677
\(845\) 0 0
\(846\) 0 0
\(847\) −2.45898 −0.0844916
\(848\) 1.85410 0.0636701
\(849\) 0 0
\(850\) 0 0
\(851\) 40.3607 1.38355
\(852\) 0 0
\(853\) −51.0000 −1.74621 −0.873103 0.487535i \(-0.837896\pi\)
−0.873103 + 0.487535i \(0.837896\pi\)
\(854\) −1.09017 −0.0373048
\(855\) 0 0
\(856\) 10.5279 0.359835
\(857\) 7.00000 0.239115 0.119558 0.992827i \(-0.461852\pi\)
0.119558 + 0.992827i \(0.461852\pi\)
\(858\) 0 0
\(859\) 30.1246 1.02784 0.513919 0.857839i \(-0.328193\pi\)
0.513919 + 0.857839i \(0.328193\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 23.5623 0.802535
\(863\) −22.0132 −0.749337 −0.374668 0.927159i \(-0.622243\pi\)
−0.374668 + 0.927159i \(0.622243\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −8.18034 −0.277979
\(867\) 0 0
\(868\) 3.05573 0.103718
\(869\) −3.41641 −0.115894
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 28.5410 0.966521
\(873\) 0 0
\(874\) −5.23607 −0.177113
\(875\) 0 0
\(876\) 0 0
\(877\) −2.65248 −0.0895677 −0.0447839 0.998997i \(-0.514260\pi\)
−0.0447839 + 0.998997i \(0.514260\pi\)
\(878\) −6.18034 −0.208576
\(879\) 0 0
\(880\) 0 0
\(881\) 16.5410 0.557281 0.278641 0.960395i \(-0.410116\pi\)
0.278641 + 0.960395i \(0.410116\pi\)
\(882\) 0 0
\(883\) −20.5967 −0.693136 −0.346568 0.938025i \(-0.612653\pi\)
−0.346568 + 0.938025i \(0.612653\pi\)
\(884\) 33.8885 1.13980
\(885\) 0 0
\(886\) −3.12461 −0.104973
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 2.69505 0.0903890
\(890\) 0 0
\(891\) 0 0
\(892\) 16.9443 0.567336
\(893\) −5.23607 −0.175218
\(894\) 0 0
\(895\) 0 0
\(896\) −2.68692 −0.0897636
\(897\) 0 0
\(898\) 22.4377 0.748756
\(899\) −75.7771 −2.52731
\(900\) 0 0
\(901\) 6.47214 0.215618
\(902\) −0.695048 −0.0231426
\(903\) 0 0
\(904\) 31.3050 1.04119
\(905\) 0 0
\(906\) 0 0
\(907\) −20.9443 −0.695443 −0.347722 0.937598i \(-0.613045\pi\)
−0.347722 + 0.937598i \(0.613045\pi\)
\(908\) 2.09017 0.0693647
\(909\) 0 0
\(910\) 0 0
\(911\) 29.1803 0.966788 0.483394 0.875403i \(-0.339404\pi\)
0.483394 + 0.875403i \(0.339404\pi\)
\(912\) 0 0
\(913\) 5.88854 0.194882
\(914\) 5.27051 0.174333
\(915\) 0 0
\(916\) −1.70820 −0.0564406
\(917\) −1.27864 −0.0422244
\(918\) 0 0
\(919\) −23.2918 −0.768325 −0.384163 0.923265i \(-0.625510\pi\)
−0.384163 + 0.923265i \(0.625510\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.58359 0.0850861
\(923\) −4.18034 −0.137598
\(924\) 0 0
\(925\) 0 0
\(926\) −0.944272 −0.0310307
\(927\) 0 0
\(928\) 53.2148 1.74686
\(929\) 33.4164 1.09636 0.548178 0.836361i \(-0.315321\pi\)
0.548178 + 0.836361i \(0.315321\pi\)
\(930\) 0 0
\(931\) −6.94427 −0.227589
\(932\) 16.4721 0.539563
\(933\) 0 0
\(934\) 2.94427 0.0963395
\(935\) 0 0
\(936\) 0 0
\(937\) −32.7771 −1.07078 −0.535390 0.844605i \(-0.679836\pi\)
−0.535390 + 0.844605i \(0.679836\pi\)
\(938\) −0.541020 −0.0176649
\(939\) 0 0
\(940\) 0 0
\(941\) 12.4721 0.406580 0.203290 0.979119i \(-0.434837\pi\)
0.203290 + 0.979119i \(0.434837\pi\)
\(942\) 0 0
\(943\) 12.4721 0.406149
\(944\) 12.4377 0.404812
\(945\) 0 0
\(946\) 6.11146 0.198701
\(947\) 53.3050 1.73218 0.866089 0.499890i \(-0.166626\pi\)
0.866089 + 0.499890i \(0.166626\pi\)
\(948\) 0 0
\(949\) 46.6525 1.51440
\(950\) 0 0
\(951\) 0 0
\(952\) −3.41641 −0.110726
\(953\) 26.5279 0.859322 0.429661 0.902990i \(-0.358633\pi\)
0.429661 + 0.902990i \(0.358633\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 31.7082 1.02552
\(957\) 0 0
\(958\) −13.4164 −0.433464
\(959\) −1.88854 −0.0609843
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 9.52786 0.307191
\(963\) 0 0
\(964\) −46.6525 −1.50258
\(965\) 0 0
\(966\) 0 0
\(967\) 17.0689 0.548898 0.274449 0.961602i \(-0.411505\pi\)
0.274449 + 0.961602i \(0.411505\pi\)
\(968\) 23.2918 0.748627
\(969\) 0 0
\(970\) 0 0
\(971\) 2.34752 0.0753356 0.0376678 0.999290i \(-0.488007\pi\)
0.0376678 + 0.999290i \(0.488007\pi\)
\(972\) 0 0
\(973\) 2.88854 0.0926025
\(974\) −16.1115 −0.516244
\(975\) 0 0
\(976\) −13.8541 −0.443459
\(977\) −52.4721 −1.67873 −0.839366 0.543566i \(-0.817074\pi\)
−0.839366 + 0.543566i \(0.817074\pi\)
\(978\) 0 0
\(979\) 3.81966 0.122077
\(980\) 0 0
\(981\) 0 0
\(982\) −12.9443 −0.413068
\(983\) 16.0000 0.510321 0.255160 0.966899i \(-0.417872\pi\)
0.255160 + 0.966899i \(0.417872\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 37.8885 1.20662
\(987\) 0 0
\(988\) 5.23607 0.166582
\(989\) −109.666 −3.48716
\(990\) 0 0
\(991\) 18.1803 0.577518 0.288759 0.957402i \(-0.406757\pi\)
0.288759 + 0.957402i \(0.406757\pi\)
\(992\) −44.9443 −1.42698
\(993\) 0 0
\(994\) 0.188471 0.00597792
\(995\) 0 0
\(996\) 0 0
\(997\) 28.2492 0.894662 0.447331 0.894369i \(-0.352375\pi\)
0.447331 + 0.894369i \(0.352375\pi\)
\(998\) 22.0344 0.697488
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.r.1.2 2
3.2 odd 2 1425.2.a.r.1.1 yes 2
5.4 even 2 4275.2.a.w.1.1 2
15.2 even 4 1425.2.c.n.799.2 4
15.8 even 4 1425.2.c.n.799.3 4
15.14 odd 2 1425.2.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.m.1.2 2 15.14 odd 2
1425.2.a.r.1.1 yes 2 3.2 odd 2
1425.2.c.n.799.2 4 15.2 even 4
1425.2.c.n.799.3 4 15.8 even 4
4275.2.a.r.1.2 2 1.1 even 1 trivial
4275.2.a.w.1.1 2 5.4 even 2