# Properties

 Label 4275.2.a.i Level $4275$ Weight $2$ Character orbit 4275.a Self dual yes Analytic conductor $34.136$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4275,2,Mod(1,4275)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4275, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4275.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4275 = 3^{2} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4275.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$34.1360468641$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 19) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{4} + q^{7}+O(q^{10})$$ q - 2 * q^4 + q^7 $$q - 2 q^{4} + q^{7} - 3 q^{11} + 4 q^{13} + 4 q^{16} - 3 q^{17} + q^{19} - 2 q^{28} - 6 q^{29} - 4 q^{31} - 2 q^{37} + 6 q^{41} + q^{43} + 6 q^{44} - 3 q^{47} - 6 q^{49} - 8 q^{52} + 12 q^{53} + 6 q^{59} - q^{61} - 8 q^{64} + 4 q^{67} + 6 q^{68} - 6 q^{71} + 7 q^{73} - 2 q^{76} - 3 q^{77} + 8 q^{79} + 12 q^{83} - 12 q^{89} + 4 q^{91} - 8 q^{97}+O(q^{100})$$ q - 2 * q^4 + q^7 - 3 * q^11 + 4 * q^13 + 4 * q^16 - 3 * q^17 + q^19 - 2 * q^28 - 6 * q^29 - 4 * q^31 - 2 * q^37 + 6 * q^41 + q^43 + 6 * q^44 - 3 * q^47 - 6 * q^49 - 8 * q^52 + 12 * q^53 + 6 * q^59 - q^61 - 8 * q^64 + 4 * q^67 + 6 * q^68 - 6 * q^71 + 7 * q^73 - 2 * q^76 - 3 * q^77 + 8 * q^79 + 12 * q^83 - 12 * q^89 + 4 * q^91 - 8 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 −2.00000 0 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4275.2.a.i 1
3.b odd 2 1 475.2.a.b 1
5.b even 2 1 171.2.a.b 1
12.b even 2 1 7600.2.a.c 1
15.d odd 2 1 19.2.a.a 1
15.e even 4 2 475.2.b.a 2
20.d odd 2 1 2736.2.a.c 1
35.c odd 2 1 8379.2.a.j 1
57.d even 2 1 9025.2.a.d 1
60.h even 2 1 304.2.a.f 1
95.d odd 2 1 3249.2.a.d 1
105.g even 2 1 931.2.a.a 1
105.o odd 6 2 931.2.f.c 2
105.p even 6 2 931.2.f.b 2
120.i odd 2 1 1216.2.a.o 1
120.m even 2 1 1216.2.a.b 1
165.d even 2 1 2299.2.a.b 1
195.e odd 2 1 3211.2.a.a 1
255.h odd 2 1 5491.2.a.b 1
285.b even 2 1 361.2.a.b 1
285.n odd 6 2 361.2.c.c 2
285.q even 6 2 361.2.c.a 2
285.bd odd 18 6 361.2.e.d 6
285.bf even 18 6 361.2.e.e 6
1140.p odd 2 1 5776.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.a.a 1 15.d odd 2 1
171.2.a.b 1 5.b even 2 1
304.2.a.f 1 60.h even 2 1
361.2.a.b 1 285.b even 2 1
361.2.c.a 2 285.q even 6 2
361.2.c.c 2 285.n odd 6 2
361.2.e.d 6 285.bd odd 18 6
361.2.e.e 6 285.bf even 18 6
475.2.a.b 1 3.b odd 2 1
475.2.b.a 2 15.e even 4 2
931.2.a.a 1 105.g even 2 1
931.2.f.b 2 105.p even 6 2
931.2.f.c 2 105.o odd 6 2
1216.2.a.b 1 120.m even 2 1
1216.2.a.o 1 120.i odd 2 1
2299.2.a.b 1 165.d even 2 1
2736.2.a.c 1 20.d odd 2 1
3211.2.a.a 1 195.e odd 2 1
3249.2.a.d 1 95.d odd 2 1
4275.2.a.i 1 1.a even 1 1 trivial
5491.2.a.b 1 255.h odd 2 1
5776.2.a.c 1 1140.p odd 2 1
7600.2.a.c 1 12.b even 2 1
8379.2.a.j 1 35.c odd 2 1
9025.2.a.d 1 57.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4275))$$:

 $$T_{2}$$ T2 $$T_{7} - 1$$ T7 - 1 $$T_{11} + 3$$ T11 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T - 1$$
$11$ $$T + 3$$
$13$ $$T - 4$$
$17$ $$T + 3$$
$19$ $$T - 1$$
$23$ $$T$$
$29$ $$T + 6$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T - 6$$
$43$ $$T - 1$$
$47$ $$T + 3$$
$53$ $$T - 12$$
$59$ $$T - 6$$
$61$ $$T + 1$$
$67$ $$T - 4$$
$71$ $$T + 6$$
$73$ $$T - 7$$
$79$ $$T - 8$$
$83$ $$T - 12$$
$89$ $$T + 12$$
$97$ $$T + 8$$