Properties

Label 4275.2.a.g.1.1
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 855)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} +2.00000 q^{7} +3.00000 q^{8} +2.00000 q^{11} -2.00000 q^{13} -2.00000 q^{14} -1.00000 q^{16} -2.00000 q^{17} +1.00000 q^{19} -2.00000 q^{22} +2.00000 q^{26} -2.00000 q^{28} -6.00000 q^{29} -4.00000 q^{31} -5.00000 q^{32} +2.00000 q^{34} +2.00000 q^{37} -1.00000 q^{38} +2.00000 q^{41} -10.0000 q^{43} -2.00000 q^{44} -3.00000 q^{49} +2.00000 q^{52} +10.0000 q^{53} +6.00000 q^{56} +6.00000 q^{58} -10.0000 q^{61} +4.00000 q^{62} +7.00000 q^{64} -4.00000 q^{67} +2.00000 q^{68} -8.00000 q^{71} +4.00000 q^{73} -2.00000 q^{74} -1.00000 q^{76} +4.00000 q^{77} -8.00000 q^{79} -2.00000 q^{82} +12.0000 q^{83} +10.0000 q^{86} +6.00000 q^{88} +10.0000 q^{89} -4.00000 q^{91} -18.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −1.00000 −0.162221
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.0000 1.07833
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 10.0000 0.905357
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 2.00000 0.173422
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 8.00000 0.655386 0.327693 0.944784i \(-0.393729\pi\)
0.327693 + 0.944784i \(0.393729\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 3.00000 0.243332
\(153\) 0 0
\(154\) −4.00000 −0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) 16.0000 1.27694 0.638470 0.769647i \(-0.279568\pi\)
0.638470 + 0.769647i \(0.279568\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 10.0000 0.762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) −10.0000 −0.749532
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 18.0000 1.29232
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −10.0000 −0.686803
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 6.00000 0.406371
\(219\) 0 0
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −18.0000 −1.18176
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) −12.0000 −0.762001
\(249\) 0 0
\(250\) 0 0
\(251\) −14.0000 −0.883672 −0.441836 0.897096i \(-0.645673\pi\)
−0.441836 + 0.897096i \(0.645673\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 18.0000 1.11204
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.00000 −0.122628
\(267\) 0 0
\(268\) 4.00000 0.244339
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 0 0
\(283\) −22.0000 −1.30776 −0.653882 0.756596i \(-0.726861\pi\)
−0.653882 + 0.756596i \(0.726861\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −8.00000 −0.463428
\(299\) 0 0
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 12.0000 0.690522
\(303\) 0 0
\(304\) −1.00000 −0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) −4.00000 −0.227921
\(309\) 0 0
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 0 0
\(313\) 24.0000 1.35656 0.678280 0.734803i \(-0.262726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) −16.0000 −0.902932
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) 0 0
\(326\) 14.0000 0.775388
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) −30.0000 −1.61749
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) −36.0000 −1.93258 −0.966291 0.257454i \(-0.917117\pi\)
−0.966291 + 0.257454i \(0.917117\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −10.0000 −0.533002
\(353\) 34.0000 1.80964 0.904819 0.425797i \(-0.140006\pi\)
0.904819 + 0.425797i \(0.140006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) −24.0000 −1.26844
\(359\) 22.0000 1.16112 0.580558 0.814219i \(-0.302835\pi\)
0.580558 + 0.814219i \(0.302835\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 6.00000 0.315353
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) 0 0
\(367\) −34.0000 −1.77479 −0.887393 0.461014i \(-0.847486\pi\)
−0.887393 + 0.461014i \(0.847486\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) −18.0000 −0.932005 −0.466002 0.884783i \(-0.654306\pi\)
−0.466002 + 0.884783i \(0.654306\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 18.0000 0.920960
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 0 0
\(388\) 18.0000 0.913812
\(389\) −36.0000 −1.82527 −0.912636 0.408773i \(-0.865957\pi\)
−0.912636 + 0.408773i \(0.865957\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −9.00000 −0.454569
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 0 0
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) 0 0
\(418\) −2.00000 −0.0978232
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) 30.0000 1.45693
\(425\) 0 0
\(426\) 0 0
\(427\) −20.0000 −0.967868
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 0 0
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 8.00000 0.378811
\(447\) 0 0
\(448\) 14.0000 0.661438
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 4.00000 0.188353
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 40.0000 1.87112 0.935561 0.353166i \(-0.114895\pi\)
0.935561 + 0.353166i \(0.114895\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 0 0
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 14.0000 0.648537
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.0000 −0.919601
\(474\) 0 0
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) 0 0
\(478\) −2.00000 −0.0914779
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) −4.00000 −0.182384
\(482\) 14.0000 0.637683
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −30.0000 −1.35804
\(489\) 0 0
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 2.00000 0.0899843
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −16.0000 −0.717698
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 14.0000 0.624851
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −12.0000 −0.532414
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −4.00000 −0.175750
\(519\) 0 0
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 0 0
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 10.0000 0.428746
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 −0.255609
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) −34.0000 −1.44063 −0.720313 0.693649i \(-0.756002\pi\)
−0.720313 + 0.693649i \(0.756002\pi\)
\(558\) 0 0
\(559\) 20.0000 0.845910
\(560\) 0 0
\(561\) 0 0
\(562\) −22.0000 −0.928014
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.0000 0.924729
\(567\) 0 0
\(568\) −24.0000 −1.00702
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) −4.00000 −0.166957
\(575\) 0 0
\(576\) 0 0
\(577\) −24.0000 −0.999133 −0.499567 0.866276i \(-0.666507\pi\)
−0.499567 + 0.866276i \(0.666507\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 20.0000 0.828315
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) −26.0000 −1.06769 −0.533846 0.845582i \(-0.679254\pi\)
−0.533846 + 0.845582i \(0.679254\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.00000 −0.327693
\(597\) 0 0
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 20.0000 0.815139
\(603\) 0 0
\(604\) 12.0000 0.488273
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −6.00000 −0.240578
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 0 0
\(626\) −24.0000 −0.959233
\(627\) 0 0
\(628\) −16.0000 −0.638470
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −24.0000 −0.954669
\(633\) 0 0
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 26.0000 1.02534 0.512670 0.858586i \(-0.328656\pi\)
0.512670 + 0.858586i \(0.328656\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.00000 0.0786889
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 14.0000 0.548282
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.00000 −0.0780869
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 16.0000 0.621858
\(663\) 0 0
\(664\) 36.0000 1.39707
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −20.0000 −0.772091
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) −36.0000 −1.38155
\(680\) 0 0
\(681\) 0 0
\(682\) 8.00000 0.306336
\(683\) −48.0000 −1.83667 −0.918334 0.395805i \(-0.870466\pi\)
−0.918334 + 0.395805i \(0.870466\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 10.0000 0.381246
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 36.0000 1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) −2.00000 −0.0757011
\(699\) 0 0
\(700\) 0 0
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) −34.0000 −1.27961
\(707\) 0 0
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.0000 1.12430
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) −22.0000 −0.821033
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) 6.00000 0.222988
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) −12.0000 −0.444750
\(729\) 0 0
\(730\) 0 0
\(731\) 20.0000 0.739727
\(732\) 0 0
\(733\) −36.0000 −1.32969 −0.664845 0.746981i \(-0.731502\pi\)
−0.664845 + 0.746981i \(0.731502\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −20.0000 −0.734223
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 18.0000 0.659027
\(747\) 0 0
\(748\) 4.00000 0.146254
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) 44.0000 1.60558 0.802791 0.596260i \(-0.203347\pi\)
0.802791 + 0.596260i \(0.203347\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) −4.00000 −0.145382 −0.0726912 0.997354i \(-0.523159\pi\)
−0.0726912 + 0.997354i \(0.523159\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 0 0
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −54.0000 −1.93849
\(777\) 0 0
\(778\) 36.0000 1.29066
\(779\) 2.00000 0.0716574
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) 16.0000 0.570338 0.285169 0.958477i \(-0.407950\pi\)
0.285169 + 0.958477i \(0.407950\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 8.00000 0.283909
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) −30.0000 −1.05934
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) 0 0
\(809\) −40.0000 −1.40633 −0.703163 0.711029i \(-0.748229\pi\)
−0.703163 + 0.711029i \(0.748229\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 12.0000 0.421117
\(813\) 0 0
\(814\) −4.00000 −0.140200
\(815\) 0 0
\(816\) 0 0
\(817\) −10.0000 −0.349856
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 0 0
\(823\) −18.0000 −0.627441 −0.313720 0.949515i \(-0.601575\pi\)
−0.313720 + 0.949515i \(0.601575\pi\)
\(824\) 48.0000 1.67216
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 26.0000 0.903017 0.451509 0.892267i \(-0.350886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −14.0000 −0.485363
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) −2.00000 −0.0691714
\(837\) 0 0
\(838\) −18.0000 −0.621800
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 18.0000 0.620321
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) −14.0000 −0.481046
\(848\) −10.0000 −0.343401
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 20.0000 0.684787 0.342393 0.939557i \(-0.388762\pi\)
0.342393 + 0.939557i \(0.388762\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) 24.0000 0.820303
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −12.0000 −0.408722
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −26.0000 −0.883516
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −18.0000 −0.609557
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 16.0000 0.539974
\(879\) 0 0
\(880\) 0 0
\(881\) 4.00000 0.134763 0.0673817 0.997727i \(-0.478535\pi\)
0.0673817 + 0.997727i \(0.478535\pi\)
\(882\) 0 0
\(883\) −38.0000 −1.27880 −0.639401 0.768874i \(-0.720818\pi\)
−0.639401 + 0.768874i \(0.720818\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 0 0
\(889\) 24.0000 0.804934
\(890\) 0 0
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 0 0
\(906\) 0 0
\(907\) −48.0000 −1.59381 −0.796907 0.604102i \(-0.793532\pi\)
−0.796907 + 0.604102i \(0.793532\pi\)
\(908\) 4.00000 0.132745
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) −40.0000 −1.32308
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) −36.0000 −1.18882
\(918\) 0 0
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −32.0000 −1.05386
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) 0 0
\(926\) −14.0000 −0.460069
\(927\) 0 0
\(928\) 30.0000 0.984798
\(929\) 48.0000 1.57483 0.787414 0.616424i \(-0.211419\pi\)
0.787414 + 0.616424i \(0.211419\pi\)
\(930\) 0 0
\(931\) −3.00000 −0.0983210
\(932\) 14.0000 0.458585
\(933\) 0 0
\(934\) −4.00000 −0.130884
\(935\) 0 0
\(936\) 0 0
\(937\) 4.00000 0.130674 0.0653372 0.997863i \(-0.479188\pi\)
0.0653372 + 0.997863i \(0.479188\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) 0 0
\(941\) 50.0000 1.62995 0.814977 0.579494i \(-0.196750\pi\)
0.814977 + 0.579494i \(0.196750\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 20.0000 0.650256
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) 0 0
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.00000 −0.0646846
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 4.00000 0.128965
\(963\) 0 0
\(964\) 14.0000 0.450910
\(965\) 0 0
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) −21.0000 −0.674966
\(969\) 0 0
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 22.0000 0.703842 0.351921 0.936030i \(-0.385529\pi\)
0.351921 + 0.936030i \(0.385529\pi\)
\(978\) 0 0
\(979\) 20.0000 0.639203
\(980\) 0 0
\(981\) 0 0
\(982\) 26.0000 0.829693
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) 0 0
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 20.0000 0.635001
\(993\) 0 0
\(994\) 16.0000 0.507489
\(995\) 0 0
\(996\) 0 0
\(997\) 8.00000 0.253363 0.126681 0.991943i \(-0.459567\pi\)
0.126681 + 0.991943i \(0.459567\pi\)
\(998\) 20.0000 0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.g.1.1 1
3.2 odd 2 4275.2.a.n.1.1 1
5.2 odd 4 855.2.c.c.514.1 yes 2
5.3 odd 4 855.2.c.c.514.2 yes 2
5.4 even 2 4275.2.a.k.1.1 1
15.2 even 4 855.2.c.a.514.2 yes 2
15.8 even 4 855.2.c.a.514.1 2
15.14 odd 2 4275.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.c.a.514.1 2 15.8 even 4
855.2.c.a.514.2 yes 2 15.2 even 4
855.2.c.c.514.1 yes 2 5.2 odd 4
855.2.c.c.514.2 yes 2 5.3 odd 4
4275.2.a.d.1.1 1 15.14 odd 2
4275.2.a.g.1.1 1 1.1 even 1 trivial
4275.2.a.k.1.1 1 5.4 even 2
4275.2.a.n.1.1 1 3.2 odd 2