Properties

Label 4275.2.a.bx.1.12
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 19x^{10} + 115x^{8} - 288x^{6} + 295x^{4} - 111x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 855)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(-0.331466\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.67125 q^{2} +5.13555 q^{4} +2.04966 q^{7} +8.37582 q^{8} -3.94053 q^{11} +5.35075 q^{13} +5.47514 q^{14} +12.1028 q^{16} +6.45329 q^{17} -1.00000 q^{19} -10.5261 q^{22} +3.48297 q^{23} +14.2932 q^{26} +10.5261 q^{28} -8.34955 q^{29} -2.96722 q^{31} +15.5778 q^{32} +17.2383 q^{34} -6.42681 q^{37} -2.67125 q^{38} -11.4188 q^{41} +7.22503 q^{43} -20.2368 q^{44} +9.30388 q^{46} -1.11080 q^{47} -2.79890 q^{49} +27.4791 q^{52} -0.362087 q^{53} +17.1676 q^{56} -22.3037 q^{58} +2.87441 q^{59} -0.135550 q^{61} -7.92618 q^{62} +17.4066 q^{64} +5.17537 q^{67} +33.1412 q^{68} -2.87441 q^{71} -1.87428 q^{73} -17.1676 q^{74} -5.13555 q^{76} -8.07675 q^{77} +13.9344 q^{79} -30.5023 q^{82} +7.20201 q^{83} +19.2998 q^{86} -33.0052 q^{88} +6.41211 q^{89} +10.9672 q^{91} +17.8870 q^{92} -2.96722 q^{94} +5.35075 q^{97} -7.47654 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 40 q^{16} - 12 q^{19} + 24 q^{31} + 56 q^{34} + 80 q^{46} + 40 q^{49} + 44 q^{61} + 72 q^{64} - 16 q^{76} + 48 q^{79} + 72 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.67125 1.88886 0.944428 0.328719i \(-0.106617\pi\)
0.944428 + 0.328719i \(0.106617\pi\)
\(3\) 0 0
\(4\) 5.13555 2.56777
\(5\) 0 0
\(6\) 0 0
\(7\) 2.04966 0.774698 0.387349 0.921933i \(-0.373391\pi\)
0.387349 + 0.921933i \(0.373391\pi\)
\(8\) 8.37582 2.96130
\(9\) 0 0
\(10\) 0 0
\(11\) −3.94053 −1.18812 −0.594058 0.804422i \(-0.702475\pi\)
−0.594058 + 0.804422i \(0.702475\pi\)
\(12\) 0 0
\(13\) 5.35075 1.48403 0.742016 0.670382i \(-0.233870\pi\)
0.742016 + 0.670382i \(0.233870\pi\)
\(14\) 5.47514 1.46329
\(15\) 0 0
\(16\) 12.1028 3.02569
\(17\) 6.45329 1.56515 0.782577 0.622554i \(-0.213905\pi\)
0.782577 + 0.622554i \(0.213905\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −10.5261 −2.24418
\(23\) 3.48297 0.726250 0.363125 0.931740i \(-0.381710\pi\)
0.363125 + 0.931740i \(0.381710\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 14.2932 2.80312
\(27\) 0 0
\(28\) 10.5261 1.98925
\(29\) −8.34955 −1.55047 −0.775236 0.631672i \(-0.782369\pi\)
−0.775236 + 0.631672i \(0.782369\pi\)
\(30\) 0 0
\(31\) −2.96722 −0.532929 −0.266465 0.963845i \(-0.585856\pi\)
−0.266465 + 0.963845i \(0.585856\pi\)
\(32\) 15.5778 2.75380
\(33\) 0 0
\(34\) 17.2383 2.95635
\(35\) 0 0
\(36\) 0 0
\(37\) −6.42681 −1.05656 −0.528280 0.849070i \(-0.677163\pi\)
−0.528280 + 0.849070i \(0.677163\pi\)
\(38\) −2.67125 −0.433333
\(39\) 0 0
\(40\) 0 0
\(41\) −11.4188 −1.78331 −0.891656 0.452714i \(-0.850456\pi\)
−0.891656 + 0.452714i \(0.850456\pi\)
\(42\) 0 0
\(43\) 7.22503 1.10181 0.550904 0.834569i \(-0.314283\pi\)
0.550904 + 0.834569i \(0.314283\pi\)
\(44\) −20.2368 −3.05081
\(45\) 0 0
\(46\) 9.30388 1.37178
\(47\) −1.11080 −0.162027 −0.0810135 0.996713i \(-0.525816\pi\)
−0.0810135 + 0.996713i \(0.525816\pi\)
\(48\) 0 0
\(49\) −2.79890 −0.399842
\(50\) 0 0
\(51\) 0 0
\(52\) 27.4791 3.81066
\(53\) −0.362087 −0.0497365 −0.0248682 0.999691i \(-0.507917\pi\)
−0.0248682 + 0.999691i \(0.507917\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.1676 2.29411
\(57\) 0 0
\(58\) −22.3037 −2.92862
\(59\) 2.87441 0.374216 0.187108 0.982339i \(-0.440089\pi\)
0.187108 + 0.982339i \(0.440089\pi\)
\(60\) 0 0
\(61\) −0.135550 −0.0173554 −0.00867769 0.999962i \(-0.502762\pi\)
−0.00867769 + 0.999962i \(0.502762\pi\)
\(62\) −7.92618 −1.00663
\(63\) 0 0
\(64\) 17.4066 2.17583
\(65\) 0 0
\(66\) 0 0
\(67\) 5.17537 0.632273 0.316136 0.948714i \(-0.397614\pi\)
0.316136 + 0.948714i \(0.397614\pi\)
\(68\) 33.1412 4.01896
\(69\) 0 0
\(70\) 0 0
\(71\) −2.87441 −0.341129 −0.170565 0.985346i \(-0.554559\pi\)
−0.170565 + 0.985346i \(0.554559\pi\)
\(72\) 0 0
\(73\) −1.87428 −0.219368 −0.109684 0.993967i \(-0.534984\pi\)
−0.109684 + 0.993967i \(0.534984\pi\)
\(74\) −17.1676 −1.99569
\(75\) 0 0
\(76\) −5.13555 −0.589088
\(77\) −8.07675 −0.920431
\(78\) 0 0
\(79\) 13.9344 1.56775 0.783874 0.620920i \(-0.213241\pi\)
0.783874 + 0.620920i \(0.213241\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −30.5023 −3.36842
\(83\) 7.20201 0.790523 0.395261 0.918569i \(-0.370654\pi\)
0.395261 + 0.918569i \(0.370654\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 19.2998 2.08115
\(87\) 0 0
\(88\) −33.0052 −3.51837
\(89\) 6.41211 0.679682 0.339841 0.940483i \(-0.389627\pi\)
0.339841 + 0.940483i \(0.389627\pi\)
\(90\) 0 0
\(91\) 10.9672 1.14968
\(92\) 17.8870 1.86485
\(93\) 0 0
\(94\) −2.96722 −0.306046
\(95\) 0 0
\(96\) 0 0
\(97\) 5.35075 0.543287 0.271643 0.962398i \(-0.412433\pi\)
0.271643 + 0.962398i \(0.412433\pi\)
\(98\) −7.47654 −0.755244
\(99\) 0 0
\(100\) 0 0
\(101\) 2.87441 0.286014 0.143007 0.989722i \(-0.454323\pi\)
0.143007 + 0.989722i \(0.454323\pi\)
\(102\) 0 0
\(103\) 16.9529 1.67042 0.835211 0.549929i \(-0.185345\pi\)
0.835211 + 0.549929i \(0.185345\pi\)
\(104\) 44.8170 4.39466
\(105\) 0 0
\(106\) −0.967223 −0.0939450
\(107\) −16.6256 −1.60726 −0.803629 0.595130i \(-0.797101\pi\)
−0.803629 + 0.595130i \(0.797101\pi\)
\(108\) 0 0
\(109\) 14.2711 1.36692 0.683462 0.729986i \(-0.260474\pi\)
0.683462 + 0.729986i \(0.260474\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 24.8066 2.34400
\(113\) −0.362087 −0.0340623 −0.0170311 0.999855i \(-0.505421\pi\)
−0.0170311 + 0.999855i \(0.505421\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −42.8795 −3.98126
\(117\) 0 0
\(118\) 7.67824 0.706840
\(119\) 13.2270 1.21252
\(120\) 0 0
\(121\) 4.52780 0.411618
\(122\) −0.362087 −0.0327818
\(123\) 0 0
\(124\) −15.2383 −1.36844
\(125\) 0 0
\(126\) 0 0
\(127\) −11.7776 −1.04509 −0.522545 0.852612i \(-0.675017\pi\)
−0.522545 + 0.852612i \(0.675017\pi\)
\(128\) 15.3418 1.35603
\(129\) 0 0
\(130\) 0 0
\(131\) 1.06613 0.0931478 0.0465739 0.998915i \(-0.485170\pi\)
0.0465739 + 0.998915i \(0.485170\pi\)
\(132\) 0 0
\(133\) −2.04966 −0.177728
\(134\) 13.8247 1.19427
\(135\) 0 0
\(136\) 54.0516 4.63489
\(137\) −19.1238 −1.63386 −0.816929 0.576738i \(-0.804325\pi\)
−0.816929 + 0.576738i \(0.804325\pi\)
\(138\) 0 0
\(139\) −13.3739 −1.13436 −0.567179 0.823595i \(-0.691965\pi\)
−0.567179 + 0.823595i \(0.691965\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.67824 −0.644344
\(143\) −21.0848 −1.76320
\(144\) 0 0
\(145\) 0 0
\(146\) −5.00666 −0.414354
\(147\) 0 0
\(148\) −33.0052 −2.71301
\(149\) −2.47158 −0.202480 −0.101240 0.994862i \(-0.532281\pi\)
−0.101240 + 0.994862i \(0.532281\pi\)
\(150\) 0 0
\(151\) −7.23832 −0.589046 −0.294523 0.955644i \(-0.595161\pi\)
−0.294523 + 0.955644i \(0.595161\pi\)
\(152\) −8.37582 −0.679369
\(153\) 0 0
\(154\) −21.5750 −1.73856
\(155\) 0 0
\(156\) 0 0
\(157\) 7.67824 0.612791 0.306395 0.951904i \(-0.400877\pi\)
0.306395 + 0.951904i \(0.400877\pi\)
\(158\) 37.2223 2.96125
\(159\) 0 0
\(160\) 0 0
\(161\) 7.13891 0.562625
\(162\) 0 0
\(163\) −4.99999 −0.391630 −0.195815 0.980641i \(-0.562735\pi\)
−0.195815 + 0.980641i \(0.562735\pi\)
\(164\) −58.6417 −4.57914
\(165\) 0 0
\(166\) 19.2383 1.49318
\(167\) −7.97526 −0.617144 −0.308572 0.951201i \(-0.599851\pi\)
−0.308572 + 0.951201i \(0.599851\pi\)
\(168\) 0 0
\(169\) 15.6306 1.20235
\(170\) 0 0
\(171\) 0 0
\(172\) 37.1045 2.82919
\(173\) 14.7661 1.12265 0.561323 0.827597i \(-0.310293\pi\)
0.561323 + 0.827597i \(0.310293\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −47.6914 −3.59487
\(177\) 0 0
\(178\) 17.1283 1.28382
\(179\) 17.8309 1.33274 0.666371 0.745620i \(-0.267847\pi\)
0.666371 + 0.745620i \(0.267847\pi\)
\(180\) 0 0
\(181\) −6.54220 −0.486278 −0.243139 0.969991i \(-0.578177\pi\)
−0.243139 + 0.969991i \(0.578177\pi\)
\(182\) 29.2961 2.17157
\(183\) 0 0
\(184\) 29.1728 2.15065
\(185\) 0 0
\(186\) 0 0
\(187\) −25.4294 −1.85958
\(188\) −5.70458 −0.416049
\(189\) 0 0
\(190\) 0 0
\(191\) −14.8908 −1.07746 −0.538731 0.842478i \(-0.681096\pi\)
−0.538731 + 0.842478i \(0.681096\pi\)
\(192\) 0 0
\(193\) 11.6022 0.835143 0.417572 0.908644i \(-0.362881\pi\)
0.417572 + 0.908644i \(0.362881\pi\)
\(194\) 14.2932 1.02619
\(195\) 0 0
\(196\) −14.3739 −1.02671
\(197\) 8.05221 0.573696 0.286848 0.957976i \(-0.407393\pi\)
0.286848 + 0.957976i \(0.407393\pi\)
\(198\) 0 0
\(199\) −25.3739 −1.79871 −0.899353 0.437223i \(-0.855962\pi\)
−0.899353 + 0.437223i \(0.855962\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 7.67824 0.540239
\(203\) −17.1137 −1.20115
\(204\) 0 0
\(205\) 0 0
\(206\) 45.2854 3.15519
\(207\) 0 0
\(208\) 64.7590 4.49023
\(209\) 3.94053 0.272572
\(210\) 0 0
\(211\) −1.93445 −0.133173 −0.0665864 0.997781i \(-0.521211\pi\)
−0.0665864 + 0.997781i \(0.521211\pi\)
\(212\) −1.85952 −0.127712
\(213\) 0 0
\(214\) −44.4111 −3.03588
\(215\) 0 0
\(216\) 0 0
\(217\) −6.08180 −0.412859
\(218\) 38.1216 2.58192
\(219\) 0 0
\(220\) 0 0
\(221\) 34.5300 2.32274
\(222\) 0 0
\(223\) −13.2044 −0.884231 −0.442115 0.896958i \(-0.645772\pi\)
−0.442115 + 0.896958i \(0.645772\pi\)
\(224\) 31.9292 2.13336
\(225\) 0 0
\(226\) −0.967223 −0.0643387
\(227\) 1.26137 0.0837201 0.0418601 0.999123i \(-0.486672\pi\)
0.0418601 + 0.999123i \(0.486672\pi\)
\(228\) 0 0
\(229\) −12.6777 −0.837769 −0.418885 0.908039i \(-0.637579\pi\)
−0.418885 + 0.908039i \(0.637579\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −69.9343 −4.59141
\(233\) −19.8480 −1.30029 −0.650143 0.759812i \(-0.725291\pi\)
−0.650143 + 0.759812i \(0.725291\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.7617 0.960902
\(237\) 0 0
\(238\) 35.3327 2.29028
\(239\) −8.01022 −0.518138 −0.259069 0.965859i \(-0.583416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(240\) 0 0
\(241\) −12.8789 −0.829600 −0.414800 0.909913i \(-0.636148\pi\)
−0.414800 + 0.909913i \(0.636148\pi\)
\(242\) 12.0949 0.777487
\(243\) 0 0
\(244\) −0.696123 −0.0445647
\(245\) 0 0
\(246\) 0 0
\(247\) −5.35075 −0.340460
\(248\) −24.8529 −1.57816
\(249\) 0 0
\(250\) 0 0
\(251\) −24.4510 −1.54333 −0.771667 0.636027i \(-0.780577\pi\)
−0.771667 + 0.636027i \(0.780577\pi\)
\(252\) 0 0
\(253\) −13.7248 −0.862869
\(254\) −31.4608 −1.97402
\(255\) 0 0
\(256\) 6.16833 0.385520
\(257\) −4.13020 −0.257635 −0.128817 0.991668i \(-0.541118\pi\)
−0.128817 + 0.991668i \(0.541118\pi\)
\(258\) 0 0
\(259\) −13.1728 −0.818516
\(260\) 0 0
\(261\) 0 0
\(262\) 2.84788 0.175943
\(263\) 5.08189 0.313363 0.156681 0.987649i \(-0.449920\pi\)
0.156681 + 0.987649i \(0.449920\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.47514 −0.335703
\(267\) 0 0
\(268\) 26.5784 1.62353
\(269\) −17.3624 −1.05860 −0.529302 0.848434i \(-0.677546\pi\)
−0.529302 + 0.848434i \(0.677546\pi\)
\(270\) 0 0
\(271\) −24.5422 −1.49083 −0.745416 0.666599i \(-0.767749\pi\)
−0.745416 + 0.666599i \(0.767749\pi\)
\(272\) 78.1027 4.73567
\(273\) 0 0
\(274\) −51.0844 −3.08612
\(275\) 0 0
\(276\) 0 0
\(277\) 26.8562 1.61363 0.806817 0.590801i \(-0.201188\pi\)
0.806817 + 0.590801i \(0.201188\pi\)
\(278\) −35.7249 −2.14264
\(279\) 0 0
\(280\) 0 0
\(281\) −6.41211 −0.382514 −0.191257 0.981540i \(-0.561256\pi\)
−0.191257 + 0.981540i \(0.561256\pi\)
\(282\) 0 0
\(283\) −17.0554 −1.01384 −0.506919 0.861994i \(-0.669216\pi\)
−0.506919 + 0.861994i \(0.669216\pi\)
\(284\) −14.7617 −0.875943
\(285\) 0 0
\(286\) −56.3227 −3.33043
\(287\) −23.4046 −1.38153
\(288\) 0 0
\(289\) 24.6450 1.44970
\(290\) 0 0
\(291\) 0 0
\(292\) −9.62545 −0.563287
\(293\) 17.9639 1.04946 0.524732 0.851267i \(-0.324165\pi\)
0.524732 + 0.851267i \(0.324165\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −53.8298 −3.12879
\(297\) 0 0
\(298\) −6.60219 −0.382455
\(299\) 18.6365 1.07778
\(300\) 0 0
\(301\) 14.8089 0.853568
\(302\) −19.3353 −1.11262
\(303\) 0 0
\(304\) −12.1028 −0.694142
\(305\) 0 0
\(306\) 0 0
\(307\) 23.2044 1.32434 0.662172 0.749352i \(-0.269635\pi\)
0.662172 + 0.749352i \(0.269635\pi\)
\(308\) −41.4785 −2.36346
\(309\) 0 0
\(310\) 0 0
\(311\) −13.8903 −0.787649 −0.393825 0.919186i \(-0.628848\pi\)
−0.393825 + 0.919186i \(0.628848\pi\)
\(312\) 0 0
\(313\) −26.2276 −1.48247 −0.741237 0.671244i \(-0.765760\pi\)
−0.741237 + 0.671244i \(0.765760\pi\)
\(314\) 20.5105 1.15747
\(315\) 0 0
\(316\) 71.5610 4.02562
\(317\) −6.55478 −0.368153 −0.184077 0.982912i \(-0.558929\pi\)
−0.184077 + 0.982912i \(0.558929\pi\)
\(318\) 0 0
\(319\) 32.9017 1.84214
\(320\) 0 0
\(321\) 0 0
\(322\) 19.0698 1.06272
\(323\) −6.45329 −0.359071
\(324\) 0 0
\(325\) 0 0
\(326\) −13.3562 −0.739732
\(327\) 0 0
\(328\) −95.6416 −5.28092
\(329\) −2.27676 −0.125522
\(330\) 0 0
\(331\) −7.91163 −0.434863 −0.217431 0.976076i \(-0.569768\pi\)
−0.217431 + 0.976076i \(0.569768\pi\)
\(332\) 36.9863 2.02988
\(333\) 0 0
\(334\) −21.3039 −1.16570
\(335\) 0 0
\(336\) 0 0
\(337\) 2.67825 0.145894 0.0729468 0.997336i \(-0.476760\pi\)
0.0729468 + 0.997336i \(0.476760\pi\)
\(338\) 41.7531 2.27107
\(339\) 0 0
\(340\) 0 0
\(341\) 11.6924 0.633181
\(342\) 0 0
\(343\) −20.0844 −1.08446
\(344\) 60.5156 3.26278
\(345\) 0 0
\(346\) 39.4439 2.12052
\(347\) −9.57418 −0.513969 −0.256984 0.966416i \(-0.582729\pi\)
−0.256984 + 0.966416i \(0.582729\pi\)
\(348\) 0 0
\(349\) −17.9816 −0.962534 −0.481267 0.876574i \(-0.659823\pi\)
−0.481267 + 0.876574i \(0.659823\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −61.3849 −3.27183
\(353\) 4.56924 0.243196 0.121598 0.992579i \(-0.461198\pi\)
0.121598 + 0.992579i \(0.461198\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 32.9297 1.74527
\(357\) 0 0
\(358\) 47.6306 2.51736
\(359\) −4.87750 −0.257425 −0.128712 0.991682i \(-0.541084\pi\)
−0.128712 + 0.991682i \(0.541084\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −17.4758 −0.918509
\(363\) 0 0
\(364\) 56.3227 2.95211
\(365\) 0 0
\(366\) 0 0
\(367\) 25.8826 1.35106 0.675531 0.737332i \(-0.263915\pi\)
0.675531 + 0.737332i \(0.263915\pi\)
\(368\) 42.1536 2.19741
\(369\) 0 0
\(370\) 0 0
\(371\) −0.742155 −0.0385308
\(372\) 0 0
\(373\) 0.900675 0.0466352 0.0233176 0.999728i \(-0.492577\pi\)
0.0233176 + 0.999728i \(0.492577\pi\)
\(374\) −67.9282 −3.51248
\(375\) 0 0
\(376\) −9.30388 −0.479811
\(377\) −44.6764 −2.30095
\(378\) 0 0
\(379\) 14.9672 0.768815 0.384407 0.923164i \(-0.374406\pi\)
0.384407 + 0.923164i \(0.374406\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −39.7770 −2.03517
\(383\) −26.8385 −1.37138 −0.685691 0.727893i \(-0.740500\pi\)
−0.685691 + 0.727893i \(0.740500\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.9923 1.57747
\(387\) 0 0
\(388\) 27.4791 1.39504
\(389\) 11.3531 0.575626 0.287813 0.957687i \(-0.407072\pi\)
0.287813 + 0.957687i \(0.407072\pi\)
\(390\) 0 0
\(391\) 22.4766 1.13669
\(392\) −23.4431 −1.18405
\(393\) 0 0
\(394\) 21.5094 1.08363
\(395\) 0 0
\(396\) 0 0
\(397\) −4.89754 −0.245801 −0.122900 0.992419i \(-0.539220\pi\)
−0.122900 + 0.992419i \(0.539220\pi\)
\(398\) −67.7798 −3.39750
\(399\) 0 0
\(400\) 0 0
\(401\) 29.0548 1.45093 0.725465 0.688259i \(-0.241625\pi\)
0.725465 + 0.688259i \(0.241625\pi\)
\(402\) 0 0
\(403\) −15.8769 −0.790884
\(404\) 14.7617 0.734420
\(405\) 0 0
\(406\) −45.7150 −2.26880
\(407\) 25.3251 1.25532
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 87.0627 4.28927
\(413\) 5.89155 0.289904
\(414\) 0 0
\(415\) 0 0
\(416\) 83.3531 4.08672
\(417\) 0 0
\(418\) 10.5261 0.514850
\(419\) −24.0482 −1.17483 −0.587415 0.809286i \(-0.699854\pi\)
−0.587415 + 0.809286i \(0.699854\pi\)
\(420\) 0 0
\(421\) 33.1500 1.61563 0.807815 0.589436i \(-0.200650\pi\)
0.807815 + 0.589436i \(0.200650\pi\)
\(422\) −5.16738 −0.251544
\(423\) 0 0
\(424\) −3.03278 −0.147285
\(425\) 0 0
\(426\) 0 0
\(427\) −0.277831 −0.0134452
\(428\) −85.3817 −4.12708
\(429\) 0 0
\(430\) 0 0
\(431\) −35.5304 −1.71144 −0.855721 0.517438i \(-0.826886\pi\)
−0.855721 + 0.517438i \(0.826886\pi\)
\(432\) 0 0
\(433\) 34.6016 1.66285 0.831425 0.555638i \(-0.187526\pi\)
0.831425 + 0.555638i \(0.187526\pi\)
\(434\) −16.2460 −0.779831
\(435\) 0 0
\(436\) 73.2899 3.50995
\(437\) −3.48297 −0.166613
\(438\) 0 0
\(439\) −1.66335 −0.0793872 −0.0396936 0.999212i \(-0.512638\pi\)
−0.0396936 + 0.999212i \(0.512638\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 92.2380 4.38732
\(443\) 36.3636 1.72769 0.863843 0.503761i \(-0.168051\pi\)
0.863843 + 0.503761i \(0.168051\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −35.2721 −1.67018
\(447\) 0 0
\(448\) 35.6777 1.68561
\(449\) 34.2563 1.61666 0.808328 0.588733i \(-0.200373\pi\)
0.808328 + 0.588733i \(0.200373\pi\)
\(450\) 0 0
\(451\) 44.9960 2.11878
\(452\) −1.85952 −0.0874643
\(453\) 0 0
\(454\) 3.36943 0.158135
\(455\) 0 0
\(456\) 0 0
\(457\) 21.3301 0.997779 0.498890 0.866665i \(-0.333741\pi\)
0.498890 + 0.866665i \(0.333741\pi\)
\(458\) −33.8654 −1.58243
\(459\) 0 0
\(460\) 0 0
\(461\) 30.9266 1.44040 0.720198 0.693768i \(-0.244051\pi\)
0.720198 + 0.693768i \(0.244051\pi\)
\(462\) 0 0
\(463\) 37.3823 1.73731 0.868653 0.495422i \(-0.164986\pi\)
0.868653 + 0.495422i \(0.164986\pi\)
\(464\) −101.053 −4.69125
\(465\) 0 0
\(466\) −53.0188 −2.45605
\(467\) −17.7855 −0.823015 −0.411507 0.911406i \(-0.634998\pi\)
−0.411507 + 0.911406i \(0.634998\pi\)
\(468\) 0 0
\(469\) 10.6078 0.489821
\(470\) 0 0
\(471\) 0 0
\(472\) 24.0755 1.10817
\(473\) −28.4705 −1.30907
\(474\) 0 0
\(475\) 0 0
\(476\) 67.9282 3.11348
\(477\) 0 0
\(478\) −21.3973 −0.978688
\(479\) −2.21111 −0.101028 −0.0505141 0.998723i \(-0.516086\pi\)
−0.0505141 + 0.998723i \(0.516086\pi\)
\(480\) 0 0
\(481\) −34.3883 −1.56797
\(482\) −34.4026 −1.56699
\(483\) 0 0
\(484\) 23.2527 1.05694
\(485\) 0 0
\(486\) 0 0
\(487\) −21.9234 −0.993445 −0.496722 0.867910i \(-0.665463\pi\)
−0.496722 + 0.867910i \(0.665463\pi\)
\(488\) −1.13534 −0.0513945
\(489\) 0 0
\(490\) 0 0
\(491\) −15.4885 −0.698984 −0.349492 0.936939i \(-0.613646\pi\)
−0.349492 + 0.936939i \(0.613646\pi\)
\(492\) 0 0
\(493\) −53.8821 −2.42673
\(494\) −14.2932 −0.643080
\(495\) 0 0
\(496\) −35.9116 −1.61248
\(497\) −5.89155 −0.264272
\(498\) 0 0
\(499\) 21.3739 0.956826 0.478413 0.878135i \(-0.341212\pi\)
0.478413 + 0.878135i \(0.341212\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −65.3146 −2.91513
\(503\) −23.3064 −1.03918 −0.519591 0.854415i \(-0.673916\pi\)
−0.519591 + 0.854415i \(0.673916\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −36.6622 −1.62983
\(507\) 0 0
\(508\) −60.4843 −2.68356
\(509\) −3.53770 −0.156806 −0.0784030 0.996922i \(-0.524982\pi\)
−0.0784030 + 0.996922i \(0.524982\pi\)
\(510\) 0 0
\(511\) −3.84163 −0.169944
\(512\) −14.2064 −0.627841
\(513\) 0 0
\(514\) −11.0328 −0.486635
\(515\) 0 0
\(516\) 0 0
\(517\) 4.37715 0.192507
\(518\) −35.1877 −1.54606
\(519\) 0 0
\(520\) 0 0
\(521\) 16.1671 0.708294 0.354147 0.935190i \(-0.384771\pi\)
0.354147 + 0.935190i \(0.384771\pi\)
\(522\) 0 0
\(523\) −9.27469 −0.405554 −0.202777 0.979225i \(-0.564997\pi\)
−0.202777 + 0.979225i \(0.564997\pi\)
\(524\) 5.47514 0.239183
\(525\) 0 0
\(526\) 13.5750 0.591897
\(527\) −19.1484 −0.834116
\(528\) 0 0
\(529\) −10.8689 −0.472561
\(530\) 0 0
\(531\) 0 0
\(532\) −10.5261 −0.456366
\(533\) −61.0990 −2.64649
\(534\) 0 0
\(535\) 0 0
\(536\) 43.3480 1.87235
\(537\) 0 0
\(538\) −46.3792 −1.99955
\(539\) 11.0291 0.475059
\(540\) 0 0
\(541\) 29.9816 1.28901 0.644505 0.764600i \(-0.277063\pi\)
0.644505 + 0.764600i \(0.277063\pi\)
\(542\) −65.5582 −2.81597
\(543\) 0 0
\(544\) 100.528 4.31011
\(545\) 0 0
\(546\) 0 0
\(547\) 10.1458 0.433805 0.216903 0.976193i \(-0.430405\pi\)
0.216903 + 0.976193i \(0.430405\pi\)
\(548\) −98.2113 −4.19538
\(549\) 0 0
\(550\) 0 0
\(551\) 8.34955 0.355703
\(552\) 0 0
\(553\) 28.5609 1.21453
\(554\) 71.7395 3.04792
\(555\) 0 0
\(556\) −68.6822 −2.91277
\(557\) 28.8326 1.22167 0.610837 0.791756i \(-0.290833\pi\)
0.610837 + 0.791756i \(0.290833\pi\)
\(558\) 0 0
\(559\) 38.6594 1.63512
\(560\) 0 0
\(561\) 0 0
\(562\) −17.1283 −0.722514
\(563\) −2.03463 −0.0857492 −0.0428746 0.999080i \(-0.513652\pi\)
−0.0428746 + 0.999080i \(0.513652\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −45.5591 −1.91499
\(567\) 0 0
\(568\) −24.0755 −1.01019
\(569\) −20.2368 −0.848371 −0.424185 0.905575i \(-0.639440\pi\)
−0.424185 + 0.905575i \(0.639440\pi\)
\(570\) 0 0
\(571\) −47.1500 −1.97316 −0.986582 0.163266i \(-0.947797\pi\)
−0.986582 + 0.163266i \(0.947797\pi\)
\(572\) −108.282 −4.52750
\(573\) 0 0
\(574\) −62.5194 −2.60951
\(575\) 0 0
\(576\) 0 0
\(577\) 7.23078 0.301021 0.150511 0.988608i \(-0.451908\pi\)
0.150511 + 0.988608i \(0.451908\pi\)
\(578\) 65.8328 2.73828
\(579\) 0 0
\(580\) 0 0
\(581\) 14.7617 0.612417
\(582\) 0 0
\(583\) 1.42682 0.0590927
\(584\) −15.6986 −0.649614
\(585\) 0 0
\(586\) 47.9861 1.98229
\(587\) −31.6192 −1.30507 −0.652533 0.757761i \(-0.726293\pi\)
−0.652533 + 0.757761i \(0.726293\pi\)
\(588\) 0 0
\(589\) 2.96722 0.122262
\(590\) 0 0
\(591\) 0 0
\(592\) −77.7822 −3.19683
\(593\) 15.7263 0.645803 0.322902 0.946433i \(-0.395342\pi\)
0.322902 + 0.946433i \(0.395342\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.6929 −0.519922
\(597\) 0 0
\(598\) 49.7828 2.03577
\(599\) −0.0635030 −0.00259466 −0.00129733 0.999999i \(-0.500413\pi\)
−0.00129733 + 0.999999i \(0.500413\pi\)
\(600\) 0 0
\(601\) 28.8789 1.17799 0.588996 0.808136i \(-0.299523\pi\)
0.588996 + 0.808136i \(0.299523\pi\)
\(602\) 39.5581 1.61227
\(603\) 0 0
\(604\) −37.1728 −1.51254
\(605\) 0 0
\(606\) 0 0
\(607\) −3.22817 −0.131027 −0.0655136 0.997852i \(-0.520869\pi\)
−0.0655136 + 0.997852i \(0.520869\pi\)
\(608\) −15.5778 −0.631764
\(609\) 0 0
\(610\) 0 0
\(611\) −5.94363 −0.240453
\(612\) 0 0
\(613\) −17.0259 −0.687668 −0.343834 0.939030i \(-0.611726\pi\)
−0.343834 + 0.939030i \(0.611726\pi\)
\(614\) 61.9845 2.50149
\(615\) 0 0
\(616\) −67.6494 −2.72567
\(617\) −0.984773 −0.0396455 −0.0198227 0.999804i \(-0.506310\pi\)
−0.0198227 + 0.999804i \(0.506310\pi\)
\(618\) 0 0
\(619\) 34.4766 1.38573 0.692867 0.721066i \(-0.256347\pi\)
0.692867 + 0.721066i \(0.256347\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −37.1045 −1.48776
\(623\) 13.1426 0.526549
\(624\) 0 0
\(625\) 0 0
\(626\) −70.0604 −2.80018
\(627\) 0 0
\(628\) 39.4320 1.57351
\(629\) −41.4741 −1.65368
\(630\) 0 0
\(631\) −18.4950 −0.736275 −0.368138 0.929771i \(-0.620004\pi\)
−0.368138 + 0.929771i \(0.620004\pi\)
\(632\) 116.712 4.64257
\(633\) 0 0
\(634\) −17.5094 −0.695388
\(635\) 0 0
\(636\) 0 0
\(637\) −14.9762 −0.593379
\(638\) 87.8884 3.47954
\(639\) 0 0
\(640\) 0 0
\(641\) −38.8733 −1.53540 −0.767702 0.640807i \(-0.778600\pi\)
−0.767702 + 0.640807i \(0.778600\pi\)
\(642\) 0 0
\(643\) 45.2302 1.78371 0.891853 0.452325i \(-0.149405\pi\)
0.891853 + 0.452325i \(0.149405\pi\)
\(644\) 36.6622 1.44469
\(645\) 0 0
\(646\) −17.2383 −0.678233
\(647\) −10.5995 −0.416709 −0.208354 0.978053i \(-0.566811\pi\)
−0.208354 + 0.978053i \(0.566811\pi\)
\(648\) 0 0
\(649\) −11.3267 −0.444612
\(650\) 0 0
\(651\) 0 0
\(652\) −25.6777 −1.00562
\(653\) 9.70021 0.379598 0.189799 0.981823i \(-0.439216\pi\)
0.189799 + 0.981823i \(0.439216\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −138.199 −5.39576
\(657\) 0 0
\(658\) −6.08180 −0.237093
\(659\) 12.6294 0.491972 0.245986 0.969273i \(-0.420888\pi\)
0.245986 + 0.969273i \(0.420888\pi\)
\(660\) 0 0
\(661\) 18.9444 0.736852 0.368426 0.929657i \(-0.379897\pi\)
0.368426 + 0.929657i \(0.379897\pi\)
\(662\) −21.1339 −0.821392
\(663\) 0 0
\(664\) 60.3227 2.34098
\(665\) 0 0
\(666\) 0 0
\(667\) −29.0813 −1.12603
\(668\) −40.9574 −1.58469
\(669\) 0 0
\(670\) 0 0
\(671\) 0.534139 0.0206202
\(672\) 0 0
\(673\) 9.28044 0.357735 0.178867 0.983873i \(-0.442757\pi\)
0.178867 + 0.983873i \(0.442757\pi\)
\(674\) 7.15427 0.275572
\(675\) 0 0
\(676\) 80.2716 3.08737
\(677\) 22.9283 0.881208 0.440604 0.897702i \(-0.354764\pi\)
0.440604 + 0.897702i \(0.354764\pi\)
\(678\) 0 0
\(679\) 10.9672 0.420883
\(680\) 0 0
\(681\) 0 0
\(682\) 31.2334 1.19599
\(683\) 32.0059 1.22467 0.612335 0.790598i \(-0.290230\pi\)
0.612335 + 0.790598i \(0.290230\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −53.6504 −2.04838
\(687\) 0 0
\(688\) 87.4429 3.33373
\(689\) −1.93744 −0.0738105
\(690\) 0 0
\(691\) −47.5794 −1.81001 −0.905003 0.425405i \(-0.860132\pi\)
−0.905003 + 0.425405i \(0.860132\pi\)
\(692\) 75.8320 2.88270
\(693\) 0 0
\(694\) −25.5750 −0.970813
\(695\) 0 0
\(696\) 0 0
\(697\) −73.6886 −2.79116
\(698\) −48.0333 −1.81809
\(699\) 0 0
\(700\) 0 0
\(701\) −0.389626 −0.0147160 −0.00735798 0.999973i \(-0.502342\pi\)
−0.00735798 + 0.999973i \(0.502342\pi\)
\(702\) 0 0
\(703\) 6.42681 0.242392
\(704\) −68.5915 −2.58514
\(705\) 0 0
\(706\) 12.2055 0.459362
\(707\) 5.89155 0.221575
\(708\) 0 0
\(709\) 26.6306 1.00013 0.500066 0.865987i \(-0.333309\pi\)
0.500066 + 0.865987i \(0.333309\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 53.7067 2.01274
\(713\) −10.3348 −0.387040
\(714\) 0 0
\(715\) 0 0
\(716\) 91.5714 3.42218
\(717\) 0 0
\(718\) −13.0290 −0.486238
\(719\) −4.13535 −0.154222 −0.0771112 0.997023i \(-0.524570\pi\)
−0.0771112 + 0.997023i \(0.524570\pi\)
\(720\) 0 0
\(721\) 34.7477 1.29407
\(722\) 2.67125 0.0994134
\(723\) 0 0
\(724\) −33.5978 −1.24865
\(725\) 0 0
\(726\) 0 0
\(727\) −33.8034 −1.25370 −0.626850 0.779140i \(-0.715656\pi\)
−0.626850 + 0.779140i \(0.715656\pi\)
\(728\) 91.8595 3.40454
\(729\) 0 0
\(730\) 0 0
\(731\) 46.6252 1.72450
\(732\) 0 0
\(733\) −26.5784 −0.981695 −0.490848 0.871245i \(-0.663313\pi\)
−0.490848 + 0.871245i \(0.663313\pi\)
\(734\) 69.1388 2.55196
\(735\) 0 0
\(736\) 54.2572 1.99995
\(737\) −20.3937 −0.751213
\(738\) 0 0
\(739\) 1.50498 0.0553616 0.0276808 0.999617i \(-0.491188\pi\)
0.0276808 + 0.999617i \(0.491188\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.98248 −0.0727791
\(743\) −14.6561 −0.537679 −0.268840 0.963185i \(-0.586640\pi\)
−0.268840 + 0.963185i \(0.586640\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.40592 0.0880871
\(747\) 0 0
\(748\) −130.594 −4.77499
\(749\) −34.0768 −1.24514
\(750\) 0 0
\(751\) 2.02282 0.0738136 0.0369068 0.999319i \(-0.488250\pi\)
0.0369068 + 0.999319i \(0.488250\pi\)
\(752\) −13.4438 −0.490244
\(753\) 0 0
\(754\) −119.342 −4.34616
\(755\) 0 0
\(756\) 0 0
\(757\) 21.4997 0.781421 0.390710 0.920514i \(-0.372229\pi\)
0.390710 + 0.920514i \(0.372229\pi\)
\(758\) 39.9811 1.45218
\(759\) 0 0
\(760\) 0 0
\(761\) 10.1578 0.368221 0.184111 0.982906i \(-0.441060\pi\)
0.184111 + 0.982906i \(0.441060\pi\)
\(762\) 0 0
\(763\) 29.2509 1.05895
\(764\) −76.4725 −2.76668
\(765\) 0 0
\(766\) −71.6922 −2.59034
\(767\) 15.3802 0.555348
\(768\) 0 0
\(769\) 4.76612 0.171871 0.0859353 0.996301i \(-0.472612\pi\)
0.0859353 + 0.996301i \(0.472612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 59.5836 2.14446
\(773\) −23.9537 −0.861553 −0.430776 0.902459i \(-0.641760\pi\)
−0.430776 + 0.902459i \(0.641760\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 44.8170 1.60884
\(777\) 0 0
\(778\) 30.3269 1.08727
\(779\) 11.4188 0.409120
\(780\) 0 0
\(781\) 11.3267 0.405301
\(782\) 60.0406 2.14705
\(783\) 0 0
\(784\) −33.8744 −1.20980
\(785\) 0 0
\(786\) 0 0
\(787\) 13.7248 0.489235 0.244618 0.969620i \(-0.421338\pi\)
0.244618 + 0.969620i \(0.421338\pi\)
\(788\) 41.3525 1.47312
\(789\) 0 0
\(790\) 0 0
\(791\) −0.742155 −0.0263880
\(792\) 0 0
\(793\) −0.725294 −0.0257560
\(794\) −13.0825 −0.464282
\(795\) 0 0
\(796\) −130.309 −4.61867
\(797\) −2.83575 −0.100447 −0.0502237 0.998738i \(-0.515993\pi\)
−0.0502237 + 0.998738i \(0.515993\pi\)
\(798\) 0 0
\(799\) −7.16833 −0.253597
\(800\) 0 0
\(801\) 0 0
\(802\) 77.6126 2.74060
\(803\) 7.38566 0.260634
\(804\) 0 0
\(805\) 0 0
\(806\) −42.4110 −1.49387
\(807\) 0 0
\(808\) 24.0755 0.846974
\(809\) −12.4849 −0.438946 −0.219473 0.975619i \(-0.570434\pi\)
−0.219473 + 0.975619i \(0.570434\pi\)
\(810\) 0 0
\(811\) −21.6633 −0.760703 −0.380351 0.924842i \(-0.624197\pi\)
−0.380351 + 0.924842i \(0.624197\pi\)
\(812\) −87.8884 −3.08428
\(813\) 0 0
\(814\) 67.6494 2.37111
\(815\) 0 0
\(816\) 0 0
\(817\) −7.22503 −0.252772
\(818\) 58.7674 2.05475
\(819\) 0 0
\(820\) 0 0
\(821\) 38.7442 1.35218 0.676091 0.736818i \(-0.263673\pi\)
0.676091 + 0.736818i \(0.263673\pi\)
\(822\) 0 0
\(823\) 33.0781 1.15303 0.576516 0.817086i \(-0.304412\pi\)
0.576516 + 0.817086i \(0.304412\pi\)
\(824\) 141.995 4.94662
\(825\) 0 0
\(826\) 15.7378 0.547588
\(827\) −6.94995 −0.241673 −0.120837 0.992672i \(-0.538558\pi\)
−0.120837 + 0.992672i \(0.538558\pi\)
\(828\) 0 0
\(829\) 38.2711 1.32921 0.664605 0.747195i \(-0.268600\pi\)
0.664605 + 0.747195i \(0.268600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 93.1387 3.22900
\(833\) −18.0621 −0.625815
\(834\) 0 0
\(835\) 0 0
\(836\) 20.2368 0.699904
\(837\) 0 0
\(838\) −64.2386 −2.21908
\(839\) −17.4413 −0.602139 −0.301069 0.953602i \(-0.597344\pi\)
−0.301069 + 0.953602i \(0.597344\pi\)
\(840\) 0 0
\(841\) 40.7150 1.40396
\(842\) 88.5516 3.05169
\(843\) 0 0
\(844\) −9.93445 −0.341958
\(845\) 0 0
\(846\) 0 0
\(847\) 9.28044 0.318880
\(848\) −4.38226 −0.150487
\(849\) 0 0
\(850\) 0 0
\(851\) −22.3844 −0.767328
\(852\) 0 0
\(853\) 33.5551 1.14891 0.574453 0.818538i \(-0.305215\pi\)
0.574453 + 0.818538i \(0.305215\pi\)
\(854\) −0.742155 −0.0253960
\(855\) 0 0
\(856\) −139.253 −4.75958
\(857\) 26.3782 0.901063 0.450532 0.892760i \(-0.351234\pi\)
0.450532 + 0.892760i \(0.351234\pi\)
\(858\) 0 0
\(859\) −11.8873 −0.405588 −0.202794 0.979221i \(-0.565002\pi\)
−0.202794 + 0.979221i \(0.565002\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −94.9105 −3.23267
\(863\) 21.6220 0.736022 0.368011 0.929821i \(-0.380039\pi\)
0.368011 + 0.929821i \(0.380039\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 92.4295 3.14088
\(867\) 0 0
\(868\) −31.2334 −1.06013
\(869\) −54.9091 −1.86266
\(870\) 0 0
\(871\) 27.6922 0.938313
\(872\) 119.532 4.04787
\(873\) 0 0
\(874\) −9.30388 −0.314708
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0813 −1.15084 −0.575421 0.817857i \(-0.695162\pi\)
−0.575421 + 0.817857i \(0.695162\pi\)
\(878\) −4.44321 −0.149951
\(879\) 0 0
\(880\) 0 0
\(881\) −24.9195 −0.839559 −0.419779 0.907626i \(-0.637893\pi\)
−0.419779 + 0.907626i \(0.637893\pi\)
\(882\) 0 0
\(883\) 37.5520 1.26372 0.631862 0.775081i \(-0.282291\pi\)
0.631862 + 0.775081i \(0.282291\pi\)
\(884\) 177.330 5.96427
\(885\) 0 0
\(886\) 97.1360 3.26335
\(887\) 3.24692 0.109021 0.0545104 0.998513i \(-0.482640\pi\)
0.0545104 + 0.998513i \(0.482640\pi\)
\(888\) 0 0
\(889\) −24.1400 −0.809629
\(890\) 0 0
\(891\) 0 0
\(892\) −67.8117 −2.27051
\(893\) 1.11080 0.0371716
\(894\) 0 0
\(895\) 0 0
\(896\) 31.4454 1.05052
\(897\) 0 0
\(898\) 91.5070 3.05363
\(899\) 24.7750 0.826292
\(900\) 0 0
\(901\) −2.33665 −0.0778452
\(902\) 120.195 4.00207
\(903\) 0 0
\(904\) −3.03278 −0.100869
\(905\) 0 0
\(906\) 0 0
\(907\) 24.6312 0.817865 0.408932 0.912565i \(-0.365901\pi\)
0.408932 + 0.912565i \(0.365901\pi\)
\(908\) 6.47783 0.214974
\(909\) 0 0
\(910\) 0 0
\(911\) −4.55353 −0.150865 −0.0754326 0.997151i \(-0.524034\pi\)
−0.0754326 + 0.997151i \(0.524034\pi\)
\(912\) 0 0
\(913\) −28.3797 −0.939232
\(914\) 56.9779 1.88466
\(915\) 0 0
\(916\) −65.1072 −2.15120
\(917\) 2.18519 0.0721615
\(918\) 0 0
\(919\) −25.0844 −0.827458 −0.413729 0.910400i \(-0.635774\pi\)
−0.413729 + 0.910400i \(0.635774\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 82.6126 2.72070
\(923\) −15.3802 −0.506247
\(924\) 0 0
\(925\) 0 0
\(926\) 99.8574 3.28152
\(927\) 0 0
\(928\) −130.068 −4.26969
\(929\) −48.5495 −1.59286 −0.796428 0.604733i \(-0.793280\pi\)
−0.796428 + 0.604733i \(0.793280\pi\)
\(930\) 0 0
\(931\) 2.79890 0.0917301
\(932\) −101.930 −3.33884
\(933\) 0 0
\(934\) −47.5094 −1.55456
\(935\) 0 0
\(936\) 0 0
\(937\) −4.54678 −0.148537 −0.0742684 0.997238i \(-0.523662\pi\)
−0.0742684 + 0.997238i \(0.523662\pi\)
\(938\) 28.3359 0.925200
\(939\) 0 0
\(940\) 0 0
\(941\) −3.60121 −0.117396 −0.0586980 0.998276i \(-0.518695\pi\)
−0.0586980 + 0.998276i \(0.518695\pi\)
\(942\) 0 0
\(943\) −39.7713 −1.29513
\(944\) 34.7883 1.13226
\(945\) 0 0
\(946\) −76.0516 −2.47265
\(947\) 41.5276 1.34947 0.674733 0.738062i \(-0.264259\pi\)
0.674733 + 0.738062i \(0.264259\pi\)
\(948\) 0 0
\(949\) −10.0288 −0.325549
\(950\) 0 0
\(951\) 0 0
\(952\) 110.787 3.59064
\(953\) 28.7471 0.931209 0.465605 0.884993i \(-0.345837\pi\)
0.465605 + 0.884993i \(0.345837\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −41.1369 −1.33046
\(957\) 0 0
\(958\) −5.90642 −0.190828
\(959\) −39.1973 −1.26575
\(960\) 0 0
\(961\) −22.1956 −0.715987
\(962\) −91.8595 −2.96167
\(963\) 0 0
\(964\) −66.1400 −2.13023
\(965\) 0 0
\(966\) 0 0
\(967\) −18.5551 −0.596693 −0.298346 0.954458i \(-0.596435\pi\)
−0.298346 + 0.954458i \(0.596435\pi\)
\(968\) 37.9240 1.21892
\(969\) 0 0
\(970\) 0 0
\(971\) −4.20100 −0.134817 −0.0674083 0.997725i \(-0.521473\pi\)
−0.0674083 + 0.997725i \(0.521473\pi\)
\(972\) 0 0
\(973\) −27.4119 −0.878785
\(974\) −58.5628 −1.87647
\(975\) 0 0
\(976\) −1.64053 −0.0525121
\(977\) −43.7280 −1.39898 −0.699492 0.714641i \(-0.746590\pi\)
−0.699492 + 0.714641i \(0.746590\pi\)
\(978\) 0 0
\(979\) −25.2671 −0.807541
\(980\) 0 0
\(981\) 0 0
\(982\) −41.3735 −1.32028
\(983\) 18.6112 0.593604 0.296802 0.954939i \(-0.404080\pi\)
0.296802 + 0.954939i \(0.404080\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −143.932 −4.58374
\(987\) 0 0
\(988\) −27.4791 −0.874226
\(989\) 25.1646 0.800188
\(990\) 0 0
\(991\) 33.6266 1.06818 0.534092 0.845426i \(-0.320654\pi\)
0.534092 + 0.845426i \(0.320654\pi\)
\(992\) −46.2229 −1.46758
\(993\) 0 0
\(994\) −15.7378 −0.499172
\(995\) 0 0
\(996\) 0 0
\(997\) −31.6808 −1.00334 −0.501671 0.865058i \(-0.667281\pi\)
−0.501671 + 0.865058i \(0.667281\pi\)
\(998\) 57.0949 1.80731
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bx.1.12 12
3.2 odd 2 inner 4275.2.a.bx.1.2 12
5.2 odd 4 855.2.c.f.514.11 yes 12
5.3 odd 4 855.2.c.f.514.1 12
5.4 even 2 inner 4275.2.a.bx.1.1 12
15.2 even 4 855.2.c.f.514.2 yes 12
15.8 even 4 855.2.c.f.514.12 yes 12
15.14 odd 2 inner 4275.2.a.bx.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.c.f.514.1 12 5.3 odd 4
855.2.c.f.514.2 yes 12 15.2 even 4
855.2.c.f.514.11 yes 12 5.2 odd 4
855.2.c.f.514.12 yes 12 15.8 even 4
4275.2.a.bx.1.1 12 5.4 even 2 inner
4275.2.a.bx.1.2 12 3.2 odd 2 inner
4275.2.a.bx.1.11 12 15.14 odd 2 inner
4275.2.a.bx.1.12 12 1.1 even 1 trivial