Properties

Label 4275.2.a.bx.1.1
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 19x^{10} + 115x^{8} - 288x^{6} + 295x^{4} - 111x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 855)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.05007\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.67125 q^{2} +5.13555 q^{4} -2.04966 q^{7} -8.37582 q^{8} -3.94053 q^{11} -5.35075 q^{13} +5.47514 q^{14} +12.1028 q^{16} -6.45329 q^{17} -1.00000 q^{19} +10.5261 q^{22} -3.48297 q^{23} +14.2932 q^{26} -10.5261 q^{28} -8.34955 q^{29} -2.96722 q^{31} -15.5778 q^{32} +17.2383 q^{34} +6.42681 q^{37} +2.67125 q^{38} -11.4188 q^{41} -7.22503 q^{43} -20.2368 q^{44} +9.30388 q^{46} +1.11080 q^{47} -2.79890 q^{49} -27.4791 q^{52} +0.362087 q^{53} +17.1676 q^{56} +22.3037 q^{58} +2.87441 q^{59} -0.135550 q^{61} +7.92618 q^{62} +17.4066 q^{64} -5.17537 q^{67} -33.1412 q^{68} -2.87441 q^{71} +1.87428 q^{73} -17.1676 q^{74} -5.13555 q^{76} +8.07675 q^{77} +13.9344 q^{79} +30.5023 q^{82} -7.20201 q^{83} +19.2998 q^{86} +33.0052 q^{88} +6.41211 q^{89} +10.9672 q^{91} -17.8870 q^{92} -2.96722 q^{94} -5.35075 q^{97} +7.47654 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 40 q^{16} - 12 q^{19} + 24 q^{31} + 56 q^{34} + 80 q^{46} + 40 q^{49} + 44 q^{61} + 72 q^{64} - 16 q^{76} + 48 q^{79} + 72 q^{91} + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.67125 −1.88886 −0.944428 0.328719i \(-0.893383\pi\)
−0.944428 + 0.328719i \(0.893383\pi\)
\(3\) 0 0
\(4\) 5.13555 2.56777
\(5\) 0 0
\(6\) 0 0
\(7\) −2.04966 −0.774698 −0.387349 0.921933i \(-0.626609\pi\)
−0.387349 + 0.921933i \(0.626609\pi\)
\(8\) −8.37582 −2.96130
\(9\) 0 0
\(10\) 0 0
\(11\) −3.94053 −1.18812 −0.594058 0.804422i \(-0.702475\pi\)
−0.594058 + 0.804422i \(0.702475\pi\)
\(12\) 0 0
\(13\) −5.35075 −1.48403 −0.742016 0.670382i \(-0.766130\pi\)
−0.742016 + 0.670382i \(0.766130\pi\)
\(14\) 5.47514 1.46329
\(15\) 0 0
\(16\) 12.1028 3.02569
\(17\) −6.45329 −1.56515 −0.782577 0.622554i \(-0.786095\pi\)
−0.782577 + 0.622554i \(0.786095\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 10.5261 2.24418
\(23\) −3.48297 −0.726250 −0.363125 0.931740i \(-0.618290\pi\)
−0.363125 + 0.931740i \(0.618290\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 14.2932 2.80312
\(27\) 0 0
\(28\) −10.5261 −1.98925
\(29\) −8.34955 −1.55047 −0.775236 0.631672i \(-0.782369\pi\)
−0.775236 + 0.631672i \(0.782369\pi\)
\(30\) 0 0
\(31\) −2.96722 −0.532929 −0.266465 0.963845i \(-0.585856\pi\)
−0.266465 + 0.963845i \(0.585856\pi\)
\(32\) −15.5778 −2.75380
\(33\) 0 0
\(34\) 17.2383 2.95635
\(35\) 0 0
\(36\) 0 0
\(37\) 6.42681 1.05656 0.528280 0.849070i \(-0.322837\pi\)
0.528280 + 0.849070i \(0.322837\pi\)
\(38\) 2.67125 0.433333
\(39\) 0 0
\(40\) 0 0
\(41\) −11.4188 −1.78331 −0.891656 0.452714i \(-0.850456\pi\)
−0.891656 + 0.452714i \(0.850456\pi\)
\(42\) 0 0
\(43\) −7.22503 −1.10181 −0.550904 0.834569i \(-0.685717\pi\)
−0.550904 + 0.834569i \(0.685717\pi\)
\(44\) −20.2368 −3.05081
\(45\) 0 0
\(46\) 9.30388 1.37178
\(47\) 1.11080 0.162027 0.0810135 0.996713i \(-0.474184\pi\)
0.0810135 + 0.996713i \(0.474184\pi\)
\(48\) 0 0
\(49\) −2.79890 −0.399842
\(50\) 0 0
\(51\) 0 0
\(52\) −27.4791 −3.81066
\(53\) 0.362087 0.0497365 0.0248682 0.999691i \(-0.492083\pi\)
0.0248682 + 0.999691i \(0.492083\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.1676 2.29411
\(57\) 0 0
\(58\) 22.3037 2.92862
\(59\) 2.87441 0.374216 0.187108 0.982339i \(-0.440089\pi\)
0.187108 + 0.982339i \(0.440089\pi\)
\(60\) 0 0
\(61\) −0.135550 −0.0173554 −0.00867769 0.999962i \(-0.502762\pi\)
−0.00867769 + 0.999962i \(0.502762\pi\)
\(62\) 7.92618 1.00663
\(63\) 0 0
\(64\) 17.4066 2.17583
\(65\) 0 0
\(66\) 0 0
\(67\) −5.17537 −0.632273 −0.316136 0.948714i \(-0.602386\pi\)
−0.316136 + 0.948714i \(0.602386\pi\)
\(68\) −33.1412 −4.01896
\(69\) 0 0
\(70\) 0 0
\(71\) −2.87441 −0.341129 −0.170565 0.985346i \(-0.554559\pi\)
−0.170565 + 0.985346i \(0.554559\pi\)
\(72\) 0 0
\(73\) 1.87428 0.219368 0.109684 0.993967i \(-0.465016\pi\)
0.109684 + 0.993967i \(0.465016\pi\)
\(74\) −17.1676 −1.99569
\(75\) 0 0
\(76\) −5.13555 −0.589088
\(77\) 8.07675 0.920431
\(78\) 0 0
\(79\) 13.9344 1.56775 0.783874 0.620920i \(-0.213241\pi\)
0.783874 + 0.620920i \(0.213241\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 30.5023 3.36842
\(83\) −7.20201 −0.790523 −0.395261 0.918569i \(-0.629346\pi\)
−0.395261 + 0.918569i \(0.629346\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 19.2998 2.08115
\(87\) 0 0
\(88\) 33.0052 3.51837
\(89\) 6.41211 0.679682 0.339841 0.940483i \(-0.389627\pi\)
0.339841 + 0.940483i \(0.389627\pi\)
\(90\) 0 0
\(91\) 10.9672 1.14968
\(92\) −17.8870 −1.86485
\(93\) 0 0
\(94\) −2.96722 −0.306046
\(95\) 0 0
\(96\) 0 0
\(97\) −5.35075 −0.543287 −0.271643 0.962398i \(-0.587567\pi\)
−0.271643 + 0.962398i \(0.587567\pi\)
\(98\) 7.47654 0.755244
\(99\) 0 0
\(100\) 0 0
\(101\) 2.87441 0.286014 0.143007 0.989722i \(-0.454323\pi\)
0.143007 + 0.989722i \(0.454323\pi\)
\(102\) 0 0
\(103\) −16.9529 −1.67042 −0.835211 0.549929i \(-0.814655\pi\)
−0.835211 + 0.549929i \(0.814655\pi\)
\(104\) 44.8170 4.39466
\(105\) 0 0
\(106\) −0.967223 −0.0939450
\(107\) 16.6256 1.60726 0.803629 0.595130i \(-0.202899\pi\)
0.803629 + 0.595130i \(0.202899\pi\)
\(108\) 0 0
\(109\) 14.2711 1.36692 0.683462 0.729986i \(-0.260474\pi\)
0.683462 + 0.729986i \(0.260474\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −24.8066 −2.34400
\(113\) 0.362087 0.0340623 0.0170311 0.999855i \(-0.494579\pi\)
0.0170311 + 0.999855i \(0.494579\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −42.8795 −3.98126
\(117\) 0 0
\(118\) −7.67824 −0.706840
\(119\) 13.2270 1.21252
\(120\) 0 0
\(121\) 4.52780 0.411618
\(122\) 0.362087 0.0327818
\(123\) 0 0
\(124\) −15.2383 −1.36844
\(125\) 0 0
\(126\) 0 0
\(127\) 11.7776 1.04509 0.522545 0.852612i \(-0.324983\pi\)
0.522545 + 0.852612i \(0.324983\pi\)
\(128\) −15.3418 −1.35603
\(129\) 0 0
\(130\) 0 0
\(131\) 1.06613 0.0931478 0.0465739 0.998915i \(-0.485170\pi\)
0.0465739 + 0.998915i \(0.485170\pi\)
\(132\) 0 0
\(133\) 2.04966 0.177728
\(134\) 13.8247 1.19427
\(135\) 0 0
\(136\) 54.0516 4.63489
\(137\) 19.1238 1.63386 0.816929 0.576738i \(-0.195675\pi\)
0.816929 + 0.576738i \(0.195675\pi\)
\(138\) 0 0
\(139\) −13.3739 −1.13436 −0.567179 0.823595i \(-0.691965\pi\)
−0.567179 + 0.823595i \(0.691965\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7.67824 0.644344
\(143\) 21.0848 1.76320
\(144\) 0 0
\(145\) 0 0
\(146\) −5.00666 −0.414354
\(147\) 0 0
\(148\) 33.0052 2.71301
\(149\) −2.47158 −0.202480 −0.101240 0.994862i \(-0.532281\pi\)
−0.101240 + 0.994862i \(0.532281\pi\)
\(150\) 0 0
\(151\) −7.23832 −0.589046 −0.294523 0.955644i \(-0.595161\pi\)
−0.294523 + 0.955644i \(0.595161\pi\)
\(152\) 8.37582 0.679369
\(153\) 0 0
\(154\) −21.5750 −1.73856
\(155\) 0 0
\(156\) 0 0
\(157\) −7.67824 −0.612791 −0.306395 0.951904i \(-0.599123\pi\)
−0.306395 + 0.951904i \(0.599123\pi\)
\(158\) −37.2223 −2.96125
\(159\) 0 0
\(160\) 0 0
\(161\) 7.13891 0.562625
\(162\) 0 0
\(163\) 4.99999 0.391630 0.195815 0.980641i \(-0.437265\pi\)
0.195815 + 0.980641i \(0.437265\pi\)
\(164\) −58.6417 −4.57914
\(165\) 0 0
\(166\) 19.2383 1.49318
\(167\) 7.97526 0.617144 0.308572 0.951201i \(-0.400149\pi\)
0.308572 + 0.951201i \(0.400149\pi\)
\(168\) 0 0
\(169\) 15.6306 1.20235
\(170\) 0 0
\(171\) 0 0
\(172\) −37.1045 −2.82919
\(173\) −14.7661 −1.12265 −0.561323 0.827597i \(-0.689707\pi\)
−0.561323 + 0.827597i \(0.689707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −47.6914 −3.59487
\(177\) 0 0
\(178\) −17.1283 −1.28382
\(179\) 17.8309 1.33274 0.666371 0.745620i \(-0.267847\pi\)
0.666371 + 0.745620i \(0.267847\pi\)
\(180\) 0 0
\(181\) −6.54220 −0.486278 −0.243139 0.969991i \(-0.578177\pi\)
−0.243139 + 0.969991i \(0.578177\pi\)
\(182\) −29.2961 −2.17157
\(183\) 0 0
\(184\) 29.1728 2.15065
\(185\) 0 0
\(186\) 0 0
\(187\) 25.4294 1.85958
\(188\) 5.70458 0.416049
\(189\) 0 0
\(190\) 0 0
\(191\) −14.8908 −1.07746 −0.538731 0.842478i \(-0.681096\pi\)
−0.538731 + 0.842478i \(0.681096\pi\)
\(192\) 0 0
\(193\) −11.6022 −0.835143 −0.417572 0.908644i \(-0.637119\pi\)
−0.417572 + 0.908644i \(0.637119\pi\)
\(194\) 14.2932 1.02619
\(195\) 0 0
\(196\) −14.3739 −1.02671
\(197\) −8.05221 −0.573696 −0.286848 0.957976i \(-0.592607\pi\)
−0.286848 + 0.957976i \(0.592607\pi\)
\(198\) 0 0
\(199\) −25.3739 −1.79871 −0.899353 0.437223i \(-0.855962\pi\)
−0.899353 + 0.437223i \(0.855962\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.67824 −0.540239
\(203\) 17.1137 1.20115
\(204\) 0 0
\(205\) 0 0
\(206\) 45.2854 3.15519
\(207\) 0 0
\(208\) −64.7590 −4.49023
\(209\) 3.94053 0.272572
\(210\) 0 0
\(211\) −1.93445 −0.133173 −0.0665864 0.997781i \(-0.521211\pi\)
−0.0665864 + 0.997781i \(0.521211\pi\)
\(212\) 1.85952 0.127712
\(213\) 0 0
\(214\) −44.4111 −3.03588
\(215\) 0 0
\(216\) 0 0
\(217\) 6.08180 0.412859
\(218\) −38.1216 −2.58192
\(219\) 0 0
\(220\) 0 0
\(221\) 34.5300 2.32274
\(222\) 0 0
\(223\) 13.2044 0.884231 0.442115 0.896958i \(-0.354228\pi\)
0.442115 + 0.896958i \(0.354228\pi\)
\(224\) 31.9292 2.13336
\(225\) 0 0
\(226\) −0.967223 −0.0643387
\(227\) −1.26137 −0.0837201 −0.0418601 0.999123i \(-0.513328\pi\)
−0.0418601 + 0.999123i \(0.513328\pi\)
\(228\) 0 0
\(229\) −12.6777 −0.837769 −0.418885 0.908039i \(-0.637579\pi\)
−0.418885 + 0.908039i \(0.637579\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 69.9343 4.59141
\(233\) 19.8480 1.30029 0.650143 0.759812i \(-0.274709\pi\)
0.650143 + 0.759812i \(0.274709\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.7617 0.960902
\(237\) 0 0
\(238\) −35.3327 −2.29028
\(239\) −8.01022 −0.518138 −0.259069 0.965859i \(-0.583416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(240\) 0 0
\(241\) −12.8789 −0.829600 −0.414800 0.909913i \(-0.636148\pi\)
−0.414800 + 0.909913i \(0.636148\pi\)
\(242\) −12.0949 −0.777487
\(243\) 0 0
\(244\) −0.696123 −0.0445647
\(245\) 0 0
\(246\) 0 0
\(247\) 5.35075 0.340460
\(248\) 24.8529 1.57816
\(249\) 0 0
\(250\) 0 0
\(251\) −24.4510 −1.54333 −0.771667 0.636027i \(-0.780577\pi\)
−0.771667 + 0.636027i \(0.780577\pi\)
\(252\) 0 0
\(253\) 13.7248 0.862869
\(254\) −31.4608 −1.97402
\(255\) 0 0
\(256\) 6.16833 0.385520
\(257\) 4.13020 0.257635 0.128817 0.991668i \(-0.458882\pi\)
0.128817 + 0.991668i \(0.458882\pi\)
\(258\) 0 0
\(259\) −13.1728 −0.818516
\(260\) 0 0
\(261\) 0 0
\(262\) −2.84788 −0.175943
\(263\) −5.08189 −0.313363 −0.156681 0.987649i \(-0.550080\pi\)
−0.156681 + 0.987649i \(0.550080\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.47514 −0.335703
\(267\) 0 0
\(268\) −26.5784 −1.62353
\(269\) −17.3624 −1.05860 −0.529302 0.848434i \(-0.677546\pi\)
−0.529302 + 0.848434i \(0.677546\pi\)
\(270\) 0 0
\(271\) −24.5422 −1.49083 −0.745416 0.666599i \(-0.767749\pi\)
−0.745416 + 0.666599i \(0.767749\pi\)
\(272\) −78.1027 −4.73567
\(273\) 0 0
\(274\) −51.0844 −3.08612
\(275\) 0 0
\(276\) 0 0
\(277\) −26.8562 −1.61363 −0.806817 0.590801i \(-0.798812\pi\)
−0.806817 + 0.590801i \(0.798812\pi\)
\(278\) 35.7249 2.14264
\(279\) 0 0
\(280\) 0 0
\(281\) −6.41211 −0.382514 −0.191257 0.981540i \(-0.561256\pi\)
−0.191257 + 0.981540i \(0.561256\pi\)
\(282\) 0 0
\(283\) 17.0554 1.01384 0.506919 0.861994i \(-0.330784\pi\)
0.506919 + 0.861994i \(0.330784\pi\)
\(284\) −14.7617 −0.875943
\(285\) 0 0
\(286\) −56.3227 −3.33043
\(287\) 23.4046 1.38153
\(288\) 0 0
\(289\) 24.6450 1.44970
\(290\) 0 0
\(291\) 0 0
\(292\) 9.62545 0.563287
\(293\) −17.9639 −1.04946 −0.524732 0.851267i \(-0.675835\pi\)
−0.524732 + 0.851267i \(0.675835\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −53.8298 −3.12879
\(297\) 0 0
\(298\) 6.60219 0.382455
\(299\) 18.6365 1.07778
\(300\) 0 0
\(301\) 14.8089 0.853568
\(302\) 19.3353 1.11262
\(303\) 0 0
\(304\) −12.1028 −0.694142
\(305\) 0 0
\(306\) 0 0
\(307\) −23.2044 −1.32434 −0.662172 0.749352i \(-0.730365\pi\)
−0.662172 + 0.749352i \(0.730365\pi\)
\(308\) 41.4785 2.36346
\(309\) 0 0
\(310\) 0 0
\(311\) −13.8903 −0.787649 −0.393825 0.919186i \(-0.628848\pi\)
−0.393825 + 0.919186i \(0.628848\pi\)
\(312\) 0 0
\(313\) 26.2276 1.48247 0.741237 0.671244i \(-0.234240\pi\)
0.741237 + 0.671244i \(0.234240\pi\)
\(314\) 20.5105 1.15747
\(315\) 0 0
\(316\) 71.5610 4.02562
\(317\) 6.55478 0.368153 0.184077 0.982912i \(-0.441071\pi\)
0.184077 + 0.982912i \(0.441071\pi\)
\(318\) 0 0
\(319\) 32.9017 1.84214
\(320\) 0 0
\(321\) 0 0
\(322\) −19.0698 −1.06272
\(323\) 6.45329 0.359071
\(324\) 0 0
\(325\) 0 0
\(326\) −13.3562 −0.739732
\(327\) 0 0
\(328\) 95.6416 5.28092
\(329\) −2.27676 −0.125522
\(330\) 0 0
\(331\) −7.91163 −0.434863 −0.217431 0.976076i \(-0.569768\pi\)
−0.217431 + 0.976076i \(0.569768\pi\)
\(332\) −36.9863 −2.02988
\(333\) 0 0
\(334\) −21.3039 −1.16570
\(335\) 0 0
\(336\) 0 0
\(337\) −2.67825 −0.145894 −0.0729468 0.997336i \(-0.523240\pi\)
−0.0729468 + 0.997336i \(0.523240\pi\)
\(338\) −41.7531 −2.27107
\(339\) 0 0
\(340\) 0 0
\(341\) 11.6924 0.633181
\(342\) 0 0
\(343\) 20.0844 1.08446
\(344\) 60.5156 3.26278
\(345\) 0 0
\(346\) 39.4439 2.12052
\(347\) 9.57418 0.513969 0.256984 0.966416i \(-0.417271\pi\)
0.256984 + 0.966416i \(0.417271\pi\)
\(348\) 0 0
\(349\) −17.9816 −0.962534 −0.481267 0.876574i \(-0.659823\pi\)
−0.481267 + 0.876574i \(0.659823\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 61.3849 3.27183
\(353\) −4.56924 −0.243196 −0.121598 0.992579i \(-0.538802\pi\)
−0.121598 + 0.992579i \(0.538802\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 32.9297 1.74527
\(357\) 0 0
\(358\) −47.6306 −2.51736
\(359\) −4.87750 −0.257425 −0.128712 0.991682i \(-0.541084\pi\)
−0.128712 + 0.991682i \(0.541084\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 17.4758 0.918509
\(363\) 0 0
\(364\) 56.3227 2.95211
\(365\) 0 0
\(366\) 0 0
\(367\) −25.8826 −1.35106 −0.675531 0.737332i \(-0.736085\pi\)
−0.675531 + 0.737332i \(0.736085\pi\)
\(368\) −42.1536 −2.19741
\(369\) 0 0
\(370\) 0 0
\(371\) −0.742155 −0.0385308
\(372\) 0 0
\(373\) −0.900675 −0.0466352 −0.0233176 0.999728i \(-0.507423\pi\)
−0.0233176 + 0.999728i \(0.507423\pi\)
\(374\) −67.9282 −3.51248
\(375\) 0 0
\(376\) −9.30388 −0.479811
\(377\) 44.6764 2.30095
\(378\) 0 0
\(379\) 14.9672 0.768815 0.384407 0.923164i \(-0.374406\pi\)
0.384407 + 0.923164i \(0.374406\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 39.7770 2.03517
\(383\) 26.8385 1.37138 0.685691 0.727893i \(-0.259500\pi\)
0.685691 + 0.727893i \(0.259500\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.9923 1.57747
\(387\) 0 0
\(388\) −27.4791 −1.39504
\(389\) 11.3531 0.575626 0.287813 0.957687i \(-0.407072\pi\)
0.287813 + 0.957687i \(0.407072\pi\)
\(390\) 0 0
\(391\) 22.4766 1.13669
\(392\) 23.4431 1.18405
\(393\) 0 0
\(394\) 21.5094 1.08363
\(395\) 0 0
\(396\) 0 0
\(397\) 4.89754 0.245801 0.122900 0.992419i \(-0.460780\pi\)
0.122900 + 0.992419i \(0.460780\pi\)
\(398\) 67.7798 3.39750
\(399\) 0 0
\(400\) 0 0
\(401\) 29.0548 1.45093 0.725465 0.688259i \(-0.241625\pi\)
0.725465 + 0.688259i \(0.241625\pi\)
\(402\) 0 0
\(403\) 15.8769 0.790884
\(404\) 14.7617 0.734420
\(405\) 0 0
\(406\) −45.7150 −2.26880
\(407\) −25.3251 −1.25532
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −87.0627 −4.28927
\(413\) −5.89155 −0.289904
\(414\) 0 0
\(415\) 0 0
\(416\) 83.3531 4.08672
\(417\) 0 0
\(418\) −10.5261 −0.514850
\(419\) −24.0482 −1.17483 −0.587415 0.809286i \(-0.699854\pi\)
−0.587415 + 0.809286i \(0.699854\pi\)
\(420\) 0 0
\(421\) 33.1500 1.61563 0.807815 0.589436i \(-0.200650\pi\)
0.807815 + 0.589436i \(0.200650\pi\)
\(422\) 5.16738 0.251544
\(423\) 0 0
\(424\) −3.03278 −0.147285
\(425\) 0 0
\(426\) 0 0
\(427\) 0.277831 0.0134452
\(428\) 85.3817 4.12708
\(429\) 0 0
\(430\) 0 0
\(431\) −35.5304 −1.71144 −0.855721 0.517438i \(-0.826886\pi\)
−0.855721 + 0.517438i \(0.826886\pi\)
\(432\) 0 0
\(433\) −34.6016 −1.66285 −0.831425 0.555638i \(-0.812474\pi\)
−0.831425 + 0.555638i \(0.812474\pi\)
\(434\) −16.2460 −0.779831
\(435\) 0 0
\(436\) 73.2899 3.50995
\(437\) 3.48297 0.166613
\(438\) 0 0
\(439\) −1.66335 −0.0793872 −0.0396936 0.999212i \(-0.512638\pi\)
−0.0396936 + 0.999212i \(0.512638\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −92.2380 −4.38732
\(443\) −36.3636 −1.72769 −0.863843 0.503761i \(-0.831949\pi\)
−0.863843 + 0.503761i \(0.831949\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −35.2721 −1.67018
\(447\) 0 0
\(448\) −35.6777 −1.68561
\(449\) 34.2563 1.61666 0.808328 0.588733i \(-0.200373\pi\)
0.808328 + 0.588733i \(0.200373\pi\)
\(450\) 0 0
\(451\) 44.9960 2.11878
\(452\) 1.85952 0.0874643
\(453\) 0 0
\(454\) 3.36943 0.158135
\(455\) 0 0
\(456\) 0 0
\(457\) −21.3301 −0.997779 −0.498890 0.866665i \(-0.666259\pi\)
−0.498890 + 0.866665i \(0.666259\pi\)
\(458\) 33.8654 1.58243
\(459\) 0 0
\(460\) 0 0
\(461\) 30.9266 1.44040 0.720198 0.693768i \(-0.244051\pi\)
0.720198 + 0.693768i \(0.244051\pi\)
\(462\) 0 0
\(463\) −37.3823 −1.73731 −0.868653 0.495422i \(-0.835014\pi\)
−0.868653 + 0.495422i \(0.835014\pi\)
\(464\) −101.053 −4.69125
\(465\) 0 0
\(466\) −53.0188 −2.45605
\(467\) 17.7855 0.823015 0.411507 0.911406i \(-0.365002\pi\)
0.411507 + 0.911406i \(0.365002\pi\)
\(468\) 0 0
\(469\) 10.6078 0.489821
\(470\) 0 0
\(471\) 0 0
\(472\) −24.0755 −1.10817
\(473\) 28.4705 1.30907
\(474\) 0 0
\(475\) 0 0
\(476\) 67.9282 3.11348
\(477\) 0 0
\(478\) 21.3973 0.978688
\(479\) −2.21111 −0.101028 −0.0505141 0.998723i \(-0.516086\pi\)
−0.0505141 + 0.998723i \(0.516086\pi\)
\(480\) 0 0
\(481\) −34.3883 −1.56797
\(482\) 34.4026 1.56699
\(483\) 0 0
\(484\) 23.2527 1.05694
\(485\) 0 0
\(486\) 0 0
\(487\) 21.9234 0.993445 0.496722 0.867910i \(-0.334537\pi\)
0.496722 + 0.867910i \(0.334537\pi\)
\(488\) 1.13534 0.0513945
\(489\) 0 0
\(490\) 0 0
\(491\) −15.4885 −0.698984 −0.349492 0.936939i \(-0.613646\pi\)
−0.349492 + 0.936939i \(0.613646\pi\)
\(492\) 0 0
\(493\) 53.8821 2.42673
\(494\) −14.2932 −0.643080
\(495\) 0 0
\(496\) −35.9116 −1.61248
\(497\) 5.89155 0.264272
\(498\) 0 0
\(499\) 21.3739 0.956826 0.478413 0.878135i \(-0.341212\pi\)
0.478413 + 0.878135i \(0.341212\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 65.3146 2.91513
\(503\) 23.3064 1.03918 0.519591 0.854415i \(-0.326084\pi\)
0.519591 + 0.854415i \(0.326084\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −36.6622 −1.62983
\(507\) 0 0
\(508\) 60.4843 2.68356
\(509\) −3.53770 −0.156806 −0.0784030 0.996922i \(-0.524982\pi\)
−0.0784030 + 0.996922i \(0.524982\pi\)
\(510\) 0 0
\(511\) −3.84163 −0.169944
\(512\) 14.2064 0.627841
\(513\) 0 0
\(514\) −11.0328 −0.486635
\(515\) 0 0
\(516\) 0 0
\(517\) −4.37715 −0.192507
\(518\) 35.1877 1.54606
\(519\) 0 0
\(520\) 0 0
\(521\) 16.1671 0.708294 0.354147 0.935190i \(-0.384771\pi\)
0.354147 + 0.935190i \(0.384771\pi\)
\(522\) 0 0
\(523\) 9.27469 0.405554 0.202777 0.979225i \(-0.435003\pi\)
0.202777 + 0.979225i \(0.435003\pi\)
\(524\) 5.47514 0.239183
\(525\) 0 0
\(526\) 13.5750 0.591897
\(527\) 19.1484 0.834116
\(528\) 0 0
\(529\) −10.8689 −0.472561
\(530\) 0 0
\(531\) 0 0
\(532\) 10.5261 0.456366
\(533\) 61.0990 2.64649
\(534\) 0 0
\(535\) 0 0
\(536\) 43.3480 1.87235
\(537\) 0 0
\(538\) 46.3792 1.99955
\(539\) 11.0291 0.475059
\(540\) 0 0
\(541\) 29.9816 1.28901 0.644505 0.764600i \(-0.277063\pi\)
0.644505 + 0.764600i \(0.277063\pi\)
\(542\) 65.5582 2.81597
\(543\) 0 0
\(544\) 100.528 4.31011
\(545\) 0 0
\(546\) 0 0
\(547\) −10.1458 −0.433805 −0.216903 0.976193i \(-0.569595\pi\)
−0.216903 + 0.976193i \(0.569595\pi\)
\(548\) 98.2113 4.19538
\(549\) 0 0
\(550\) 0 0
\(551\) 8.34955 0.355703
\(552\) 0 0
\(553\) −28.5609 −1.21453
\(554\) 71.7395 3.04792
\(555\) 0 0
\(556\) −68.6822 −2.91277
\(557\) −28.8326 −1.22167 −0.610837 0.791756i \(-0.709167\pi\)
−0.610837 + 0.791756i \(0.709167\pi\)
\(558\) 0 0
\(559\) 38.6594 1.63512
\(560\) 0 0
\(561\) 0 0
\(562\) 17.1283 0.722514
\(563\) 2.03463 0.0857492 0.0428746 0.999080i \(-0.486348\pi\)
0.0428746 + 0.999080i \(0.486348\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −45.5591 −1.91499
\(567\) 0 0
\(568\) 24.0755 1.01019
\(569\) −20.2368 −0.848371 −0.424185 0.905575i \(-0.639440\pi\)
−0.424185 + 0.905575i \(0.639440\pi\)
\(570\) 0 0
\(571\) −47.1500 −1.97316 −0.986582 0.163266i \(-0.947797\pi\)
−0.986582 + 0.163266i \(0.947797\pi\)
\(572\) 108.282 4.52750
\(573\) 0 0
\(574\) −62.5194 −2.60951
\(575\) 0 0
\(576\) 0 0
\(577\) −7.23078 −0.301021 −0.150511 0.988608i \(-0.548092\pi\)
−0.150511 + 0.988608i \(0.548092\pi\)
\(578\) −65.8328 −2.73828
\(579\) 0 0
\(580\) 0 0
\(581\) 14.7617 0.612417
\(582\) 0 0
\(583\) −1.42682 −0.0590927
\(584\) −15.6986 −0.649614
\(585\) 0 0
\(586\) 47.9861 1.98229
\(587\) 31.6192 1.30507 0.652533 0.757761i \(-0.273707\pi\)
0.652533 + 0.757761i \(0.273707\pi\)
\(588\) 0 0
\(589\) 2.96722 0.122262
\(590\) 0 0
\(591\) 0 0
\(592\) 77.7822 3.19683
\(593\) −15.7263 −0.645803 −0.322902 0.946433i \(-0.604658\pi\)
−0.322902 + 0.946433i \(0.604658\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.6929 −0.519922
\(597\) 0 0
\(598\) −49.7828 −2.03577
\(599\) −0.0635030 −0.00259466 −0.00129733 0.999999i \(-0.500413\pi\)
−0.00129733 + 0.999999i \(0.500413\pi\)
\(600\) 0 0
\(601\) 28.8789 1.17799 0.588996 0.808136i \(-0.299523\pi\)
0.588996 + 0.808136i \(0.299523\pi\)
\(602\) −39.5581 −1.61227
\(603\) 0 0
\(604\) −37.1728 −1.51254
\(605\) 0 0
\(606\) 0 0
\(607\) 3.22817 0.131027 0.0655136 0.997852i \(-0.479131\pi\)
0.0655136 + 0.997852i \(0.479131\pi\)
\(608\) 15.5778 0.631764
\(609\) 0 0
\(610\) 0 0
\(611\) −5.94363 −0.240453
\(612\) 0 0
\(613\) 17.0259 0.687668 0.343834 0.939030i \(-0.388274\pi\)
0.343834 + 0.939030i \(0.388274\pi\)
\(614\) 61.9845 2.50149
\(615\) 0 0
\(616\) −67.6494 −2.72567
\(617\) 0.984773 0.0396455 0.0198227 0.999804i \(-0.493690\pi\)
0.0198227 + 0.999804i \(0.493690\pi\)
\(618\) 0 0
\(619\) 34.4766 1.38573 0.692867 0.721066i \(-0.256347\pi\)
0.692867 + 0.721066i \(0.256347\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 37.1045 1.48776
\(623\) −13.1426 −0.526549
\(624\) 0 0
\(625\) 0 0
\(626\) −70.0604 −2.80018
\(627\) 0 0
\(628\) −39.4320 −1.57351
\(629\) −41.4741 −1.65368
\(630\) 0 0
\(631\) −18.4950 −0.736275 −0.368138 0.929771i \(-0.620004\pi\)
−0.368138 + 0.929771i \(0.620004\pi\)
\(632\) −116.712 −4.64257
\(633\) 0 0
\(634\) −17.5094 −0.695388
\(635\) 0 0
\(636\) 0 0
\(637\) 14.9762 0.593379
\(638\) −87.8884 −3.47954
\(639\) 0 0
\(640\) 0 0
\(641\) −38.8733 −1.53540 −0.767702 0.640807i \(-0.778600\pi\)
−0.767702 + 0.640807i \(0.778600\pi\)
\(642\) 0 0
\(643\) −45.2302 −1.78371 −0.891853 0.452325i \(-0.850595\pi\)
−0.891853 + 0.452325i \(0.850595\pi\)
\(644\) 36.6622 1.44469
\(645\) 0 0
\(646\) −17.2383 −0.678233
\(647\) 10.5995 0.416709 0.208354 0.978053i \(-0.433189\pi\)
0.208354 + 0.978053i \(0.433189\pi\)
\(648\) 0 0
\(649\) −11.3267 −0.444612
\(650\) 0 0
\(651\) 0 0
\(652\) 25.6777 1.00562
\(653\) −9.70021 −0.379598 −0.189799 0.981823i \(-0.560784\pi\)
−0.189799 + 0.981823i \(0.560784\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −138.199 −5.39576
\(657\) 0 0
\(658\) 6.08180 0.237093
\(659\) 12.6294 0.491972 0.245986 0.969273i \(-0.420888\pi\)
0.245986 + 0.969273i \(0.420888\pi\)
\(660\) 0 0
\(661\) 18.9444 0.736852 0.368426 0.929657i \(-0.379897\pi\)
0.368426 + 0.929657i \(0.379897\pi\)
\(662\) 21.1339 0.821392
\(663\) 0 0
\(664\) 60.3227 2.34098
\(665\) 0 0
\(666\) 0 0
\(667\) 29.0813 1.12603
\(668\) 40.9574 1.58469
\(669\) 0 0
\(670\) 0 0
\(671\) 0.534139 0.0206202
\(672\) 0 0
\(673\) −9.28044 −0.357735 −0.178867 0.983873i \(-0.557243\pi\)
−0.178867 + 0.983873i \(0.557243\pi\)
\(674\) 7.15427 0.275572
\(675\) 0 0
\(676\) 80.2716 3.08737
\(677\) −22.9283 −0.881208 −0.440604 0.897702i \(-0.645236\pi\)
−0.440604 + 0.897702i \(0.645236\pi\)
\(678\) 0 0
\(679\) 10.9672 0.420883
\(680\) 0 0
\(681\) 0 0
\(682\) −31.2334 −1.19599
\(683\) −32.0059 −1.22467 −0.612335 0.790598i \(-0.709770\pi\)
−0.612335 + 0.790598i \(0.709770\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −53.6504 −2.04838
\(687\) 0 0
\(688\) −87.4429 −3.33373
\(689\) −1.93744 −0.0738105
\(690\) 0 0
\(691\) −47.5794 −1.81001 −0.905003 0.425405i \(-0.860132\pi\)
−0.905003 + 0.425405i \(0.860132\pi\)
\(692\) −75.8320 −2.88270
\(693\) 0 0
\(694\) −25.5750 −0.970813
\(695\) 0 0
\(696\) 0 0
\(697\) 73.6886 2.79116
\(698\) 48.0333 1.81809
\(699\) 0 0
\(700\) 0 0
\(701\) −0.389626 −0.0147160 −0.00735798 0.999973i \(-0.502342\pi\)
−0.00735798 + 0.999973i \(0.502342\pi\)
\(702\) 0 0
\(703\) −6.42681 −0.242392
\(704\) −68.5915 −2.58514
\(705\) 0 0
\(706\) 12.2055 0.459362
\(707\) −5.89155 −0.221575
\(708\) 0 0
\(709\) 26.6306 1.00013 0.500066 0.865987i \(-0.333309\pi\)
0.500066 + 0.865987i \(0.333309\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −53.7067 −2.01274
\(713\) 10.3348 0.387040
\(714\) 0 0
\(715\) 0 0
\(716\) 91.5714 3.42218
\(717\) 0 0
\(718\) 13.0290 0.486238
\(719\) −4.13535 −0.154222 −0.0771112 0.997023i \(-0.524570\pi\)
−0.0771112 + 0.997023i \(0.524570\pi\)
\(720\) 0 0
\(721\) 34.7477 1.29407
\(722\) −2.67125 −0.0994134
\(723\) 0 0
\(724\) −33.5978 −1.24865
\(725\) 0 0
\(726\) 0 0
\(727\) 33.8034 1.25370 0.626850 0.779140i \(-0.284344\pi\)
0.626850 + 0.779140i \(0.284344\pi\)
\(728\) −91.8595 −3.40454
\(729\) 0 0
\(730\) 0 0
\(731\) 46.6252 1.72450
\(732\) 0 0
\(733\) 26.5784 0.981695 0.490848 0.871245i \(-0.336687\pi\)
0.490848 + 0.871245i \(0.336687\pi\)
\(734\) 69.1388 2.55196
\(735\) 0 0
\(736\) 54.2572 1.99995
\(737\) 20.3937 0.751213
\(738\) 0 0
\(739\) 1.50498 0.0553616 0.0276808 0.999617i \(-0.491188\pi\)
0.0276808 + 0.999617i \(0.491188\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.98248 0.0727791
\(743\) 14.6561 0.537679 0.268840 0.963185i \(-0.413360\pi\)
0.268840 + 0.963185i \(0.413360\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.40592 0.0880871
\(747\) 0 0
\(748\) 130.594 4.77499
\(749\) −34.0768 −1.24514
\(750\) 0 0
\(751\) 2.02282 0.0738136 0.0369068 0.999319i \(-0.488250\pi\)
0.0369068 + 0.999319i \(0.488250\pi\)
\(752\) 13.4438 0.490244
\(753\) 0 0
\(754\) −119.342 −4.34616
\(755\) 0 0
\(756\) 0 0
\(757\) −21.4997 −0.781421 −0.390710 0.920514i \(-0.627771\pi\)
−0.390710 + 0.920514i \(0.627771\pi\)
\(758\) −39.9811 −1.45218
\(759\) 0 0
\(760\) 0 0
\(761\) 10.1578 0.368221 0.184111 0.982906i \(-0.441060\pi\)
0.184111 + 0.982906i \(0.441060\pi\)
\(762\) 0 0
\(763\) −29.2509 −1.05895
\(764\) −76.4725 −2.76668
\(765\) 0 0
\(766\) −71.6922 −2.59034
\(767\) −15.3802 −0.555348
\(768\) 0 0
\(769\) 4.76612 0.171871 0.0859353 0.996301i \(-0.472612\pi\)
0.0859353 + 0.996301i \(0.472612\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −59.5836 −2.14446
\(773\) 23.9537 0.861553 0.430776 0.902459i \(-0.358240\pi\)
0.430776 + 0.902459i \(0.358240\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 44.8170 1.60884
\(777\) 0 0
\(778\) −30.3269 −1.08727
\(779\) 11.4188 0.409120
\(780\) 0 0
\(781\) 11.3267 0.405301
\(782\) −60.0406 −2.14705
\(783\) 0 0
\(784\) −33.8744 −1.20980
\(785\) 0 0
\(786\) 0 0
\(787\) −13.7248 −0.489235 −0.244618 0.969620i \(-0.578662\pi\)
−0.244618 + 0.969620i \(0.578662\pi\)
\(788\) −41.3525 −1.47312
\(789\) 0 0
\(790\) 0 0
\(791\) −0.742155 −0.0263880
\(792\) 0 0
\(793\) 0.725294 0.0257560
\(794\) −13.0825 −0.464282
\(795\) 0 0
\(796\) −130.309 −4.61867
\(797\) 2.83575 0.100447 0.0502237 0.998738i \(-0.484007\pi\)
0.0502237 + 0.998738i \(0.484007\pi\)
\(798\) 0 0
\(799\) −7.16833 −0.253597
\(800\) 0 0
\(801\) 0 0
\(802\) −77.6126 −2.74060
\(803\) −7.38566 −0.260634
\(804\) 0 0
\(805\) 0 0
\(806\) −42.4110 −1.49387
\(807\) 0 0
\(808\) −24.0755 −0.846974
\(809\) −12.4849 −0.438946 −0.219473 0.975619i \(-0.570434\pi\)
−0.219473 + 0.975619i \(0.570434\pi\)
\(810\) 0 0
\(811\) −21.6633 −0.760703 −0.380351 0.924842i \(-0.624197\pi\)
−0.380351 + 0.924842i \(0.624197\pi\)
\(812\) 87.8884 3.08428
\(813\) 0 0
\(814\) 67.6494 2.37111
\(815\) 0 0
\(816\) 0 0
\(817\) 7.22503 0.252772
\(818\) −58.7674 −2.05475
\(819\) 0 0
\(820\) 0 0
\(821\) 38.7442 1.35218 0.676091 0.736818i \(-0.263673\pi\)
0.676091 + 0.736818i \(0.263673\pi\)
\(822\) 0 0
\(823\) −33.0781 −1.15303 −0.576516 0.817086i \(-0.695588\pi\)
−0.576516 + 0.817086i \(0.695588\pi\)
\(824\) 141.995 4.94662
\(825\) 0 0
\(826\) 15.7378 0.547588
\(827\) 6.94995 0.241673 0.120837 0.992672i \(-0.461442\pi\)
0.120837 + 0.992672i \(0.461442\pi\)
\(828\) 0 0
\(829\) 38.2711 1.32921 0.664605 0.747195i \(-0.268600\pi\)
0.664605 + 0.747195i \(0.268600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −93.1387 −3.22900
\(833\) 18.0621 0.625815
\(834\) 0 0
\(835\) 0 0
\(836\) 20.2368 0.699904
\(837\) 0 0
\(838\) 64.2386 2.21908
\(839\) −17.4413 −0.602139 −0.301069 0.953602i \(-0.597344\pi\)
−0.301069 + 0.953602i \(0.597344\pi\)
\(840\) 0 0
\(841\) 40.7150 1.40396
\(842\) −88.5516 −3.05169
\(843\) 0 0
\(844\) −9.93445 −0.341958
\(845\) 0 0
\(846\) 0 0
\(847\) −9.28044 −0.318880
\(848\) 4.38226 0.150487
\(849\) 0 0
\(850\) 0 0
\(851\) −22.3844 −0.767328
\(852\) 0 0
\(853\) −33.5551 −1.14891 −0.574453 0.818538i \(-0.694785\pi\)
−0.574453 + 0.818538i \(0.694785\pi\)
\(854\) −0.742155 −0.0253960
\(855\) 0 0
\(856\) −139.253 −4.75958
\(857\) −26.3782 −0.901063 −0.450532 0.892760i \(-0.648766\pi\)
−0.450532 + 0.892760i \(0.648766\pi\)
\(858\) 0 0
\(859\) −11.8873 −0.405588 −0.202794 0.979221i \(-0.565002\pi\)
−0.202794 + 0.979221i \(0.565002\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 94.9105 3.23267
\(863\) −21.6220 −0.736022 −0.368011 0.929821i \(-0.619961\pi\)
−0.368011 + 0.929821i \(0.619961\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 92.4295 3.14088
\(867\) 0 0
\(868\) 31.2334 1.06013
\(869\) −54.9091 −1.86266
\(870\) 0 0
\(871\) 27.6922 0.938313
\(872\) −119.532 −4.04787
\(873\) 0 0
\(874\) −9.30388 −0.314708
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0813 1.15084 0.575421 0.817857i \(-0.304838\pi\)
0.575421 + 0.817857i \(0.304838\pi\)
\(878\) 4.44321 0.149951
\(879\) 0 0
\(880\) 0 0
\(881\) −24.9195 −0.839559 −0.419779 0.907626i \(-0.637893\pi\)
−0.419779 + 0.907626i \(0.637893\pi\)
\(882\) 0 0
\(883\) −37.5520 −1.26372 −0.631862 0.775081i \(-0.717709\pi\)
−0.631862 + 0.775081i \(0.717709\pi\)
\(884\) 177.330 5.96427
\(885\) 0 0
\(886\) 97.1360 3.26335
\(887\) −3.24692 −0.109021 −0.0545104 0.998513i \(-0.517360\pi\)
−0.0545104 + 0.998513i \(0.517360\pi\)
\(888\) 0 0
\(889\) −24.1400 −0.809629
\(890\) 0 0
\(891\) 0 0
\(892\) 67.8117 2.27051
\(893\) −1.11080 −0.0371716
\(894\) 0 0
\(895\) 0 0
\(896\) 31.4454 1.05052
\(897\) 0 0
\(898\) −91.5070 −3.05363
\(899\) 24.7750 0.826292
\(900\) 0 0
\(901\) −2.33665 −0.0778452
\(902\) −120.195 −4.00207
\(903\) 0 0
\(904\) −3.03278 −0.100869
\(905\) 0 0
\(906\) 0 0
\(907\) −24.6312 −0.817865 −0.408932 0.912565i \(-0.634099\pi\)
−0.408932 + 0.912565i \(0.634099\pi\)
\(908\) −6.47783 −0.214974
\(909\) 0 0
\(910\) 0 0
\(911\) −4.55353 −0.150865 −0.0754326 0.997151i \(-0.524034\pi\)
−0.0754326 + 0.997151i \(0.524034\pi\)
\(912\) 0 0
\(913\) 28.3797 0.939232
\(914\) 56.9779 1.88466
\(915\) 0 0
\(916\) −65.1072 −2.15120
\(917\) −2.18519 −0.0721615
\(918\) 0 0
\(919\) −25.0844 −0.827458 −0.413729 0.910400i \(-0.635774\pi\)
−0.413729 + 0.910400i \(0.635774\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −82.6126 −2.72070
\(923\) 15.3802 0.506247
\(924\) 0 0
\(925\) 0 0
\(926\) 99.8574 3.28152
\(927\) 0 0
\(928\) 130.068 4.26969
\(929\) −48.5495 −1.59286 −0.796428 0.604733i \(-0.793280\pi\)
−0.796428 + 0.604733i \(0.793280\pi\)
\(930\) 0 0
\(931\) 2.79890 0.0917301
\(932\) 101.930 3.33884
\(933\) 0 0
\(934\) −47.5094 −1.55456
\(935\) 0 0
\(936\) 0 0
\(937\) 4.54678 0.148537 0.0742684 0.997238i \(-0.476338\pi\)
0.0742684 + 0.997238i \(0.476338\pi\)
\(938\) −28.3359 −0.925200
\(939\) 0 0
\(940\) 0 0
\(941\) −3.60121 −0.117396 −0.0586980 0.998276i \(-0.518695\pi\)
−0.0586980 + 0.998276i \(0.518695\pi\)
\(942\) 0 0
\(943\) 39.7713 1.29513
\(944\) 34.7883 1.13226
\(945\) 0 0
\(946\) −76.0516 −2.47265
\(947\) −41.5276 −1.34947 −0.674733 0.738062i \(-0.735741\pi\)
−0.674733 + 0.738062i \(0.735741\pi\)
\(948\) 0 0
\(949\) −10.0288 −0.325549
\(950\) 0 0
\(951\) 0 0
\(952\) −110.787 −3.59064
\(953\) −28.7471 −0.931209 −0.465605 0.884993i \(-0.654163\pi\)
−0.465605 + 0.884993i \(0.654163\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −41.1369 −1.33046
\(957\) 0 0
\(958\) 5.90642 0.190828
\(959\) −39.1973 −1.26575
\(960\) 0 0
\(961\) −22.1956 −0.715987
\(962\) 91.8595 2.96167
\(963\) 0 0
\(964\) −66.1400 −2.13023
\(965\) 0 0
\(966\) 0 0
\(967\) 18.5551 0.596693 0.298346 0.954458i \(-0.403565\pi\)
0.298346 + 0.954458i \(0.403565\pi\)
\(968\) −37.9240 −1.21892
\(969\) 0 0
\(970\) 0 0
\(971\) −4.20100 −0.134817 −0.0674083 0.997725i \(-0.521473\pi\)
−0.0674083 + 0.997725i \(0.521473\pi\)
\(972\) 0 0
\(973\) 27.4119 0.878785
\(974\) −58.5628 −1.87647
\(975\) 0 0
\(976\) −1.64053 −0.0525121
\(977\) 43.7280 1.39898 0.699492 0.714641i \(-0.253410\pi\)
0.699492 + 0.714641i \(0.253410\pi\)
\(978\) 0 0
\(979\) −25.2671 −0.807541
\(980\) 0 0
\(981\) 0 0
\(982\) 41.3735 1.32028
\(983\) −18.6112 −0.593604 −0.296802 0.954939i \(-0.595920\pi\)
−0.296802 + 0.954939i \(0.595920\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −143.932 −4.58374
\(987\) 0 0
\(988\) 27.4791 0.874226
\(989\) 25.1646 0.800188
\(990\) 0 0
\(991\) 33.6266 1.06818 0.534092 0.845426i \(-0.320654\pi\)
0.534092 + 0.845426i \(0.320654\pi\)
\(992\) 46.2229 1.46758
\(993\) 0 0
\(994\) −15.7378 −0.499172
\(995\) 0 0
\(996\) 0 0
\(997\) 31.6808 1.00334 0.501671 0.865058i \(-0.332719\pi\)
0.501671 + 0.865058i \(0.332719\pi\)
\(998\) −57.0949 −1.80731
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bx.1.1 12
3.2 odd 2 inner 4275.2.a.bx.1.11 12
5.2 odd 4 855.2.c.f.514.1 12
5.3 odd 4 855.2.c.f.514.11 yes 12
5.4 even 2 inner 4275.2.a.bx.1.12 12
15.2 even 4 855.2.c.f.514.12 yes 12
15.8 even 4 855.2.c.f.514.2 yes 12
15.14 odd 2 inner 4275.2.a.bx.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.c.f.514.1 12 5.2 odd 4
855.2.c.f.514.2 yes 12 15.8 even 4
855.2.c.f.514.11 yes 12 5.3 odd 4
855.2.c.f.514.12 yes 12 15.2 even 4
4275.2.a.bx.1.1 12 1.1 even 1 trivial
4275.2.a.bx.1.2 12 15.14 odd 2 inner
4275.2.a.bx.1.11 12 3.2 odd 2 inner
4275.2.a.bx.1.12 12 5.4 even 2 inner