Properties

Label 4275.2.a.bv.1.7
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 8x^{5} + 26x^{4} + 11x^{3} - 51x^{2} + 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.39336\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.39336 q^{2} +3.72816 q^{4} +4.15221 q^{7} +4.13612 q^{8} +5.71602 q^{11} +3.79886 q^{13} +9.93772 q^{14} +2.44288 q^{16} +2.66579 q^{17} +1.00000 q^{19} +13.6805 q^{22} -8.13886 q^{23} +9.09204 q^{26} +15.4801 q^{28} -4.73061 q^{29} -2.31244 q^{31} -2.42554 q^{32} +6.38019 q^{34} -4.68551 q^{37} +2.39336 q^{38} -10.1869 q^{41} -1.76160 q^{43} +21.3103 q^{44} -19.4792 q^{46} -7.14809 q^{47} +10.2408 q^{49} +14.1628 q^{52} +3.04396 q^{53} +17.1740 q^{56} -11.3221 q^{58} +0.582229 q^{59} -9.54956 q^{61} -5.53450 q^{62} -10.6910 q^{64} -1.20711 q^{67} +9.93850 q^{68} -1.20711 q^{71} +11.5362 q^{73} -11.2141 q^{74} +3.72816 q^{76} +23.7341 q^{77} +5.06076 q^{79} -24.3810 q^{82} -1.83685 q^{83} -4.21613 q^{86} +23.6421 q^{88} -3.36716 q^{89} +15.7737 q^{91} -30.3430 q^{92} -17.1079 q^{94} +0.313344 q^{97} +24.5100 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 3 q^{2} + 11 q^{4} + 8 q^{7} - 9 q^{8} + 4 q^{11} + 8 q^{13} + 4 q^{14} + 19 q^{16} - 4 q^{17} + 7 q^{19} + 12 q^{22} - 10 q^{23} + 20 q^{26} + 14 q^{28} + 6 q^{29} + 4 q^{31} - 31 q^{32} + 2 q^{34}+ \cdots - 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.39336 1.69236 0.846180 0.532897i \(-0.178897\pi\)
0.846180 + 0.532897i \(0.178897\pi\)
\(3\) 0 0
\(4\) 3.72816 1.86408
\(5\) 0 0
\(6\) 0 0
\(7\) 4.15221 1.56939 0.784694 0.619884i \(-0.212820\pi\)
0.784694 + 0.619884i \(0.212820\pi\)
\(8\) 4.13612 1.46234
\(9\) 0 0
\(10\) 0 0
\(11\) 5.71602 1.72344 0.861722 0.507380i \(-0.169386\pi\)
0.861722 + 0.507380i \(0.169386\pi\)
\(12\) 0 0
\(13\) 3.79886 1.05361 0.526807 0.849985i \(-0.323389\pi\)
0.526807 + 0.849985i \(0.323389\pi\)
\(14\) 9.93772 2.65597
\(15\) 0 0
\(16\) 2.44288 0.610721
\(17\) 2.66579 0.646549 0.323274 0.946305i \(-0.395216\pi\)
0.323274 + 0.946305i \(0.395216\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 13.6805 2.91669
\(23\) −8.13886 −1.69707 −0.848535 0.529139i \(-0.822515\pi\)
−0.848535 + 0.529139i \(0.822515\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 9.09204 1.78310
\(27\) 0 0
\(28\) 15.4801 2.92547
\(29\) −4.73061 −0.878453 −0.439226 0.898376i \(-0.644747\pi\)
−0.439226 + 0.898376i \(0.644747\pi\)
\(30\) 0 0
\(31\) −2.31244 −0.415327 −0.207663 0.978200i \(-0.566586\pi\)
−0.207663 + 0.978200i \(0.566586\pi\)
\(32\) −2.42554 −0.428779
\(33\) 0 0
\(34\) 6.38019 1.09419
\(35\) 0 0
\(36\) 0 0
\(37\) −4.68551 −0.770293 −0.385146 0.922855i \(-0.625849\pi\)
−0.385146 + 0.922855i \(0.625849\pi\)
\(38\) 2.39336 0.388254
\(39\) 0 0
\(40\) 0 0
\(41\) −10.1869 −1.59093 −0.795467 0.605997i \(-0.792774\pi\)
−0.795467 + 0.605997i \(0.792774\pi\)
\(42\) 0 0
\(43\) −1.76160 −0.268641 −0.134320 0.990938i \(-0.542885\pi\)
−0.134320 + 0.990938i \(0.542885\pi\)
\(44\) 21.3103 3.21264
\(45\) 0 0
\(46\) −19.4792 −2.87205
\(47\) −7.14809 −1.04266 −0.521328 0.853356i \(-0.674563\pi\)
−0.521328 + 0.853356i \(0.674563\pi\)
\(48\) 0 0
\(49\) 10.2408 1.46298
\(50\) 0 0
\(51\) 0 0
\(52\) 14.1628 1.96402
\(53\) 3.04396 0.418120 0.209060 0.977903i \(-0.432960\pi\)
0.209060 + 0.977903i \(0.432960\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.1740 2.29498
\(57\) 0 0
\(58\) −11.3221 −1.48666
\(59\) 0.582229 0.0757997 0.0378998 0.999282i \(-0.487933\pi\)
0.0378998 + 0.999282i \(0.487933\pi\)
\(60\) 0 0
\(61\) −9.54956 −1.22270 −0.611348 0.791362i \(-0.709372\pi\)
−0.611348 + 0.791362i \(0.709372\pi\)
\(62\) −5.53450 −0.702882
\(63\) 0 0
\(64\) −10.6910 −1.33637
\(65\) 0 0
\(66\) 0 0
\(67\) −1.20711 −0.147472 −0.0737360 0.997278i \(-0.523492\pi\)
−0.0737360 + 0.997278i \(0.523492\pi\)
\(68\) 9.93850 1.20522
\(69\) 0 0
\(70\) 0 0
\(71\) −1.20711 −0.143258 −0.0716289 0.997431i \(-0.522820\pi\)
−0.0716289 + 0.997431i \(0.522820\pi\)
\(72\) 0 0
\(73\) 11.5362 1.35021 0.675103 0.737723i \(-0.264099\pi\)
0.675103 + 0.737723i \(0.264099\pi\)
\(74\) −11.2141 −1.30361
\(75\) 0 0
\(76\) 3.72816 0.427650
\(77\) 23.7341 2.70475
\(78\) 0 0
\(79\) 5.06076 0.569380 0.284690 0.958620i \(-0.408109\pi\)
0.284690 + 0.958620i \(0.408109\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −24.3810 −2.69243
\(83\) −1.83685 −0.201620 −0.100810 0.994906i \(-0.532143\pi\)
−0.100810 + 0.994906i \(0.532143\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.21613 −0.454637
\(87\) 0 0
\(88\) 23.6421 2.52026
\(89\) −3.36716 −0.356918 −0.178459 0.983947i \(-0.557111\pi\)
−0.178459 + 0.983947i \(0.557111\pi\)
\(90\) 0 0
\(91\) 15.7737 1.65353
\(92\) −30.3430 −3.16348
\(93\) 0 0
\(94\) −17.1079 −1.76455
\(95\) 0 0
\(96\) 0 0
\(97\) 0.313344 0.0318153 0.0159076 0.999873i \(-0.494936\pi\)
0.0159076 + 0.999873i \(0.494936\pi\)
\(98\) 24.5100 2.47588
\(99\) 0 0
\(100\) 0 0
\(101\) 14.6926 1.46197 0.730986 0.682393i \(-0.239061\pi\)
0.730986 + 0.682393i \(0.239061\pi\)
\(102\) 0 0
\(103\) 0.722740 0.0712137 0.0356069 0.999366i \(-0.488664\pi\)
0.0356069 + 0.999366i \(0.488664\pi\)
\(104\) 15.7125 1.54074
\(105\) 0 0
\(106\) 7.28528 0.707609
\(107\) 4.30442 0.416124 0.208062 0.978116i \(-0.433284\pi\)
0.208062 + 0.978116i \(0.433284\pi\)
\(108\) 0 0
\(109\) −3.45633 −0.331056 −0.165528 0.986205i \(-0.552933\pi\)
−0.165528 + 0.986205i \(0.552933\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.1434 0.958457
\(113\) −5.05220 −0.475271 −0.237636 0.971354i \(-0.576372\pi\)
−0.237636 + 0.971354i \(0.576372\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −17.6365 −1.63751
\(117\) 0 0
\(118\) 1.39348 0.128280
\(119\) 11.0689 1.01469
\(120\) 0 0
\(121\) 21.6729 1.97026
\(122\) −22.8555 −2.06924
\(123\) 0 0
\(124\) −8.62116 −0.774203
\(125\) 0 0
\(126\) 0 0
\(127\) 4.37397 0.388127 0.194064 0.980989i \(-0.437833\pi\)
0.194064 + 0.980989i \(0.437833\pi\)
\(128\) −20.7362 −1.83284
\(129\) 0 0
\(130\) 0 0
\(131\) 2.01872 0.176376 0.0881880 0.996104i \(-0.471892\pi\)
0.0881880 + 0.996104i \(0.471892\pi\)
\(132\) 0 0
\(133\) 4.15221 0.360042
\(134\) −2.88905 −0.249576
\(135\) 0 0
\(136\) 11.0260 0.945473
\(137\) −2.07984 −0.177693 −0.0888463 0.996045i \(-0.528318\pi\)
−0.0888463 + 0.996045i \(0.528318\pi\)
\(138\) 0 0
\(139\) −4.43821 −0.376444 −0.188222 0.982127i \(-0.560272\pi\)
−0.188222 + 0.982127i \(0.560272\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.88905 −0.242444
\(143\) 21.7144 1.81585
\(144\) 0 0
\(145\) 0 0
\(146\) 27.6102 2.28504
\(147\) 0 0
\(148\) −17.4683 −1.43589
\(149\) 7.62685 0.624816 0.312408 0.949948i \(-0.398864\pi\)
0.312408 + 0.949948i \(0.398864\pi\)
\(150\) 0 0
\(151\) 19.0193 1.54777 0.773886 0.633325i \(-0.218310\pi\)
0.773886 + 0.633325i \(0.218310\pi\)
\(152\) 4.13612 0.335483
\(153\) 0 0
\(154\) 56.8042 4.57742
\(155\) 0 0
\(156\) 0 0
\(157\) −0.368128 −0.0293798 −0.0146899 0.999892i \(-0.504676\pi\)
−0.0146899 + 0.999892i \(0.504676\pi\)
\(158\) 12.1122 0.963595
\(159\) 0 0
\(160\) 0 0
\(161\) −33.7943 −2.66336
\(162\) 0 0
\(163\) −3.28438 −0.257252 −0.128626 0.991693i \(-0.541057\pi\)
−0.128626 + 0.991693i \(0.541057\pi\)
\(164\) −37.9786 −2.96563
\(165\) 0 0
\(166\) −4.39623 −0.341214
\(167\) −14.1652 −1.09614 −0.548069 0.836433i \(-0.684637\pi\)
−0.548069 + 0.836433i \(0.684637\pi\)
\(168\) 0 0
\(169\) 1.43135 0.110104
\(170\) 0 0
\(171\) 0 0
\(172\) −6.56752 −0.500769
\(173\) −25.0399 −1.90375 −0.951873 0.306494i \(-0.900844\pi\)
−0.951873 + 0.306494i \(0.900844\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.9636 1.05254
\(177\) 0 0
\(178\) −8.05882 −0.604034
\(179\) −25.8103 −1.92915 −0.964576 0.263803i \(-0.915023\pi\)
−0.964576 + 0.263803i \(0.915023\pi\)
\(180\) 0 0
\(181\) −4.91266 −0.365155 −0.182578 0.983191i \(-0.558444\pi\)
−0.182578 + 0.983191i \(0.558444\pi\)
\(182\) 37.7520 2.79837
\(183\) 0 0
\(184\) −33.6633 −2.48169
\(185\) 0 0
\(186\) 0 0
\(187\) 15.2377 1.11429
\(188\) −26.6492 −1.94360
\(189\) 0 0
\(190\) 0 0
\(191\) 13.1806 0.953714 0.476857 0.878981i \(-0.341776\pi\)
0.476857 + 0.878981i \(0.341776\pi\)
\(192\) 0 0
\(193\) 17.4683 1.25740 0.628700 0.777648i \(-0.283588\pi\)
0.628700 + 0.777648i \(0.283588\pi\)
\(194\) 0.749945 0.0538429
\(195\) 0 0
\(196\) 38.1795 2.72711
\(197\) 0.743906 0.0530011 0.0265006 0.999649i \(-0.491564\pi\)
0.0265006 + 0.999649i \(0.491564\pi\)
\(198\) 0 0
\(199\) 3.78079 0.268013 0.134007 0.990980i \(-0.457216\pi\)
0.134007 + 0.990980i \(0.457216\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 35.1647 2.47418
\(203\) −19.6425 −1.37863
\(204\) 0 0
\(205\) 0 0
\(206\) 1.72978 0.120519
\(207\) 0 0
\(208\) 9.28017 0.643464
\(209\) 5.71602 0.395385
\(210\) 0 0
\(211\) 13.1712 0.906740 0.453370 0.891322i \(-0.350222\pi\)
0.453370 + 0.891322i \(0.350222\pi\)
\(212\) 11.3484 0.779410
\(213\) 0 0
\(214\) 10.3020 0.704231
\(215\) 0 0
\(216\) 0 0
\(217\) −9.60174 −0.651809
\(218\) −8.27223 −0.560266
\(219\) 0 0
\(220\) 0 0
\(221\) 10.1270 0.681213
\(222\) 0 0
\(223\) 6.87668 0.460497 0.230248 0.973132i \(-0.426046\pi\)
0.230248 + 0.973132i \(0.426046\pi\)
\(224\) −10.0714 −0.672921
\(225\) 0 0
\(226\) −12.0917 −0.804330
\(227\) −5.43069 −0.360448 −0.180224 0.983626i \(-0.557682\pi\)
−0.180224 + 0.983626i \(0.557682\pi\)
\(228\) 0 0
\(229\) 21.7789 1.43919 0.719594 0.694395i \(-0.244328\pi\)
0.719594 + 0.694395i \(0.244328\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −19.5664 −1.28460
\(233\) −2.11751 −0.138723 −0.0693615 0.997592i \(-0.522096\pi\)
−0.0693615 + 0.997592i \(0.522096\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2.17064 0.141297
\(237\) 0 0
\(238\) 26.4919 1.71721
\(239\) 8.63535 0.558575 0.279287 0.960208i \(-0.409902\pi\)
0.279287 + 0.960208i \(0.409902\pi\)
\(240\) 0 0
\(241\) −20.9476 −1.34935 −0.674676 0.738114i \(-0.735717\pi\)
−0.674676 + 0.738114i \(0.735717\pi\)
\(242\) 51.8710 3.33439
\(243\) 0 0
\(244\) −35.6023 −2.27921
\(245\) 0 0
\(246\) 0 0
\(247\) 3.79886 0.241716
\(248\) −9.56453 −0.607348
\(249\) 0 0
\(250\) 0 0
\(251\) 1.30618 0.0824453 0.0412227 0.999150i \(-0.486875\pi\)
0.0412227 + 0.999150i \(0.486875\pi\)
\(252\) 0 0
\(253\) −46.5219 −2.92481
\(254\) 10.4685 0.656851
\(255\) 0 0
\(256\) −28.2473 −1.76545
\(257\) 13.8228 0.862241 0.431121 0.902294i \(-0.358118\pi\)
0.431121 + 0.902294i \(0.358118\pi\)
\(258\) 0 0
\(259\) −19.4552 −1.20889
\(260\) 0 0
\(261\) 0 0
\(262\) 4.83151 0.298492
\(263\) 31.1035 1.91793 0.958963 0.283530i \(-0.0915056\pi\)
0.958963 + 0.283530i \(0.0915056\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 9.93772 0.609321
\(267\) 0 0
\(268\) −4.50031 −0.274900
\(269\) 1.03331 0.0630021 0.0315010 0.999504i \(-0.489971\pi\)
0.0315010 + 0.999504i \(0.489971\pi\)
\(270\) 0 0
\(271\) −15.6939 −0.953336 −0.476668 0.879084i \(-0.658156\pi\)
−0.476668 + 0.879084i \(0.658156\pi\)
\(272\) 6.51221 0.394861
\(273\) 0 0
\(274\) −4.97780 −0.300720
\(275\) 0 0
\(276\) 0 0
\(277\) −25.4343 −1.52820 −0.764099 0.645099i \(-0.776816\pi\)
−0.764099 + 0.645099i \(0.776816\pi\)
\(278\) −10.6222 −0.637079
\(279\) 0 0
\(280\) 0 0
\(281\) −8.36249 −0.498864 −0.249432 0.968392i \(-0.580244\pi\)
−0.249432 + 0.968392i \(0.580244\pi\)
\(282\) 0 0
\(283\) −4.50627 −0.267870 −0.133935 0.990990i \(-0.542761\pi\)
−0.133935 + 0.990990i \(0.542761\pi\)
\(284\) −4.50031 −0.267044
\(285\) 0 0
\(286\) 51.9703 3.07307
\(287\) −42.2983 −2.49679
\(288\) 0 0
\(289\) −9.89357 −0.581975
\(290\) 0 0
\(291\) 0 0
\(292\) 43.0087 2.51690
\(293\) 17.9925 1.05113 0.525566 0.850753i \(-0.323854\pi\)
0.525566 + 0.850753i \(0.323854\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −19.3798 −1.12643
\(297\) 0 0
\(298\) 18.2538 1.05741
\(299\) −30.9184 −1.78806
\(300\) 0 0
\(301\) −7.31452 −0.421602
\(302\) 45.5201 2.61939
\(303\) 0 0
\(304\) 2.44288 0.140109
\(305\) 0 0
\(306\) 0 0
\(307\) −17.8530 −1.01892 −0.509461 0.860494i \(-0.670155\pi\)
−0.509461 + 0.860494i \(0.670155\pi\)
\(308\) 88.4847 5.04188
\(309\) 0 0
\(310\) 0 0
\(311\) 23.8024 1.34971 0.674856 0.737950i \(-0.264206\pi\)
0.674856 + 0.737950i \(0.264206\pi\)
\(312\) 0 0
\(313\) 7.21536 0.407836 0.203918 0.978988i \(-0.434632\pi\)
0.203918 + 0.978988i \(0.434632\pi\)
\(314\) −0.881063 −0.0497213
\(315\) 0 0
\(316\) 18.8673 1.06137
\(317\) −28.3490 −1.59224 −0.796118 0.605142i \(-0.793116\pi\)
−0.796118 + 0.605142i \(0.793116\pi\)
\(318\) 0 0
\(319\) −27.0403 −1.51397
\(320\) 0 0
\(321\) 0 0
\(322\) −80.8818 −4.50737
\(323\) 2.66579 0.148328
\(324\) 0 0
\(325\) 0 0
\(326\) −7.86070 −0.435364
\(327\) 0 0
\(328\) −42.1344 −2.32648
\(329\) −29.6804 −1.63633
\(330\) 0 0
\(331\) 19.3169 1.06175 0.530875 0.847450i \(-0.321863\pi\)
0.530875 + 0.847450i \(0.321863\pi\)
\(332\) −6.84807 −0.375837
\(333\) 0 0
\(334\) −33.9025 −1.85506
\(335\) 0 0
\(336\) 0 0
\(337\) −19.4944 −1.06193 −0.530963 0.847395i \(-0.678170\pi\)
−0.530963 + 0.847395i \(0.678170\pi\)
\(338\) 3.42574 0.186336
\(339\) 0 0
\(340\) 0 0
\(341\) −13.2180 −0.715793
\(342\) 0 0
\(343\) 13.4567 0.726591
\(344\) −7.28617 −0.392844
\(345\) 0 0
\(346\) −59.9294 −3.22182
\(347\) 16.1592 0.867471 0.433736 0.901040i \(-0.357195\pi\)
0.433736 + 0.901040i \(0.357195\pi\)
\(348\) 0 0
\(349\) −6.37305 −0.341141 −0.170571 0.985345i \(-0.554561\pi\)
−0.170571 + 0.985345i \(0.554561\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −13.8644 −0.738977
\(353\) −31.7273 −1.68867 −0.844337 0.535813i \(-0.820005\pi\)
−0.844337 + 0.535813i \(0.820005\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.5533 −0.665325
\(357\) 0 0
\(358\) −61.7733 −3.26482
\(359\) 14.7365 0.777761 0.388881 0.921288i \(-0.372862\pi\)
0.388881 + 0.921288i \(0.372862\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −11.7578 −0.617974
\(363\) 0 0
\(364\) 58.8068 3.08232
\(365\) 0 0
\(366\) 0 0
\(367\) −9.75466 −0.509189 −0.254595 0.967048i \(-0.581942\pi\)
−0.254595 + 0.967048i \(0.581942\pi\)
\(368\) −19.8823 −1.03644
\(369\) 0 0
\(370\) 0 0
\(371\) 12.6392 0.656192
\(372\) 0 0
\(373\) 2.62601 0.135969 0.0679847 0.997686i \(-0.478343\pi\)
0.0679847 + 0.997686i \(0.478343\pi\)
\(374\) 36.4693 1.88578
\(375\) 0 0
\(376\) −29.5653 −1.52472
\(377\) −17.9709 −0.925551
\(378\) 0 0
\(379\) −0.835168 −0.0428997 −0.0214498 0.999770i \(-0.506828\pi\)
−0.0214498 + 0.999770i \(0.506828\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 31.5459 1.61403
\(383\) 9.14340 0.467206 0.233603 0.972332i \(-0.424948\pi\)
0.233603 + 0.972332i \(0.424948\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 41.8080 2.12797
\(387\) 0 0
\(388\) 1.16820 0.0593063
\(389\) 15.8729 0.804790 0.402395 0.915466i \(-0.368178\pi\)
0.402395 + 0.915466i \(0.368178\pi\)
\(390\) 0 0
\(391\) −21.6965 −1.09724
\(392\) 42.3573 2.13937
\(393\) 0 0
\(394\) 1.78043 0.0896970
\(395\) 0 0
\(396\) 0 0
\(397\) 25.0535 1.25740 0.628701 0.777647i \(-0.283587\pi\)
0.628701 + 0.777647i \(0.283587\pi\)
\(398\) 9.04879 0.453575
\(399\) 0 0
\(400\) 0 0
\(401\) 33.7989 1.68784 0.843918 0.536472i \(-0.180243\pi\)
0.843918 + 0.536472i \(0.180243\pi\)
\(402\) 0 0
\(403\) −8.78464 −0.437594
\(404\) 54.7765 2.72523
\(405\) 0 0
\(406\) −47.0115 −2.33314
\(407\) −26.7825 −1.32756
\(408\) 0 0
\(409\) 16.6942 0.825475 0.412737 0.910850i \(-0.364573\pi\)
0.412737 + 0.910850i \(0.364573\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.69450 0.132748
\(413\) 2.41753 0.118959
\(414\) 0 0
\(415\) 0 0
\(416\) −9.21430 −0.451768
\(417\) 0 0
\(418\) 13.6805 0.669134
\(419\) 13.3371 0.651562 0.325781 0.945445i \(-0.394373\pi\)
0.325781 + 0.945445i \(0.394373\pi\)
\(420\) 0 0
\(421\) 34.8398 1.69799 0.848994 0.528403i \(-0.177209\pi\)
0.848994 + 0.528403i \(0.177209\pi\)
\(422\) 31.5233 1.53453
\(423\) 0 0
\(424\) 12.5902 0.611433
\(425\) 0 0
\(426\) 0 0
\(427\) −39.6518 −1.91888
\(428\) 16.0476 0.775689
\(429\) 0 0
\(430\) 0 0
\(431\) 16.8542 0.811838 0.405919 0.913909i \(-0.366952\pi\)
0.405919 + 0.913909i \(0.366952\pi\)
\(432\) 0 0
\(433\) −29.2583 −1.40606 −0.703032 0.711159i \(-0.748171\pi\)
−0.703032 + 0.711159i \(0.748171\pi\)
\(434\) −22.9804 −1.10309
\(435\) 0 0
\(436\) −12.8858 −0.617116
\(437\) −8.13886 −0.389335
\(438\) 0 0
\(439\) 32.9453 1.57239 0.786196 0.617977i \(-0.212047\pi\)
0.786196 + 0.617977i \(0.212047\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.2375 1.15286
\(443\) −24.1805 −1.14885 −0.574424 0.818558i \(-0.694774\pi\)
−0.574424 + 0.818558i \(0.694774\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.4584 0.779326
\(447\) 0 0
\(448\) −44.3911 −2.09728
\(449\) 2.76399 0.130441 0.0652203 0.997871i \(-0.479225\pi\)
0.0652203 + 0.997871i \(0.479225\pi\)
\(450\) 0 0
\(451\) −58.2288 −2.74189
\(452\) −18.8354 −0.885945
\(453\) 0 0
\(454\) −12.9976 −0.610007
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5998 0.542615 0.271308 0.962493i \(-0.412544\pi\)
0.271308 + 0.962493i \(0.412544\pi\)
\(458\) 52.1246 2.43562
\(459\) 0 0
\(460\) 0 0
\(461\) 11.5257 0.536803 0.268402 0.963307i \(-0.413505\pi\)
0.268402 + 0.963307i \(0.413505\pi\)
\(462\) 0 0
\(463\) 4.62404 0.214897 0.107449 0.994211i \(-0.465732\pi\)
0.107449 + 0.994211i \(0.465732\pi\)
\(464\) −11.5563 −0.536489
\(465\) 0 0
\(466\) −5.06797 −0.234769
\(467\) −16.4171 −0.759693 −0.379846 0.925050i \(-0.624023\pi\)
−0.379846 + 0.925050i \(0.624023\pi\)
\(468\) 0 0
\(469\) −5.01218 −0.231441
\(470\) 0 0
\(471\) 0 0
\(472\) 2.40817 0.110845
\(473\) −10.0693 −0.462988
\(474\) 0 0
\(475\) 0 0
\(476\) 41.2667 1.89146
\(477\) 0 0
\(478\) 20.6675 0.945309
\(479\) 37.8775 1.73067 0.865333 0.501197i \(-0.167107\pi\)
0.865333 + 0.501197i \(0.167107\pi\)
\(480\) 0 0
\(481\) −17.7996 −0.811592
\(482\) −50.1351 −2.28359
\(483\) 0 0
\(484\) 80.8001 3.67273
\(485\) 0 0
\(486\) 0 0
\(487\) −26.5135 −1.20144 −0.600721 0.799459i \(-0.705120\pi\)
−0.600721 + 0.799459i \(0.705120\pi\)
\(488\) −39.4981 −1.78800
\(489\) 0 0
\(490\) 0 0
\(491\) −22.7926 −1.02862 −0.514308 0.857605i \(-0.671951\pi\)
−0.514308 + 0.857605i \(0.671951\pi\)
\(492\) 0 0
\(493\) −12.6108 −0.567963
\(494\) 9.09204 0.409070
\(495\) 0 0
\(496\) −5.64902 −0.253649
\(497\) −5.01218 −0.224827
\(498\) 0 0
\(499\) −31.7340 −1.42061 −0.710305 0.703894i \(-0.751443\pi\)
−0.710305 + 0.703894i \(0.751443\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.12616 0.139527
\(503\) −34.8198 −1.55254 −0.776270 0.630401i \(-0.782891\pi\)
−0.776270 + 0.630401i \(0.782891\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −111.344 −4.94983
\(507\) 0 0
\(508\) 16.3069 0.723501
\(509\) 30.6872 1.36019 0.680093 0.733126i \(-0.261940\pi\)
0.680093 + 0.733126i \(0.261940\pi\)
\(510\) 0 0
\(511\) 47.9006 2.11900
\(512\) −26.1334 −1.15494
\(513\) 0 0
\(514\) 33.0829 1.45922
\(515\) 0 0
\(516\) 0 0
\(517\) −40.8586 −1.79696
\(518\) −46.5633 −2.04587
\(519\) 0 0
\(520\) 0 0
\(521\) 6.02661 0.264030 0.132015 0.991248i \(-0.457855\pi\)
0.132015 + 0.991248i \(0.457855\pi\)
\(522\) 0 0
\(523\) −13.1962 −0.577030 −0.288515 0.957475i \(-0.593161\pi\)
−0.288515 + 0.957475i \(0.593161\pi\)
\(524\) 7.52611 0.328780
\(525\) 0 0
\(526\) 74.4419 3.24582
\(527\) −6.16448 −0.268529
\(528\) 0 0
\(529\) 43.2411 1.88005
\(530\) 0 0
\(531\) 0 0
\(532\) 15.4801 0.671148
\(533\) −38.6988 −1.67623
\(534\) 0 0
\(535\) 0 0
\(536\) −4.99275 −0.215654
\(537\) 0 0
\(538\) 2.47308 0.106622
\(539\) 58.5368 2.52136
\(540\) 0 0
\(541\) −23.7490 −1.02105 −0.510526 0.859863i \(-0.670549\pi\)
−0.510526 + 0.859863i \(0.670549\pi\)
\(542\) −37.5611 −1.61339
\(543\) 0 0
\(544\) −6.46598 −0.277227
\(545\) 0 0
\(546\) 0 0
\(547\) 11.2331 0.480294 0.240147 0.970737i \(-0.422804\pi\)
0.240147 + 0.970737i \(0.422804\pi\)
\(548\) −7.75398 −0.331234
\(549\) 0 0
\(550\) 0 0
\(551\) −4.73061 −0.201531
\(552\) 0 0
\(553\) 21.0133 0.893577
\(554\) −60.8734 −2.58626
\(555\) 0 0
\(556\) −16.5464 −0.701722
\(557\) 11.8681 0.502868 0.251434 0.967874i \(-0.419098\pi\)
0.251434 + 0.967874i \(0.419098\pi\)
\(558\) 0 0
\(559\) −6.69206 −0.283044
\(560\) 0 0
\(561\) 0 0
\(562\) −20.0144 −0.844258
\(563\) 18.9867 0.800193 0.400097 0.916473i \(-0.368977\pi\)
0.400097 + 0.916473i \(0.368977\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −10.7851 −0.453333
\(567\) 0 0
\(568\) −4.99275 −0.209491
\(569\) 38.8613 1.62915 0.814575 0.580058i \(-0.196970\pi\)
0.814575 + 0.580058i \(0.196970\pi\)
\(570\) 0 0
\(571\) 28.5840 1.19620 0.598102 0.801420i \(-0.295922\pi\)
0.598102 + 0.801420i \(0.295922\pi\)
\(572\) 80.9547 3.38489
\(573\) 0 0
\(574\) −101.235 −4.22547
\(575\) 0 0
\(576\) 0 0
\(577\) −42.4311 −1.76643 −0.883215 0.468969i \(-0.844626\pi\)
−0.883215 + 0.468969i \(0.844626\pi\)
\(578\) −23.6789 −0.984911
\(579\) 0 0
\(580\) 0 0
\(581\) −7.62697 −0.316420
\(582\) 0 0
\(583\) 17.3993 0.720606
\(584\) 47.7149 1.97446
\(585\) 0 0
\(586\) 43.0625 1.77889
\(587\) −26.0549 −1.07540 −0.537700 0.843136i \(-0.680707\pi\)
−0.537700 + 0.843136i \(0.680707\pi\)
\(588\) 0 0
\(589\) −2.31244 −0.0952825
\(590\) 0 0
\(591\) 0 0
\(592\) −11.4461 −0.470434
\(593\) −14.1580 −0.581401 −0.290701 0.956814i \(-0.593888\pi\)
−0.290701 + 0.956814i \(0.593888\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.4342 1.16471
\(597\) 0 0
\(598\) −73.9989 −3.02604
\(599\) 23.6371 0.965785 0.482892 0.875680i \(-0.339586\pi\)
0.482892 + 0.875680i \(0.339586\pi\)
\(600\) 0 0
\(601\) −42.0887 −1.71683 −0.858417 0.512952i \(-0.828552\pi\)
−0.858417 + 0.512952i \(0.828552\pi\)
\(602\) −17.5063 −0.713502
\(603\) 0 0
\(604\) 70.9072 2.88517
\(605\) 0 0
\(606\) 0 0
\(607\) 31.9023 1.29487 0.647436 0.762119i \(-0.275841\pi\)
0.647436 + 0.762119i \(0.275841\pi\)
\(608\) −2.42554 −0.0983687
\(609\) 0 0
\(610\) 0 0
\(611\) −27.1546 −1.09856
\(612\) 0 0
\(613\) 26.5468 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(614\) −42.7285 −1.72438
\(615\) 0 0
\(616\) 98.1671 3.95526
\(617\) −23.4262 −0.943102 −0.471551 0.881839i \(-0.656306\pi\)
−0.471551 + 0.881839i \(0.656306\pi\)
\(618\) 0 0
\(619\) −19.7893 −0.795401 −0.397700 0.917515i \(-0.630192\pi\)
−0.397700 + 0.917515i \(0.630192\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 56.9677 2.28420
\(623\) −13.9812 −0.560143
\(624\) 0 0
\(625\) 0 0
\(626\) 17.2689 0.690205
\(627\) 0 0
\(628\) −1.37244 −0.0547664
\(629\) −12.4906 −0.498032
\(630\) 0 0
\(631\) 45.2620 1.80185 0.900925 0.433975i \(-0.142889\pi\)
0.900925 + 0.433975i \(0.142889\pi\)
\(632\) 20.9319 0.832626
\(633\) 0 0
\(634\) −67.8492 −2.69464
\(635\) 0 0
\(636\) 0 0
\(637\) 38.9035 1.54141
\(638\) −64.7171 −2.56217
\(639\) 0 0
\(640\) 0 0
\(641\) −3.60938 −0.142562 −0.0712810 0.997456i \(-0.522709\pi\)
−0.0712810 + 0.997456i \(0.522709\pi\)
\(642\) 0 0
\(643\) 33.2955 1.31305 0.656524 0.754305i \(-0.272026\pi\)
0.656524 + 0.754305i \(0.272026\pi\)
\(644\) −125.991 −4.96472
\(645\) 0 0
\(646\) 6.38019 0.251025
\(647\) 27.9119 1.09733 0.548665 0.836042i \(-0.315136\pi\)
0.548665 + 0.836042i \(0.315136\pi\)
\(648\) 0 0
\(649\) 3.32803 0.130637
\(650\) 0 0
\(651\) 0 0
\(652\) −12.2447 −0.479540
\(653\) 19.8672 0.777463 0.388731 0.921351i \(-0.372913\pi\)
0.388731 + 0.921351i \(0.372913\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.8855 −0.971616
\(657\) 0 0
\(658\) −71.0357 −2.76926
\(659\) 2.96382 0.115454 0.0577271 0.998332i \(-0.481615\pi\)
0.0577271 + 0.998332i \(0.481615\pi\)
\(660\) 0 0
\(661\) −15.4066 −0.599249 −0.299625 0.954057i \(-0.596861\pi\)
−0.299625 + 0.954057i \(0.596861\pi\)
\(662\) 46.2321 1.79686
\(663\) 0 0
\(664\) −7.59741 −0.294837
\(665\) 0 0
\(666\) 0 0
\(667\) 38.5018 1.49080
\(668\) −52.8103 −2.04329
\(669\) 0 0
\(670\) 0 0
\(671\) −54.5855 −2.10725
\(672\) 0 0
\(673\) −23.0136 −0.887108 −0.443554 0.896248i \(-0.646283\pi\)
−0.443554 + 0.896248i \(0.646283\pi\)
\(674\) −46.6570 −1.79716
\(675\) 0 0
\(676\) 5.33631 0.205243
\(677\) 29.6077 1.13791 0.568957 0.822367i \(-0.307347\pi\)
0.568957 + 0.822367i \(0.307347\pi\)
\(678\) 0 0
\(679\) 1.30107 0.0499305
\(680\) 0 0
\(681\) 0 0
\(682\) −31.6353 −1.21138
\(683\) −5.86030 −0.224238 −0.112119 0.993695i \(-0.535764\pi\)
−0.112119 + 0.993695i \(0.535764\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 32.2066 1.22965
\(687\) 0 0
\(688\) −4.30337 −0.164065
\(689\) 11.5636 0.440537
\(690\) 0 0
\(691\) 0.0661786 0.00251755 0.00125878 0.999999i \(-0.499599\pi\)
0.00125878 + 0.999999i \(0.499599\pi\)
\(692\) −93.3527 −3.54874
\(693\) 0 0
\(694\) 38.6748 1.46807
\(695\) 0 0
\(696\) 0 0
\(697\) −27.1562 −1.02862
\(698\) −15.2530 −0.577334
\(699\) 0 0
\(700\) 0 0
\(701\) 26.4938 1.00066 0.500329 0.865835i \(-0.333212\pi\)
0.500329 + 0.865835i \(0.333212\pi\)
\(702\) 0 0
\(703\) −4.68551 −0.176717
\(704\) −61.1097 −2.30316
\(705\) 0 0
\(706\) −75.9348 −2.85784
\(707\) 61.0069 2.29440
\(708\) 0 0
\(709\) 36.5674 1.37332 0.686659 0.726980i \(-0.259077\pi\)
0.686659 + 0.726980i \(0.259077\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −13.9270 −0.521935
\(713\) 18.8206 0.704839
\(714\) 0 0
\(715\) 0 0
\(716\) −96.2251 −3.59610
\(717\) 0 0
\(718\) 35.2697 1.31625
\(719\) −29.2859 −1.09218 −0.546090 0.837727i \(-0.683884\pi\)
−0.546090 + 0.837727i \(0.683884\pi\)
\(720\) 0 0
\(721\) 3.00097 0.111762
\(722\) 2.39336 0.0890716
\(723\) 0 0
\(724\) −18.3152 −0.680679
\(725\) 0 0
\(726\) 0 0
\(727\) 2.74936 0.101968 0.0509840 0.998699i \(-0.483764\pi\)
0.0509840 + 0.998699i \(0.483764\pi\)
\(728\) 65.2417 2.41802
\(729\) 0 0
\(730\) 0 0
\(731\) −4.69604 −0.173689
\(732\) 0 0
\(733\) −21.9833 −0.811971 −0.405985 0.913880i \(-0.633072\pi\)
−0.405985 + 0.913880i \(0.633072\pi\)
\(734\) −23.3464 −0.861732
\(735\) 0 0
\(736\) 19.7412 0.727669
\(737\) −6.89987 −0.254160
\(738\) 0 0
\(739\) 30.1074 1.10752 0.553759 0.832677i \(-0.313193\pi\)
0.553759 + 0.832677i \(0.313193\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 30.2500 1.11051
\(743\) 17.7818 0.652351 0.326175 0.945309i \(-0.394240\pi\)
0.326175 + 0.945309i \(0.394240\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.28498 0.230109
\(747\) 0 0
\(748\) 56.8087 2.07713
\(749\) 17.8728 0.653060
\(750\) 0 0
\(751\) −44.3608 −1.61875 −0.809375 0.587293i \(-0.800194\pi\)
−0.809375 + 0.587293i \(0.800194\pi\)
\(752\) −17.4619 −0.636771
\(753\) 0 0
\(754\) −43.0109 −1.56637
\(755\) 0 0
\(756\) 0 0
\(757\) −28.3533 −1.03052 −0.515260 0.857034i \(-0.672305\pi\)
−0.515260 + 0.857034i \(0.672305\pi\)
\(758\) −1.99886 −0.0726017
\(759\) 0 0
\(760\) 0 0
\(761\) 38.7292 1.40393 0.701967 0.712209i \(-0.252305\pi\)
0.701967 + 0.712209i \(0.252305\pi\)
\(762\) 0 0
\(763\) −14.3514 −0.519556
\(764\) 49.1394 1.77780
\(765\) 0 0
\(766\) 21.8834 0.790681
\(767\) 2.21181 0.0798637
\(768\) 0 0
\(769\) −2.62828 −0.0947783 −0.0473892 0.998877i \(-0.515090\pi\)
−0.0473892 + 0.998877i \(0.515090\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 65.1249 2.34390
\(773\) 10.8541 0.390396 0.195198 0.980764i \(-0.437465\pi\)
0.195198 + 0.980764i \(0.437465\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.29603 0.0465247
\(777\) 0 0
\(778\) 37.9896 1.36199
\(779\) −10.1869 −0.364985
\(780\) 0 0
\(781\) −6.89987 −0.246897
\(782\) −51.9275 −1.85692
\(783\) 0 0
\(784\) 25.0172 0.893470
\(785\) 0 0
\(786\) 0 0
\(787\) −44.9026 −1.60061 −0.800303 0.599596i \(-0.795328\pi\)
−0.800303 + 0.599596i \(0.795328\pi\)
\(788\) 2.77340 0.0987984
\(789\) 0 0
\(790\) 0 0
\(791\) −20.9778 −0.745885
\(792\) 0 0
\(793\) −36.2775 −1.28825
\(794\) 59.9621 2.12798
\(795\) 0 0
\(796\) 14.0954 0.499599
\(797\) 2.80317 0.0992932 0.0496466 0.998767i \(-0.484190\pi\)
0.0496466 + 0.998767i \(0.484190\pi\)
\(798\) 0 0
\(799\) −19.0553 −0.674128
\(800\) 0 0
\(801\) 0 0
\(802\) 80.8929 2.85643
\(803\) 65.9410 2.32701
\(804\) 0 0
\(805\) 0 0
\(806\) −21.0248 −0.740567
\(807\) 0 0
\(808\) 60.7704 2.13790
\(809\) 24.2210 0.851564 0.425782 0.904826i \(-0.359999\pi\)
0.425782 + 0.904826i \(0.359999\pi\)
\(810\) 0 0
\(811\) −37.2046 −1.30643 −0.653215 0.757173i \(-0.726580\pi\)
−0.653215 + 0.757173i \(0.726580\pi\)
\(812\) −73.2305 −2.56989
\(813\) 0 0
\(814\) −64.1000 −2.24670
\(815\) 0 0
\(816\) 0 0
\(817\) −1.76160 −0.0616305
\(818\) 39.9552 1.39700
\(819\) 0 0
\(820\) 0 0
\(821\) 12.8833 0.449632 0.224816 0.974401i \(-0.427822\pi\)
0.224816 + 0.974401i \(0.427822\pi\)
\(822\) 0 0
\(823\) 2.28995 0.0798227 0.0399114 0.999203i \(-0.487292\pi\)
0.0399114 + 0.999203i \(0.487292\pi\)
\(824\) 2.98934 0.104139
\(825\) 0 0
\(826\) 5.78603 0.201322
\(827\) 45.1481 1.56995 0.784977 0.619525i \(-0.212675\pi\)
0.784977 + 0.619525i \(0.212675\pi\)
\(828\) 0 0
\(829\) −50.8866 −1.76736 −0.883682 0.468088i \(-0.844943\pi\)
−0.883682 + 0.468088i \(0.844943\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −40.6135 −1.40802
\(833\) 27.2999 0.945886
\(834\) 0 0
\(835\) 0 0
\(836\) 21.3103 0.737031
\(837\) 0 0
\(838\) 31.9205 1.10268
\(839\) −45.6605 −1.57638 −0.788188 0.615434i \(-0.788981\pi\)
−0.788188 + 0.615434i \(0.788981\pi\)
\(840\) 0 0
\(841\) −6.62129 −0.228320
\(842\) 83.3841 2.87361
\(843\) 0 0
\(844\) 49.1042 1.69024
\(845\) 0 0
\(846\) 0 0
\(847\) 89.9903 3.09210
\(848\) 7.43603 0.255354
\(849\) 0 0
\(850\) 0 0
\(851\) 38.1347 1.30724
\(852\) 0 0
\(853\) −22.9225 −0.784853 −0.392426 0.919783i \(-0.628364\pi\)
−0.392426 + 0.919783i \(0.628364\pi\)
\(854\) −94.9009 −3.24744
\(855\) 0 0
\(856\) 17.8036 0.608514
\(857\) 22.3212 0.762478 0.381239 0.924476i \(-0.375497\pi\)
0.381239 + 0.924476i \(0.375497\pi\)
\(858\) 0 0
\(859\) 1.02386 0.0349335 0.0174668 0.999847i \(-0.494440\pi\)
0.0174668 + 0.999847i \(0.494440\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 40.3381 1.37392
\(863\) −4.40228 −0.149855 −0.0749276 0.997189i \(-0.523873\pi\)
−0.0749276 + 0.997189i \(0.523873\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −70.0256 −2.37957
\(867\) 0 0
\(868\) −35.7969 −1.21502
\(869\) 28.9274 0.981294
\(870\) 0 0
\(871\) −4.58565 −0.155379
\(872\) −14.2958 −0.484116
\(873\) 0 0
\(874\) −19.4792 −0.658894
\(875\) 0 0
\(876\) 0 0
\(877\) −13.9049 −0.469534 −0.234767 0.972052i \(-0.575433\pi\)
−0.234767 + 0.972052i \(0.575433\pi\)
\(878\) 78.8499 2.66105
\(879\) 0 0
\(880\) 0 0
\(881\) −22.9771 −0.774120 −0.387060 0.922055i \(-0.626509\pi\)
−0.387060 + 0.922055i \(0.626509\pi\)
\(882\) 0 0
\(883\) 1.38507 0.0466113 0.0233057 0.999728i \(-0.492581\pi\)
0.0233057 + 0.999728i \(0.492581\pi\)
\(884\) 37.7550 1.26984
\(885\) 0 0
\(886\) −57.8725 −1.94426
\(887\) −41.9736 −1.40934 −0.704669 0.709537i \(-0.748904\pi\)
−0.704669 + 0.709537i \(0.748904\pi\)
\(888\) 0 0
\(889\) 18.1616 0.609122
\(890\) 0 0
\(891\) 0 0
\(892\) 25.6374 0.858404
\(893\) −7.14809 −0.239202
\(894\) 0 0
\(895\) 0 0
\(896\) −86.1011 −2.87643
\(897\) 0 0
\(898\) 6.61521 0.220752
\(899\) 10.9393 0.364845
\(900\) 0 0
\(901\) 8.11455 0.270335
\(902\) −139.362 −4.64026
\(903\) 0 0
\(904\) −20.8965 −0.695007
\(905\) 0 0
\(906\) 0 0
\(907\) 35.3835 1.17489 0.587446 0.809264i \(-0.300134\pi\)
0.587446 + 0.809264i \(0.300134\pi\)
\(908\) −20.2465 −0.671904
\(909\) 0 0
\(910\) 0 0
\(911\) −20.4675 −0.678118 −0.339059 0.940765i \(-0.610109\pi\)
−0.339059 + 0.940765i \(0.610109\pi\)
\(912\) 0 0
\(913\) −10.4995 −0.347481
\(914\) 27.7625 0.918301
\(915\) 0 0
\(916\) 81.1952 2.68277
\(917\) 8.38213 0.276802
\(918\) 0 0
\(919\) 52.0875 1.71821 0.859104 0.511801i \(-0.171022\pi\)
0.859104 + 0.511801i \(0.171022\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 27.5850 0.908465
\(923\) −4.58565 −0.150938
\(924\) 0 0
\(925\) 0 0
\(926\) 11.0670 0.363683
\(927\) 0 0
\(928\) 11.4743 0.376662
\(929\) 25.6384 0.841169 0.420585 0.907253i \(-0.361825\pi\)
0.420585 + 0.907253i \(0.361825\pi\)
\(930\) 0 0
\(931\) 10.2408 0.335630
\(932\) −7.89444 −0.258591
\(933\) 0 0
\(934\) −39.2920 −1.28567
\(935\) 0 0
\(936\) 0 0
\(937\) −23.0135 −0.751819 −0.375910 0.926656i \(-0.622670\pi\)
−0.375910 + 0.926656i \(0.622670\pi\)
\(938\) −11.9959 −0.391681
\(939\) 0 0
\(940\) 0 0
\(941\) 18.9987 0.619340 0.309670 0.950844i \(-0.399781\pi\)
0.309670 + 0.950844i \(0.399781\pi\)
\(942\) 0 0
\(943\) 82.9101 2.69993
\(944\) 1.42232 0.0462924
\(945\) 0 0
\(946\) −24.0995 −0.783542
\(947\) 36.2442 1.17778 0.588890 0.808213i \(-0.299565\pi\)
0.588890 + 0.808213i \(0.299565\pi\)
\(948\) 0 0
\(949\) 43.8243 1.42260
\(950\) 0 0
\(951\) 0 0
\(952\) 45.7823 1.48381
\(953\) −14.9590 −0.484570 −0.242285 0.970205i \(-0.577897\pi\)
−0.242285 + 0.970205i \(0.577897\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 32.1940 1.04123
\(957\) 0 0
\(958\) 90.6544 2.92891
\(959\) −8.63593 −0.278869
\(960\) 0 0
\(961\) −25.6526 −0.827504
\(962\) −42.6008 −1.37351
\(963\) 0 0
\(964\) −78.0960 −2.51530
\(965\) 0 0
\(966\) 0 0
\(967\) −25.6465 −0.824734 −0.412367 0.911018i \(-0.635298\pi\)
−0.412367 + 0.911018i \(0.635298\pi\)
\(968\) 89.6416 2.88119
\(969\) 0 0
\(970\) 0 0
\(971\) −56.6249 −1.81718 −0.908590 0.417689i \(-0.862840\pi\)
−0.908590 + 0.417689i \(0.862840\pi\)
\(972\) 0 0
\(973\) −18.4284 −0.590786
\(974\) −63.4563 −2.03327
\(975\) 0 0
\(976\) −23.3285 −0.746726
\(977\) 10.8909 0.348432 0.174216 0.984707i \(-0.444261\pi\)
0.174216 + 0.984707i \(0.444261\pi\)
\(978\) 0 0
\(979\) −19.2468 −0.615129
\(980\) 0 0
\(981\) 0 0
\(982\) −54.5509 −1.74079
\(983\) −43.3279 −1.38195 −0.690973 0.722881i \(-0.742818\pi\)
−0.690973 + 0.722881i \(0.742818\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −30.1822 −0.961197
\(987\) 0 0
\(988\) 14.1628 0.450578
\(989\) 14.3374 0.455903
\(990\) 0 0
\(991\) −12.9921 −0.412707 −0.206353 0.978478i \(-0.566160\pi\)
−0.206353 + 0.978478i \(0.566160\pi\)
\(992\) 5.60892 0.178084
\(993\) 0 0
\(994\) −11.9959 −0.380488
\(995\) 0 0
\(996\) 0 0
\(997\) −54.8983 −1.73865 −0.869323 0.494244i \(-0.835445\pi\)
−0.869323 + 0.494244i \(0.835445\pi\)
\(998\) −75.9509 −2.40418
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bv.1.7 7
3.2 odd 2 1425.2.a.z.1.1 7
5.2 odd 4 855.2.c.g.514.12 14
5.3 odd 4 855.2.c.g.514.3 14
5.4 even 2 4275.2.a.bw.1.1 7
15.2 even 4 285.2.c.b.229.3 14
15.8 even 4 285.2.c.b.229.12 yes 14
15.14 odd 2 1425.2.a.y.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.b.229.3 14 15.2 even 4
285.2.c.b.229.12 yes 14 15.8 even 4
855.2.c.g.514.3 14 5.3 odd 4
855.2.c.g.514.12 14 5.2 odd 4
1425.2.a.y.1.7 7 15.14 odd 2
1425.2.a.z.1.1 7 3.2 odd 2
4275.2.a.bv.1.7 7 1.1 even 1 trivial
4275.2.a.bw.1.1 7 5.4 even 2