Properties

Label 4275.2.a.bu.1.6
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.15044092.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 12x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.437984\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34908 q^{2} +3.51820 q^{4} +4.85952 q^{7} +3.56638 q^{8} -1.93359 q^{11} +2.00000 q^{13} +11.4154 q^{14} +1.34132 q^{16} +2.43459 q^{17} +1.00000 q^{19} -4.54217 q^{22} -4.36818 q^{23} +4.69817 q^{26} +17.0968 q^{28} +8.26455 q^{29} -1.17687 q^{31} -3.98187 q^{32} +5.71905 q^{34} +7.03640 q^{37} +2.34908 q^{38} +7.93456 q^{41} -3.71905 q^{43} -6.80276 q^{44} -10.2612 q^{46} -13.2635 q^{47} +16.6150 q^{49} +7.03640 q^{52} +1.13179 q^{53} +17.3309 q^{56} +19.4141 q^{58} -3.23639 q^{59} +4.36530 q^{61} -2.76458 q^{62} -12.0364 q^{64} -2.54217 q^{67} +8.56535 q^{68} -6.50196 q^{71} -2.71905 q^{73} +16.5291 q^{74} +3.51820 q^{76} -9.39634 q^{77} +8.21327 q^{79} +18.6389 q^{82} -6.80276 q^{83} -8.73636 q^{86} -6.89592 q^{88} +1.13179 q^{89} +9.71905 q^{91} -15.3681 q^{92} -31.1571 q^{94} +16.4017 q^{97} +39.0300 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} + 8 q^{7} + 12 q^{13} + 6 q^{19} + 10 q^{22} + 26 q^{28} - 2 q^{31} - 8 q^{34} + 16 q^{37} + 20 q^{43} + 18 q^{46} + 10 q^{49} + 16 q^{52} + 56 q^{58} - 6 q^{61} - 46 q^{64} + 22 q^{67} + 26 q^{73}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34908 1.66105 0.830527 0.556979i \(-0.188039\pi\)
0.830527 + 0.556979i \(0.188039\pi\)
\(3\) 0 0
\(4\) 3.51820 1.75910
\(5\) 0 0
\(6\) 0 0
\(7\) 4.85952 1.83673 0.918364 0.395738i \(-0.129511\pi\)
0.918364 + 0.395738i \(0.129511\pi\)
\(8\) 3.56638 1.26090
\(9\) 0 0
\(10\) 0 0
\(11\) −1.93359 −0.583000 −0.291500 0.956571i \(-0.594154\pi\)
−0.291500 + 0.956571i \(0.594154\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 11.4154 3.05090
\(15\) 0 0
\(16\) 1.34132 0.335331
\(17\) 2.43459 0.590474 0.295237 0.955424i \(-0.404601\pi\)
0.295237 + 0.955424i \(0.404601\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −4.54217 −0.968394
\(23\) −4.36818 −0.910828 −0.455414 0.890280i \(-0.650509\pi\)
−0.455414 + 0.890280i \(0.650509\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.69817 0.921387
\(27\) 0 0
\(28\) 17.0968 3.23099
\(29\) 8.26455 1.53469 0.767344 0.641236i \(-0.221578\pi\)
0.767344 + 0.641236i \(0.221578\pi\)
\(30\) 0 0
\(31\) −1.17687 −0.211373 −0.105686 0.994400i \(-0.533704\pi\)
−0.105686 + 0.994400i \(0.533704\pi\)
\(32\) −3.98187 −0.703902
\(33\) 0 0
\(34\) 5.71905 0.980808
\(35\) 0 0
\(36\) 0 0
\(37\) 7.03640 1.15678 0.578388 0.815762i \(-0.303682\pi\)
0.578388 + 0.815762i \(0.303682\pi\)
\(38\) 2.34908 0.381072
\(39\) 0 0
\(40\) 0 0
\(41\) 7.93456 1.23917 0.619585 0.784930i \(-0.287301\pi\)
0.619585 + 0.784930i \(0.287301\pi\)
\(42\) 0 0
\(43\) −3.71905 −0.567149 −0.283575 0.958950i \(-0.591520\pi\)
−0.283575 + 0.958950i \(0.591520\pi\)
\(44\) −6.80276 −1.02556
\(45\) 0 0
\(46\) −10.2612 −1.51293
\(47\) −13.2635 −1.93468 −0.967342 0.253475i \(-0.918426\pi\)
−0.967342 + 0.253475i \(0.918426\pi\)
\(48\) 0 0
\(49\) 16.6150 2.37357
\(50\) 0 0
\(51\) 0 0
\(52\) 7.03640 0.975773
\(53\) 1.13179 0.155464 0.0777318 0.996974i \(-0.475232\pi\)
0.0777318 + 0.996974i \(0.475232\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.3309 2.31594
\(57\) 0 0
\(58\) 19.4141 2.54920
\(59\) −3.23639 −0.421342 −0.210671 0.977557i \(-0.567565\pi\)
−0.210671 + 0.977557i \(0.567565\pi\)
\(60\) 0 0
\(61\) 4.36530 0.558919 0.279460 0.960157i \(-0.409845\pi\)
0.279460 + 0.960157i \(0.409845\pi\)
\(62\) −2.76458 −0.351102
\(63\) 0 0
\(64\) −12.0364 −1.50455
\(65\) 0 0
\(66\) 0 0
\(67\) −2.54217 −0.310576 −0.155288 0.987869i \(-0.549631\pi\)
−0.155288 + 0.987869i \(0.549631\pi\)
\(68\) 8.56535 1.03870
\(69\) 0 0
\(70\) 0 0
\(71\) −6.50196 −0.771640 −0.385820 0.922574i \(-0.626081\pi\)
−0.385820 + 0.922574i \(0.626081\pi\)
\(72\) 0 0
\(73\) −2.71905 −0.318240 −0.159120 0.987259i \(-0.550866\pi\)
−0.159120 + 0.987259i \(0.550866\pi\)
\(74\) 16.5291 1.92147
\(75\) 0 0
\(76\) 3.51820 0.403565
\(77\) −9.39634 −1.07081
\(78\) 0 0
\(79\) 8.21327 0.924065 0.462033 0.886863i \(-0.347120\pi\)
0.462033 + 0.886863i \(0.347120\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 18.6389 2.05833
\(83\) −6.80276 −0.746700 −0.373350 0.927691i \(-0.621791\pi\)
−0.373350 + 0.927691i \(0.621791\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.73636 −0.942065
\(87\) 0 0
\(88\) −6.89592 −0.735108
\(89\) 1.13179 0.119970 0.0599849 0.998199i \(-0.480895\pi\)
0.0599849 + 0.998199i \(0.480895\pi\)
\(90\) 0 0
\(91\) 9.71905 1.01883
\(92\) −15.3681 −1.60224
\(93\) 0 0
\(94\) −31.1571 −3.21361
\(95\) 0 0
\(96\) 0 0
\(97\) 16.4017 1.66534 0.832670 0.553770i \(-0.186811\pi\)
0.832670 + 0.553770i \(0.186811\pi\)
\(98\) 39.0300 3.94262
\(99\) 0 0
\(100\) 0 0
\(101\) −7.96374 −0.792422 −0.396211 0.918160i \(-0.629675\pi\)
−0.396211 + 0.918160i \(0.629675\pi\)
\(102\) 0 0
\(103\) 6.82313 0.672303 0.336151 0.941808i \(-0.390875\pi\)
0.336151 + 0.941808i \(0.390875\pi\)
\(104\) 7.13275 0.699424
\(105\) 0 0
\(106\) 2.65868 0.258233
\(107\) −8.76554 −0.847397 −0.423698 0.905803i \(-0.639268\pi\)
−0.423698 + 0.905803i \(0.639268\pi\)
\(108\) 0 0
\(109\) −18.1207 −1.73565 −0.867826 0.496868i \(-0.834483\pi\)
−0.867826 + 0.496868i \(0.834483\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.51820 0.615912
\(113\) 18.4627 1.73682 0.868412 0.495844i \(-0.165141\pi\)
0.868412 + 0.495844i \(0.165141\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 29.0763 2.69967
\(117\) 0 0
\(118\) −7.60254 −0.699871
\(119\) 11.8309 1.08454
\(120\) 0 0
\(121\) −7.26122 −0.660111
\(122\) 10.2545 0.928395
\(123\) 0 0
\(124\) −4.14048 −0.371826
\(125\) 0 0
\(126\) 0 0
\(127\) −7.57857 −0.672489 −0.336245 0.941775i \(-0.609157\pi\)
−0.336245 + 0.941775i \(0.609157\pi\)
\(128\) −20.3108 −1.79524
\(129\) 0 0
\(130\) 0 0
\(131\) −17.4607 −1.52555 −0.762774 0.646665i \(-0.776163\pi\)
−0.762774 + 0.646665i \(0.776163\pi\)
\(132\) 0 0
\(133\) 4.85952 0.421374
\(134\) −5.97178 −0.515883
\(135\) 0 0
\(136\) 8.68265 0.744531
\(137\) −9.56734 −0.817393 −0.408696 0.912670i \(-0.634017\pi\)
−0.408696 + 0.912670i \(0.634017\pi\)
\(138\) 0 0
\(139\) −1.49422 −0.126738 −0.0633692 0.997990i \(-0.520185\pi\)
−0.0633692 + 0.997990i \(0.520185\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −15.2736 −1.28174
\(143\) −3.86719 −0.323390
\(144\) 0 0
\(145\) 0 0
\(146\) −6.38727 −0.528614
\(147\) 0 0
\(148\) 24.7554 2.03488
\(149\) 14.2655 1.16868 0.584338 0.811510i \(-0.301354\pi\)
0.584338 + 0.811510i \(0.301354\pi\)
\(150\) 0 0
\(151\) −14.7554 −1.20078 −0.600391 0.799707i \(-0.704988\pi\)
−0.600391 + 0.799707i \(0.704988\pi\)
\(152\) 3.56638 0.289271
\(153\) 0 0
\(154\) −22.0728 −1.77868
\(155\) 0 0
\(156\) 0 0
\(157\) 15.5422 1.24040 0.620200 0.784444i \(-0.287051\pi\)
0.620200 + 0.784444i \(0.287051\pi\)
\(158\) 19.2937 1.53492
\(159\) 0 0
\(160\) 0 0
\(161\) −21.2273 −1.67294
\(162\) 0 0
\(163\) 10.2248 0.800870 0.400435 0.916325i \(-0.368859\pi\)
0.400435 + 0.916325i \(0.368859\pi\)
\(164\) 27.9153 2.17982
\(165\) 0 0
\(166\) −15.9803 −1.24031
\(167\) −7.76355 −0.600762 −0.300381 0.953819i \(-0.597114\pi\)
−0.300381 + 0.953819i \(0.597114\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −13.0843 −0.997672
\(173\) 17.0009 1.29255 0.646277 0.763103i \(-0.276325\pi\)
0.646277 + 0.763103i \(0.276325\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.59358 −0.195498
\(177\) 0 0
\(178\) 2.65868 0.199276
\(179\) −12.0311 −0.899247 −0.449624 0.893218i \(-0.648442\pi\)
−0.449624 + 0.893218i \(0.648442\pi\)
\(180\) 0 0
\(181\) 22.0728 1.64066 0.820329 0.571892i \(-0.193790\pi\)
0.820329 + 0.571892i \(0.193790\pi\)
\(182\) 22.8309 1.69234
\(183\) 0 0
\(184\) −15.5786 −1.14847
\(185\) 0 0
\(186\) 0 0
\(187\) −4.70750 −0.344246
\(188\) −46.6637 −3.40330
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5935 0.983592 0.491796 0.870710i \(-0.336341\pi\)
0.491796 + 0.870710i \(0.336341\pi\)
\(192\) 0 0
\(193\) −20.8282 −1.49925 −0.749625 0.661863i \(-0.769766\pi\)
−0.749625 + 0.661863i \(0.769766\pi\)
\(194\) 38.5290 2.76622
\(195\) 0 0
\(196\) 58.4548 4.17534
\(197\) 23.8328 1.69802 0.849010 0.528377i \(-0.177199\pi\)
0.849010 + 0.528377i \(0.177199\pi\)
\(198\) 0 0
\(199\) 12.5786 0.891671 0.445836 0.895115i \(-0.352907\pi\)
0.445836 + 0.895115i \(0.352907\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −18.7075 −1.31625
\(203\) 40.1618 2.81880
\(204\) 0 0
\(205\) 0 0
\(206\) 16.0281 1.11673
\(207\) 0 0
\(208\) 2.68265 0.186008
\(209\) −1.93359 −0.133749
\(210\) 0 0
\(211\) 15.2976 1.05313 0.526566 0.850134i \(-0.323479\pi\)
0.526566 + 0.850134i \(0.323479\pi\)
\(212\) 3.98187 0.273476
\(213\) 0 0
\(214\) −20.5910 −1.40757
\(215\) 0 0
\(216\) 0 0
\(217\) −5.71905 −0.388234
\(218\) −42.5672 −2.88301
\(219\) 0 0
\(220\) 0 0
\(221\) 4.86917 0.327536
\(222\) 0 0
\(223\) −20.6398 −1.38214 −0.691072 0.722786i \(-0.742861\pi\)
−0.691072 + 0.722786i \(0.742861\pi\)
\(224\) −19.3500 −1.29288
\(225\) 0 0
\(226\) 43.3704 2.88496
\(227\) −2.89438 −0.192107 −0.0960535 0.995376i \(-0.530622\pi\)
−0.0960535 + 0.995376i \(0.530622\pi\)
\(228\) 0 0
\(229\) −12.8959 −0.852186 −0.426093 0.904679i \(-0.640110\pi\)
−0.426093 + 0.904679i \(0.640110\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 29.4745 1.93510
\(233\) 11.6599 0.763867 0.381933 0.924190i \(-0.375258\pi\)
0.381933 + 0.924190i \(0.375258\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.3862 −0.741182
\(237\) 0 0
\(238\) 27.7918 1.80148
\(239\) −22.2292 −1.43789 −0.718945 0.695067i \(-0.755375\pi\)
−0.718945 + 0.695067i \(0.755375\pi\)
\(240\) 0 0
\(241\) 1.31735 0.0848580 0.0424290 0.999099i \(-0.486490\pi\)
0.0424290 + 0.999099i \(0.486490\pi\)
\(242\) −17.0572 −1.09648
\(243\) 0 0
\(244\) 15.3580 0.983194
\(245\) 0 0
\(246\) 0 0
\(247\) 2.00000 0.127257
\(248\) −4.19718 −0.266521
\(249\) 0 0
\(250\) 0 0
\(251\) −12.4325 −0.784735 −0.392367 0.919809i \(-0.628344\pi\)
−0.392367 + 0.919809i \(0.628344\pi\)
\(252\) 0 0
\(253\) 8.44628 0.531013
\(254\) −17.8027 −1.11704
\(255\) 0 0
\(256\) −23.6389 −1.47743
\(257\) −23.5320 −1.46789 −0.733944 0.679210i \(-0.762323\pi\)
−0.733944 + 0.679210i \(0.762323\pi\)
\(258\) 0 0
\(259\) 34.1935 2.12468
\(260\) 0 0
\(261\) 0 0
\(262\) −41.0167 −2.53402
\(263\) −1.76259 −0.108686 −0.0543430 0.998522i \(-0.517306\pi\)
−0.0543430 + 0.998522i \(0.517306\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 11.4154 0.699925
\(267\) 0 0
\(268\) −8.94387 −0.546334
\(269\) −10.6579 −0.649826 −0.324913 0.945744i \(-0.605335\pi\)
−0.324913 + 0.945744i \(0.605335\pi\)
\(270\) 0 0
\(271\) −6.22482 −0.378131 −0.189066 0.981964i \(-0.560546\pi\)
−0.189066 + 0.981964i \(0.560546\pi\)
\(272\) 3.26557 0.198004
\(273\) 0 0
\(274\) −22.4745 −1.35773
\(275\) 0 0
\(276\) 0 0
\(277\) −4.79184 −0.287914 −0.143957 0.989584i \(-0.545983\pi\)
−0.143957 + 0.989584i \(0.545983\pi\)
\(278\) −3.51006 −0.210519
\(279\) 0 0
\(280\) 0 0
\(281\) 22.3299 1.33209 0.666044 0.745912i \(-0.267986\pi\)
0.666044 + 0.745912i \(0.267986\pi\)
\(282\) 0 0
\(283\) 6.35375 0.377691 0.188846 0.982007i \(-0.439525\pi\)
0.188846 + 0.982007i \(0.439525\pi\)
\(284\) −22.8752 −1.35739
\(285\) 0 0
\(286\) −9.08435 −0.537169
\(287\) 38.5582 2.27602
\(288\) 0 0
\(289\) −11.0728 −0.651341
\(290\) 0 0
\(291\) 0 0
\(292\) −9.56615 −0.559816
\(293\) −24.3338 −1.42160 −0.710799 0.703395i \(-0.751666\pi\)
−0.710799 + 0.703395i \(0.751666\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 25.0944 1.45859
\(297\) 0 0
\(298\) 33.5109 1.94123
\(299\) −8.73636 −0.505236
\(300\) 0 0
\(301\) −18.0728 −1.04170
\(302\) −34.6618 −1.99456
\(303\) 0 0
\(304\) 1.34132 0.0769302
\(305\) 0 0
\(306\) 0 0
\(307\) 2.18842 0.124900 0.0624500 0.998048i \(-0.480109\pi\)
0.0624500 + 0.998048i \(0.480109\pi\)
\(308\) −33.0582 −1.88366
\(309\) 0 0
\(310\) 0 0
\(311\) −11.6599 −0.661174 −0.330587 0.943776i \(-0.607247\pi\)
−0.330587 + 0.943776i \(0.607247\pi\)
\(312\) 0 0
\(313\) −17.3225 −0.979124 −0.489562 0.871969i \(-0.662843\pi\)
−0.489562 + 0.871969i \(0.662843\pi\)
\(314\) 36.5099 2.06037
\(315\) 0 0
\(316\) 28.8959 1.62552
\(317\) 5.60059 0.314561 0.157280 0.987554i \(-0.449727\pi\)
0.157280 + 0.987554i \(0.449727\pi\)
\(318\) 0 0
\(319\) −15.9803 −0.894723
\(320\) 0 0
\(321\) 0 0
\(322\) −49.8646 −2.77885
\(323\) 2.43459 0.135464
\(324\) 0 0
\(325\) 0 0
\(326\) 24.0190 1.33029
\(327\) 0 0
\(328\) 28.2976 1.56247
\(329\) −64.4544 −3.55349
\(330\) 0 0
\(331\) −8.82313 −0.484963 −0.242481 0.970156i \(-0.577961\pi\)
−0.242481 + 0.970156i \(0.577961\pi\)
\(332\) −23.9335 −1.31352
\(333\) 0 0
\(334\) −18.2372 −0.997898
\(335\) 0 0
\(336\) 0 0
\(337\) −17.5109 −0.953879 −0.476939 0.878936i \(-0.658254\pi\)
−0.476939 + 0.878936i \(0.658254\pi\)
\(338\) −21.1418 −1.14996
\(339\) 0 0
\(340\) 0 0
\(341\) 2.27559 0.123230
\(342\) 0 0
\(343\) 46.7242 2.52287
\(344\) −13.2635 −0.715121
\(345\) 0 0
\(346\) 39.9366 2.14700
\(347\) −32.8872 −1.76548 −0.882738 0.469865i \(-0.844303\pi\)
−0.882738 + 0.469865i \(0.844303\pi\)
\(348\) 0 0
\(349\) −16.0843 −0.860975 −0.430488 0.902596i \(-0.641658\pi\)
−0.430488 + 0.902596i \(0.641658\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7.69931 0.410375
\(353\) 10.3400 0.550340 0.275170 0.961396i \(-0.411266\pi\)
0.275170 + 0.961396i \(0.411266\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.98187 0.211039
\(357\) 0 0
\(358\) −28.2621 −1.49370
\(359\) 22.1709 1.17013 0.585067 0.810985i \(-0.301068\pi\)
0.585067 + 0.810985i \(0.301068\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 51.8509 2.72522
\(363\) 0 0
\(364\) 34.1935 1.79223
\(365\) 0 0
\(366\) 0 0
\(367\) −9.08435 −0.474199 −0.237099 0.971485i \(-0.576197\pi\)
−0.237099 + 0.971485i \(0.576197\pi\)
\(368\) −5.85914 −0.305429
\(369\) 0 0
\(370\) 0 0
\(371\) 5.49997 0.285544
\(372\) 0 0
\(373\) −6.02485 −0.311955 −0.155977 0.987761i \(-0.549853\pi\)
−0.155977 + 0.987761i \(0.549853\pi\)
\(374\) −11.0583 −0.571811
\(375\) 0 0
\(376\) −47.3027 −2.43945
\(377\) 16.5291 0.851292
\(378\) 0 0
\(379\) 33.6316 1.72754 0.863770 0.503886i \(-0.168097\pi\)
0.863770 + 0.503886i \(0.168097\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 31.9323 1.63380
\(383\) 29.8218 1.52382 0.761911 0.647681i \(-0.224261\pi\)
0.761911 + 0.647681i \(0.224261\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −48.9273 −2.49033
\(387\) 0 0
\(388\) 57.7044 2.92950
\(389\) 2.60559 0.132108 0.0660542 0.997816i \(-0.478959\pi\)
0.0660542 + 0.997816i \(0.478959\pi\)
\(390\) 0 0
\(391\) −10.6347 −0.537820
\(392\) 59.2552 2.99284
\(393\) 0 0
\(394\) 55.9854 2.82050
\(395\) 0 0
\(396\) 0 0
\(397\) 23.2497 1.16687 0.583434 0.812161i \(-0.301709\pi\)
0.583434 + 0.812161i \(0.301709\pi\)
\(398\) 29.5481 1.48111
\(399\) 0 0
\(400\) 0 0
\(401\) −18.8047 −0.939061 −0.469531 0.882916i \(-0.655577\pi\)
−0.469531 + 0.882916i \(0.655577\pi\)
\(402\) 0 0
\(403\) −2.35375 −0.117249
\(404\) −28.0180 −1.39395
\(405\) 0 0
\(406\) 94.3434 4.68218
\(407\) −13.6055 −0.674401
\(408\) 0 0
\(409\) −15.1092 −0.747101 −0.373551 0.927610i \(-0.621860\pi\)
−0.373551 + 0.927610i \(0.621860\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 24.0051 1.18265
\(413\) −15.7273 −0.773889
\(414\) 0 0
\(415\) 0 0
\(416\) −7.96374 −0.390454
\(417\) 0 0
\(418\) −4.54217 −0.222165
\(419\) 12.0019 0.586332 0.293166 0.956061i \(-0.405291\pi\)
0.293166 + 0.956061i \(0.405291\pi\)
\(420\) 0 0
\(421\) −24.1456 −1.17678 −0.588392 0.808576i \(-0.700239\pi\)
−0.588392 + 0.808576i \(0.700239\pi\)
\(422\) 35.9354 1.74931
\(423\) 0 0
\(424\) 4.03640 0.196025
\(425\) 0 0
\(426\) 0 0
\(427\) 21.2133 1.02658
\(428\) −30.8389 −1.49065
\(429\) 0 0
\(430\) 0 0
\(431\) −17.8199 −0.858353 −0.429177 0.903221i \(-0.641196\pi\)
−0.429177 + 0.903221i \(0.641196\pi\)
\(432\) 0 0
\(433\) −9.08435 −0.436566 −0.218283 0.975886i \(-0.570046\pi\)
−0.218283 + 0.975886i \(0.570046\pi\)
\(434\) −13.4345 −0.644878
\(435\) 0 0
\(436\) −63.7524 −3.05318
\(437\) −4.36818 −0.208958
\(438\) 0 0
\(439\) 15.8595 0.756934 0.378467 0.925615i \(-0.376451\pi\)
0.378467 + 0.925615i \(0.376451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 11.4381 0.544055
\(443\) −17.2011 −0.817248 −0.408624 0.912703i \(-0.633991\pi\)
−0.408624 + 0.912703i \(0.633991\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −48.4847 −2.29582
\(447\) 0 0
\(448\) −58.4912 −2.76345
\(449\) −1.13179 −0.0534126 −0.0267063 0.999643i \(-0.508502\pi\)
−0.0267063 + 0.999643i \(0.508502\pi\)
\(450\) 0 0
\(451\) −15.3422 −0.722436
\(452\) 64.9554 3.05524
\(453\) 0 0
\(454\) −6.79915 −0.319100
\(455\) 0 0
\(456\) 0 0
\(457\) 29.6150 1.38533 0.692665 0.721260i \(-0.256437\pi\)
0.692665 + 0.721260i \(0.256437\pi\)
\(458\) −30.2936 −1.41553
\(459\) 0 0
\(460\) 0 0
\(461\) −37.3560 −1.73984 −0.869921 0.493191i \(-0.835830\pi\)
−0.869921 + 0.493191i \(0.835830\pi\)
\(462\) 0 0
\(463\) 26.4993 1.23153 0.615764 0.787930i \(-0.288847\pi\)
0.615764 + 0.787930i \(0.288847\pi\)
\(464\) 11.0854 0.514629
\(465\) 0 0
\(466\) 27.3901 1.26882
\(467\) 34.7624 1.60861 0.804306 0.594215i \(-0.202537\pi\)
0.804306 + 0.594215i \(0.202537\pi\)
\(468\) 0 0
\(469\) −12.3537 −0.570443
\(470\) 0 0
\(471\) 0 0
\(472\) −11.5422 −0.531272
\(473\) 7.19112 0.330648
\(474\) 0 0
\(475\) 0 0
\(476\) 41.6235 1.90781
\(477\) 0 0
\(478\) −52.2184 −2.38841
\(479\) −23.1609 −1.05825 −0.529123 0.848545i \(-0.677479\pi\)
−0.529123 + 0.848545i \(0.677479\pi\)
\(480\) 0 0
\(481\) 14.0728 0.641664
\(482\) 3.09457 0.140954
\(483\) 0 0
\(484\) −25.5464 −1.16120
\(485\) 0 0
\(486\) 0 0
\(487\) 9.51089 0.430979 0.215490 0.976506i \(-0.430865\pi\)
0.215490 + 0.976506i \(0.430865\pi\)
\(488\) 15.5683 0.704744
\(489\) 0 0
\(490\) 0 0
\(491\) −36.4948 −1.64699 −0.823493 0.567327i \(-0.807978\pi\)
−0.823493 + 0.567327i \(0.807978\pi\)
\(492\) 0 0
\(493\) 20.1207 0.906193
\(494\) 4.69817 0.211381
\(495\) 0 0
\(496\) −1.57857 −0.0708799
\(497\) −31.5964 −1.41729
\(498\) 0 0
\(499\) 40.5786 1.81655 0.908273 0.418378i \(-0.137401\pi\)
0.908273 + 0.418378i \(0.137401\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −29.2051 −1.30349
\(503\) −3.86719 −0.172429 −0.0862146 0.996277i \(-0.527477\pi\)
−0.0862146 + 0.996277i \(0.527477\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 19.8410 0.882041
\(507\) 0 0
\(508\) −26.6629 −1.18298
\(509\) −13.7937 −0.611395 −0.305697 0.952129i \(-0.598890\pi\)
−0.305697 + 0.952129i \(0.598890\pi\)
\(510\) 0 0
\(511\) −13.2133 −0.584521
\(512\) −14.9083 −0.658861
\(513\) 0 0
\(514\) −55.2788 −2.43824
\(515\) 0 0
\(516\) 0 0
\(517\) 25.6463 1.12792
\(518\) 80.3235 3.52921
\(519\) 0 0
\(520\) 0 0
\(521\) −40.3207 −1.76648 −0.883242 0.468917i \(-0.844644\pi\)
−0.883242 + 0.468917i \(0.844644\pi\)
\(522\) 0 0
\(523\) 1.74389 0.0762551 0.0381276 0.999273i \(-0.487861\pi\)
0.0381276 + 0.999273i \(0.487861\pi\)
\(524\) −61.4302 −2.68359
\(525\) 0 0
\(526\) −4.14048 −0.180533
\(527\) −2.86520 −0.124810
\(528\) 0 0
\(529\) −3.91902 −0.170392
\(530\) 0 0
\(531\) 0 0
\(532\) 17.0968 0.741239
\(533\) 15.8691 0.687367
\(534\) 0 0
\(535\) 0 0
\(536\) −9.06635 −0.391607
\(537\) 0 0
\(538\) −25.0364 −1.07940
\(539\) −32.1266 −1.38379
\(540\) 0 0
\(541\) −36.3340 −1.56212 −0.781061 0.624455i \(-0.785321\pi\)
−0.781061 + 0.624455i \(0.785321\pi\)
\(542\) −14.6226 −0.628096
\(543\) 0 0
\(544\) −9.69420 −0.415635
\(545\) 0 0
\(546\) 0 0
\(547\) 12.5670 0.537327 0.268663 0.963234i \(-0.413418\pi\)
0.268663 + 0.963234i \(0.413418\pi\)
\(548\) −33.6598 −1.43788
\(549\) 0 0
\(550\) 0 0
\(551\) 8.26455 0.352082
\(552\) 0 0
\(553\) 39.9126 1.69726
\(554\) −11.2564 −0.478240
\(555\) 0 0
\(556\) −5.25698 −0.222946
\(557\) −15.1851 −0.643414 −0.321707 0.946839i \(-0.604257\pi\)
−0.321707 + 0.946839i \(0.604257\pi\)
\(558\) 0 0
\(559\) −7.43809 −0.314598
\(560\) 0 0
\(561\) 0 0
\(562\) 52.4548 2.21267
\(563\) −33.0290 −1.39201 −0.696003 0.718039i \(-0.745040\pi\)
−0.696003 + 0.718039i \(0.745040\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.9255 0.627365
\(567\) 0 0
\(568\) −23.1884 −0.972965
\(569\) 9.19615 0.385523 0.192761 0.981246i \(-0.438256\pi\)
0.192761 + 0.981246i \(0.438256\pi\)
\(570\) 0 0
\(571\) 15.9936 0.669310 0.334655 0.942341i \(-0.391380\pi\)
0.334655 + 0.942341i \(0.391380\pi\)
\(572\) −13.6055 −0.568876
\(573\) 0 0
\(574\) 90.5764 3.78058
\(575\) 0 0
\(576\) 0 0
\(577\) 37.8449 1.57550 0.787752 0.615993i \(-0.211245\pi\)
0.787752 + 0.615993i \(0.211245\pi\)
\(578\) −26.0109 −1.08191
\(579\) 0 0
\(580\) 0 0
\(581\) −33.0582 −1.37148
\(582\) 0 0
\(583\) −2.18842 −0.0906353
\(584\) −9.69715 −0.401271
\(585\) 0 0
\(586\) −57.1623 −2.36135
\(587\) 42.8972 1.77055 0.885277 0.465063i \(-0.153968\pi\)
0.885277 + 0.465063i \(0.153968\pi\)
\(588\) 0 0
\(589\) −1.17687 −0.0484922
\(590\) 0 0
\(591\) 0 0
\(592\) 9.43809 0.387903
\(593\) −13.9235 −0.571770 −0.285885 0.958264i \(-0.592288\pi\)
−0.285885 + 0.958264i \(0.592288\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 50.1889 2.05582
\(597\) 0 0
\(598\) −20.5224 −0.839225
\(599\) 25.0058 1.02171 0.510855 0.859667i \(-0.329329\pi\)
0.510855 + 0.859667i \(0.329329\pi\)
\(600\) 0 0
\(601\) −38.5721 −1.57339 −0.786695 0.617342i \(-0.788210\pi\)
−0.786695 + 0.617342i \(0.788210\pi\)
\(602\) −42.4545 −1.73032
\(603\) 0 0
\(604\) −51.9126 −2.11229
\(605\) 0 0
\(606\) 0 0
\(607\) −42.1010 −1.70883 −0.854414 0.519593i \(-0.826083\pi\)
−0.854414 + 0.519593i \(0.826083\pi\)
\(608\) −3.98187 −0.161486
\(609\) 0 0
\(610\) 0 0
\(611\) −26.5270 −1.07317
\(612\) 0 0
\(613\) 45.7606 1.84825 0.924126 0.382088i \(-0.124795\pi\)
0.924126 + 0.382088i \(0.124795\pi\)
\(614\) 5.14079 0.207466
\(615\) 0 0
\(616\) −33.5109 −1.35019
\(617\) −5.12878 −0.206477 −0.103239 0.994657i \(-0.532921\pi\)
−0.103239 + 0.994657i \(0.532921\pi\)
\(618\) 0 0
\(619\) −3.66292 −0.147225 −0.0736125 0.997287i \(-0.523453\pi\)
−0.0736125 + 0.997287i \(0.523453\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −27.3901 −1.09824
\(623\) 5.49997 0.220352
\(624\) 0 0
\(625\) 0 0
\(626\) −40.6919 −1.62638
\(627\) 0 0
\(628\) 54.6805 2.18199
\(629\) 17.1307 0.683046
\(630\) 0 0
\(631\) −43.5340 −1.73306 −0.866530 0.499124i \(-0.833655\pi\)
−0.866530 + 0.499124i \(0.833655\pi\)
\(632\) 29.2916 1.16516
\(633\) 0 0
\(634\) 13.1563 0.522502
\(635\) 0 0
\(636\) 0 0
\(637\) 33.2299 1.31662
\(638\) −37.5390 −1.48618
\(639\) 0 0
\(640\) 0 0
\(641\) 34.3198 1.35555 0.677775 0.735269i \(-0.262944\pi\)
0.677775 + 0.735269i \(0.262944\pi\)
\(642\) 0 0
\(643\) −17.8480 −0.703855 −0.351928 0.936027i \(-0.614474\pi\)
−0.351928 + 0.936027i \(0.614474\pi\)
\(644\) −74.6817 −2.94287
\(645\) 0 0
\(646\) 5.71905 0.225013
\(647\) −47.9373 −1.88461 −0.942305 0.334755i \(-0.891347\pi\)
−0.942305 + 0.334755i \(0.891347\pi\)
\(648\) 0 0
\(649\) 6.25785 0.245642
\(650\) 0 0
\(651\) 0 0
\(652\) 35.9730 1.40881
\(653\) −31.3962 −1.22863 −0.614314 0.789061i \(-0.710567\pi\)
−0.614314 + 0.789061i \(0.710567\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.6428 0.415532
\(657\) 0 0
\(658\) −151.409 −5.90253
\(659\) 11.4003 0.444093 0.222046 0.975036i \(-0.428726\pi\)
0.222046 + 0.975036i \(0.428726\pi\)
\(660\) 0 0
\(661\) −47.2051 −1.83607 −0.918033 0.396505i \(-0.870223\pi\)
−0.918033 + 0.396505i \(0.870223\pi\)
\(662\) −20.7263 −0.805549
\(663\) 0 0
\(664\) −24.2612 −0.941518
\(665\) 0 0
\(666\) 0 0
\(667\) −36.1010 −1.39784
\(668\) −27.3137 −1.05680
\(669\) 0 0
\(670\) 0 0
\(671\) −8.44071 −0.325850
\(672\) 0 0
\(673\) 24.7075 0.952404 0.476202 0.879336i \(-0.342013\pi\)
0.476202 + 0.879336i \(0.342013\pi\)
\(674\) −41.1346 −1.58444
\(675\) 0 0
\(676\) −31.6638 −1.21784
\(677\) −26.3972 −1.01453 −0.507264 0.861791i \(-0.669343\pi\)
−0.507264 + 0.861791i \(0.669343\pi\)
\(678\) 0 0
\(679\) 79.7044 3.05878
\(680\) 0 0
\(681\) 0 0
\(682\) 5.34557 0.204692
\(683\) −10.9708 −0.419784 −0.209892 0.977725i \(-0.567311\pi\)
−0.209892 + 0.977725i \(0.567311\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 109.759 4.19062
\(687\) 0 0
\(688\) −4.98845 −0.190183
\(689\) 2.26358 0.0862357
\(690\) 0 0
\(691\) −0.280953 −0.0106880 −0.00534398 0.999986i \(-0.501701\pi\)
−0.00534398 + 0.999986i \(0.501701\pi\)
\(692\) 59.8126 2.27373
\(693\) 0 0
\(694\) −77.2548 −2.93255
\(695\) 0 0
\(696\) 0 0
\(697\) 19.3174 0.731697
\(698\) −37.7835 −1.43013
\(699\) 0 0
\(700\) 0 0
\(701\) −23.8328 −0.900154 −0.450077 0.892990i \(-0.648604\pi\)
−0.450077 + 0.892990i \(0.648604\pi\)
\(702\) 0 0
\(703\) 7.03640 0.265383
\(704\) 23.2735 0.877153
\(705\) 0 0
\(706\) 24.2894 0.914145
\(707\) −38.7000 −1.45546
\(708\) 0 0
\(709\) −4.34220 −0.163075 −0.0815373 0.996670i \(-0.525983\pi\)
−0.0815373 + 0.996670i \(0.525983\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.03640 0.151270
\(713\) 5.14079 0.192524
\(714\) 0 0
\(715\) 0 0
\(716\) −42.3278 −1.58187
\(717\) 0 0
\(718\) 52.0813 1.94366
\(719\) 44.7301 1.66815 0.834076 0.551650i \(-0.186001\pi\)
0.834076 + 0.551650i \(0.186001\pi\)
\(720\) 0 0
\(721\) 33.1571 1.23484
\(722\) 2.34908 0.0874239
\(723\) 0 0
\(724\) 77.6565 2.88608
\(725\) 0 0
\(726\) 0 0
\(727\) −29.4548 −1.09242 −0.546208 0.837649i \(-0.683929\pi\)
−0.546208 + 0.837649i \(0.683929\pi\)
\(728\) 34.6618 1.28465
\(729\) 0 0
\(730\) 0 0
\(731\) −9.05434 −0.334887
\(732\) 0 0
\(733\) −50.6565 −1.87104 −0.935520 0.353274i \(-0.885068\pi\)
−0.935520 + 0.353274i \(0.885068\pi\)
\(734\) −21.3399 −0.787670
\(735\) 0 0
\(736\) 17.3935 0.641133
\(737\) 4.91553 0.181066
\(738\) 0 0
\(739\) −11.9208 −0.438513 −0.219256 0.975667i \(-0.570363\pi\)
−0.219256 + 0.975667i \(0.570363\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12.9199 0.474304
\(743\) −39.2181 −1.43877 −0.719387 0.694610i \(-0.755577\pi\)
−0.719387 + 0.694610i \(0.755577\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −14.1529 −0.518174
\(747\) 0 0
\(748\) −16.5619 −0.605563
\(749\) −42.5963 −1.55644
\(750\) 0 0
\(751\) −6.63470 −0.242104 −0.121052 0.992646i \(-0.538627\pi\)
−0.121052 + 0.992646i \(0.538627\pi\)
\(752\) −17.7907 −0.648760
\(753\) 0 0
\(754\) 38.8282 1.41404
\(755\) 0 0
\(756\) 0 0
\(757\) −5.37685 −0.195425 −0.0977125 0.995215i \(-0.531153\pi\)
−0.0977125 + 0.995215i \(0.531153\pi\)
\(758\) 79.0035 2.86954
\(759\) 0 0
\(760\) 0 0
\(761\) 35.4928 1.28661 0.643306 0.765609i \(-0.277562\pi\)
0.643306 + 0.765609i \(0.277562\pi\)
\(762\) 0 0
\(763\) −88.0582 −3.18792
\(764\) 47.8247 1.73024
\(765\) 0 0
\(766\) 70.0539 2.53115
\(767\) −6.47277 −0.233718
\(768\) 0 0
\(769\) 33.4496 1.20623 0.603113 0.797656i \(-0.293927\pi\)
0.603113 + 0.797656i \(0.293927\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −73.2779 −2.63733
\(773\) 18.2505 0.656425 0.328212 0.944604i \(-0.393554\pi\)
0.328212 + 0.944604i \(0.393554\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 58.4946 2.09984
\(777\) 0 0
\(778\) 6.12074 0.219439
\(779\) 7.93456 0.284285
\(780\) 0 0
\(781\) 12.5721 0.449866
\(782\) −24.9818 −0.893348
\(783\) 0 0
\(784\) 22.2861 0.795931
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0282 1.14168 0.570841 0.821060i \(-0.306617\pi\)
0.570841 + 0.821060i \(0.306617\pi\)
\(788\) 83.8487 2.98699
\(789\) 0 0
\(790\) 0 0
\(791\) 89.7199 3.19007
\(792\) 0 0
\(793\) 8.73060 0.310033
\(794\) 54.6154 1.93823
\(795\) 0 0
\(796\) 44.2539 1.56854
\(797\) 31.5380 1.11713 0.558567 0.829459i \(-0.311351\pi\)
0.558567 + 0.829459i \(0.311351\pi\)
\(798\) 0 0
\(799\) −32.2912 −1.14238
\(800\) 0 0
\(801\) 0 0
\(802\) −44.1738 −1.55983
\(803\) 5.25753 0.185534
\(804\) 0 0
\(805\) 0 0
\(806\) −5.52915 −0.194756
\(807\) 0 0
\(808\) −28.4017 −0.999168
\(809\) 33.4002 1.17429 0.587144 0.809482i \(-0.300252\pi\)
0.587144 + 0.809482i \(0.300252\pi\)
\(810\) 0 0
\(811\) −0.823126 −0.0289039 −0.0144519 0.999896i \(-0.504600\pi\)
−0.0144519 + 0.999896i \(0.504600\pi\)
\(812\) 141.297 4.95855
\(813\) 0 0
\(814\) −31.9605 −1.12022
\(815\) 0 0
\(816\) 0 0
\(817\) −3.71905 −0.130113
\(818\) −35.4928 −1.24098
\(819\) 0 0
\(820\) 0 0
\(821\) 52.9415 1.84767 0.923835 0.382791i \(-0.125037\pi\)
0.923835 + 0.382791i \(0.125037\pi\)
\(822\) 0 0
\(823\) 49.6003 1.72896 0.864480 0.502668i \(-0.167648\pi\)
0.864480 + 0.502668i \(0.167648\pi\)
\(824\) 24.3338 0.847710
\(825\) 0 0
\(826\) −36.9447 −1.28547
\(827\) 45.0017 1.56486 0.782432 0.622736i \(-0.213979\pi\)
0.782432 + 0.622736i \(0.213979\pi\)
\(828\) 0 0
\(829\) 20.2184 0.702214 0.351107 0.936335i \(-0.385805\pi\)
0.351107 + 0.936335i \(0.385805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −24.0728 −0.834574
\(833\) 40.4506 1.40153
\(834\) 0 0
\(835\) 0 0
\(836\) −6.80276 −0.235278
\(837\) 0 0
\(838\) 28.1935 0.973930
\(839\) −18.7635 −0.647788 −0.323894 0.946093i \(-0.604992\pi\)
−0.323894 + 0.946093i \(0.604992\pi\)
\(840\) 0 0
\(841\) 39.3027 1.35527
\(842\) −56.7200 −1.95470
\(843\) 0 0
\(844\) 53.8201 1.85256
\(845\) 0 0
\(846\) 0 0
\(847\) −35.2861 −1.21244
\(848\) 1.51810 0.0521318
\(849\) 0 0
\(850\) 0 0
\(851\) −30.7362 −1.05362
\(852\) 0 0
\(853\) −0.907472 −0.0310712 −0.0155356 0.999879i \(-0.504945\pi\)
−0.0155356 + 0.999879i \(0.504945\pi\)
\(854\) 49.8318 1.70521
\(855\) 0 0
\(856\) −31.2612 −1.06849
\(857\) 42.2543 1.44338 0.721690 0.692216i \(-0.243365\pi\)
0.721690 + 0.692216i \(0.243365\pi\)
\(858\) 0 0
\(859\) −0.0894585 −0.00305229 −0.00152614 0.999999i \(-0.500486\pi\)
−0.00152614 + 0.999999i \(0.500486\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −41.8604 −1.42577
\(863\) 5.84197 0.198863 0.0994315 0.995044i \(-0.468298\pi\)
0.0994315 + 0.995044i \(0.468298\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −21.3399 −0.725159
\(867\) 0 0
\(868\) −20.1207 −0.682943
\(869\) −15.8811 −0.538730
\(870\) 0 0
\(871\) −5.08435 −0.172276
\(872\) −64.6254 −2.18849
\(873\) 0 0
\(874\) −10.2612 −0.347091
\(875\) 0 0
\(876\) 0 0
\(877\) 16.6578 0.562494 0.281247 0.959635i \(-0.409252\pi\)
0.281247 + 0.959635i \(0.409252\pi\)
\(878\) 37.2554 1.25731
\(879\) 0 0
\(880\) 0 0
\(881\) −25.9495 −0.874259 −0.437130 0.899399i \(-0.644005\pi\)
−0.437130 + 0.899399i \(0.644005\pi\)
\(882\) 0 0
\(883\) 31.5276 1.06099 0.530493 0.847689i \(-0.322007\pi\)
0.530493 + 0.847689i \(0.322007\pi\)
\(884\) 17.1307 0.576168
\(885\) 0 0
\(886\) −40.4068 −1.35749
\(887\) −7.39237 −0.248211 −0.124106 0.992269i \(-0.539606\pi\)
−0.124106 + 0.992269i \(0.539606\pi\)
\(888\) 0 0
\(889\) −36.8282 −1.23518
\(890\) 0 0
\(891\) 0 0
\(892\) −72.6150 −2.43133
\(893\) −13.2635 −0.443847
\(894\) 0 0
\(895\) 0 0
\(896\) −98.7007 −3.29736
\(897\) 0 0
\(898\) −2.65868 −0.0887211
\(899\) −9.72633 −0.324391
\(900\) 0 0
\(901\) 2.75544 0.0917972
\(902\) −36.0401 −1.20000
\(903\) 0 0
\(904\) 65.8449 2.18997
\(905\) 0 0
\(906\) 0 0
\(907\) −0.378595 −0.0125710 −0.00628552 0.999980i \(-0.502001\pi\)
−0.00628552 + 0.999980i \(0.502001\pi\)
\(908\) −10.1830 −0.337935
\(909\) 0 0
\(910\) 0 0
\(911\) −18.5039 −0.613061 −0.306530 0.951861i \(-0.599168\pi\)
−0.306530 + 0.951861i \(0.599168\pi\)
\(912\) 0 0
\(913\) 13.1538 0.435326
\(914\) 69.5681 2.30111
\(915\) 0 0
\(916\) −45.3704 −1.49908
\(917\) −84.8507 −2.80202
\(918\) 0 0
\(919\) −7.49422 −0.247212 −0.123606 0.992331i \(-0.539446\pi\)
−0.123606 + 0.992331i \(0.539446\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −87.7524 −2.88997
\(923\) −13.0039 −0.428029
\(924\) 0 0
\(925\) 0 0
\(926\) 62.2492 2.04564
\(927\) 0 0
\(928\) −32.9083 −1.08027
\(929\) 55.5470 1.82244 0.911220 0.411921i \(-0.135142\pi\)
0.911220 + 0.411921i \(0.135142\pi\)
\(930\) 0 0
\(931\) 16.6150 0.544534
\(932\) 41.0219 1.34372
\(933\) 0 0
\(934\) 81.6598 2.67199
\(935\) 0 0
\(936\) 0 0
\(937\) 21.7606 0.710886 0.355443 0.934698i \(-0.384330\pi\)
0.355443 + 0.934698i \(0.384330\pi\)
\(938\) −29.0200 −0.947537
\(939\) 0 0
\(940\) 0 0
\(941\) 36.2774 1.18261 0.591305 0.806448i \(-0.298613\pi\)
0.591305 + 0.806448i \(0.298613\pi\)
\(942\) 0 0
\(943\) −34.6595 −1.12867
\(944\) −4.34104 −0.141289
\(945\) 0 0
\(946\) 16.8926 0.549224
\(947\) 44.6597 1.45125 0.725623 0.688092i \(-0.241552\pi\)
0.725623 + 0.688092i \(0.241552\pi\)
\(948\) 0 0
\(949\) −5.43809 −0.176528
\(950\) 0 0
\(951\) 0 0
\(952\) 42.1935 1.36750
\(953\) −6.26058 −0.202800 −0.101400 0.994846i \(-0.532332\pi\)
−0.101400 + 0.994846i \(0.532332\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −78.2069 −2.52939
\(957\) 0 0
\(958\) −54.4068 −1.75780
\(959\) −46.4927 −1.50133
\(960\) 0 0
\(961\) −29.6150 −0.955322
\(962\) 33.0582 1.06584
\(963\) 0 0
\(964\) 4.63470 0.149274
\(965\) 0 0
\(966\) 0 0
\(967\) 22.2976 0.717043 0.358522 0.933521i \(-0.383281\pi\)
0.358522 + 0.933521i \(0.383281\pi\)
\(968\) −25.8962 −0.832337
\(969\) 0 0
\(970\) 0 0
\(971\) 24.6106 0.789793 0.394896 0.918726i \(-0.370781\pi\)
0.394896 + 0.918726i \(0.370781\pi\)
\(972\) 0 0
\(973\) −7.26122 −0.232784
\(974\) 22.3419 0.715880
\(975\) 0 0
\(976\) 5.85528 0.187423
\(977\) −5.78877 −0.185199 −0.0925995 0.995703i \(-0.529518\pi\)
−0.0925995 + 0.995703i \(0.529518\pi\)
\(978\) 0 0
\(979\) −2.18842 −0.0699424
\(980\) 0 0
\(981\) 0 0
\(982\) −85.7293 −2.73573
\(983\) 34.9214 1.11382 0.556910 0.830573i \(-0.311987\pi\)
0.556910 + 0.830573i \(0.311987\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 47.2653 1.50523
\(987\) 0 0
\(988\) 7.03640 0.223858
\(989\) 16.2455 0.516576
\(990\) 0 0
\(991\) −23.8844 −0.758712 −0.379356 0.925251i \(-0.623854\pi\)
−0.379356 + 0.925251i \(0.623854\pi\)
\(992\) 4.68616 0.148786
\(993\) 0 0
\(994\) −74.2226 −2.35420
\(995\) 0 0
\(996\) 0 0
\(997\) −37.4681 −1.18663 −0.593313 0.804972i \(-0.702180\pi\)
−0.593313 + 0.804972i \(0.702180\pi\)
\(998\) 95.3225 3.01738
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bu.1.6 yes 6
3.2 odd 2 inner 4275.2.a.bu.1.1 yes 6
5.4 even 2 4275.2.a.bq.1.1 6
15.14 odd 2 4275.2.a.bq.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4275.2.a.bq.1.1 6 5.4 even 2
4275.2.a.bq.1.6 yes 6 15.14 odd 2
4275.2.a.bu.1.1 yes 6 3.2 odd 2 inner
4275.2.a.bu.1.6 yes 6 1.1 even 1 trivial