Properties

Label 4275.2.a.bs.1.6
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.16717036.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 26x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.53035\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53035 q^{2} +4.40268 q^{4} -2.62981 q^{7} +6.07962 q^{8} -4.12400 q^{11} -3.54573 q^{13} -6.65435 q^{14} +6.57822 q^{16} -3.91124 q^{17} -1.00000 q^{19} -10.4352 q^{22} -0.936703 q^{23} -8.97195 q^{26} -11.5782 q^{28} +1.01892 q^{29} -3.17554 q^{31} +4.48597 q^{32} -9.89682 q^{34} -7.54573 q^{37} -2.53035 q^{38} +1.95562 q^{41} +6.35109 q^{43} -18.1566 q^{44} -2.37019 q^{46} +8.97195 q^{47} -0.0840822 q^{49} -15.6107 q^{52} -11.1403 q^{53} -15.9883 q^{56} +2.57822 q^{58} -7.01632 q^{59} +12.6107 q^{61} -8.03524 q^{62} -1.80536 q^{64} +3.98090 q^{67} -17.2199 q^{68} +7.01632 q^{71} -7.16816 q^{73} -19.0934 q^{74} -4.40268 q^{76} +10.8454 q^{77} -11.5266 q^{79} +4.94841 q^{82} -14.2454 q^{83} +16.0705 q^{86} -25.0724 q^{88} +13.1782 q^{89} +9.32461 q^{91} -4.12400 q^{92} +22.7022 q^{94} -3.54573 q^{97} -0.212757 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 16 q^{13} - 6 q^{19} - 10 q^{22} - 30 q^{28} + 2 q^{31} - 12 q^{34} - 40 q^{37} - 4 q^{43} - 30 q^{46} + 10 q^{49} - 20 q^{52} - 24 q^{58} + 2 q^{61} + 26 q^{64} - 34 q^{67} - 22 q^{73}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53035 1.78923 0.894614 0.446839i \(-0.147450\pi\)
0.894614 + 0.446839i \(0.147450\pi\)
\(3\) 0 0
\(4\) 4.40268 2.20134
\(5\) 0 0
\(6\) 0 0
\(7\) −2.62981 −0.993976 −0.496988 0.867757i \(-0.665561\pi\)
−0.496988 + 0.867757i \(0.665561\pi\)
\(8\) 6.07962 2.14947
\(9\) 0 0
\(10\) 0 0
\(11\) −4.12400 −1.24343 −0.621716 0.783242i \(-0.713564\pi\)
−0.621716 + 0.783242i \(0.713564\pi\)
\(12\) 0 0
\(13\) −3.54573 −0.983409 −0.491704 0.870762i \(-0.663626\pi\)
−0.491704 + 0.870762i \(0.663626\pi\)
\(14\) −6.65435 −1.77845
\(15\) 0 0
\(16\) 6.57822 1.64456
\(17\) −3.91124 −0.948616 −0.474308 0.880359i \(-0.657302\pi\)
−0.474308 + 0.880359i \(0.657302\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −10.4352 −2.22479
\(23\) −0.936703 −0.195316 −0.0976580 0.995220i \(-0.531135\pi\)
−0.0976580 + 0.995220i \(0.531135\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −8.97195 −1.75954
\(27\) 0 0
\(28\) −11.5782 −2.18808
\(29\) 1.01892 0.189209 0.0946043 0.995515i \(-0.469841\pi\)
0.0946043 + 0.995515i \(0.469841\pi\)
\(30\) 0 0
\(31\) −3.17554 −0.570345 −0.285172 0.958476i \(-0.592051\pi\)
−0.285172 + 0.958476i \(0.592051\pi\)
\(32\) 4.48597 0.793015
\(33\) 0 0
\(34\) −9.89682 −1.69729
\(35\) 0 0
\(36\) 0 0
\(37\) −7.54573 −1.24051 −0.620255 0.784400i \(-0.712971\pi\)
−0.620255 + 0.784400i \(0.712971\pi\)
\(38\) −2.53035 −0.410477
\(39\) 0 0
\(40\) 0 0
\(41\) 1.95562 0.305417 0.152708 0.988271i \(-0.451200\pi\)
0.152708 + 0.988271i \(0.451200\pi\)
\(42\) 0 0
\(43\) 6.35109 0.968532 0.484266 0.874921i \(-0.339087\pi\)
0.484266 + 0.874921i \(0.339087\pi\)
\(44\) −18.1566 −2.73722
\(45\) 0 0
\(46\) −2.37019 −0.349465
\(47\) 8.97195 1.30869 0.654346 0.756195i \(-0.272944\pi\)
0.654346 + 0.756195i \(0.272944\pi\)
\(48\) 0 0
\(49\) −0.0840822 −0.0120117
\(50\) 0 0
\(51\) 0 0
\(52\) −15.6107 −2.16482
\(53\) −11.1403 −1.53024 −0.765121 0.643887i \(-0.777321\pi\)
−0.765121 + 0.643887i \(0.777321\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −15.9883 −2.13652
\(57\) 0 0
\(58\) 2.57822 0.338537
\(59\) −7.01632 −0.913448 −0.456724 0.889609i \(-0.650977\pi\)
−0.456724 + 0.889609i \(0.650977\pi\)
\(60\) 0 0
\(61\) 12.6107 1.61464 0.807318 0.590116i \(-0.200918\pi\)
0.807318 + 0.590116i \(0.200918\pi\)
\(62\) −8.03524 −1.02048
\(63\) 0 0
\(64\) −1.80536 −0.225670
\(65\) 0 0
\(66\) 0 0
\(67\) 3.98090 0.486345 0.243172 0.969983i \(-0.421812\pi\)
0.243172 + 0.969983i \(0.421812\pi\)
\(68\) −17.2199 −2.08823
\(69\) 0 0
\(70\) 0 0
\(71\) 7.01632 0.832685 0.416342 0.909208i \(-0.363312\pi\)
0.416342 + 0.909208i \(0.363312\pi\)
\(72\) 0 0
\(73\) −7.16816 −0.838970 −0.419485 0.907762i \(-0.637789\pi\)
−0.419485 + 0.907762i \(0.637789\pi\)
\(74\) −19.0934 −2.21956
\(75\) 0 0
\(76\) −4.40268 −0.505022
\(77\) 10.8454 1.23594
\(78\) 0 0
\(79\) −11.5266 −1.29685 −0.648424 0.761280i \(-0.724571\pi\)
−0.648424 + 0.761280i \(0.724571\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.94841 0.546460
\(83\) −14.2454 −1.56364 −0.781818 0.623506i \(-0.785708\pi\)
−0.781818 + 0.623506i \(0.785708\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 16.0705 1.73293
\(87\) 0 0
\(88\) −25.0724 −2.67272
\(89\) 13.1782 1.39688 0.698441 0.715667i \(-0.253877\pi\)
0.698441 + 0.715667i \(0.253877\pi\)
\(90\) 0 0
\(91\) 9.32461 0.977485
\(92\) −4.12400 −0.429957
\(93\) 0 0
\(94\) 22.7022 2.34155
\(95\) 0 0
\(96\) 0 0
\(97\) −3.54573 −0.360014 −0.180007 0.983665i \(-0.557612\pi\)
−0.180007 + 0.983665i \(0.557612\pi\)
\(98\) −0.212757 −0.0214917
\(99\) 0 0
\(100\) 0 0
\(101\) 2.76178 0.274808 0.137404 0.990515i \(-0.456124\pi\)
0.137404 + 0.990515i \(0.456124\pi\)
\(102\) 0 0
\(103\) 7.98090 0.786382 0.393191 0.919457i \(-0.371371\pi\)
0.393191 + 0.919457i \(0.371371\pi\)
\(104\) −21.5567 −2.11381
\(105\) 0 0
\(106\) −28.1889 −2.73795
\(107\) 11.3531 1.09754 0.548772 0.835972i \(-0.315096\pi\)
0.548772 + 0.835972i \(0.315096\pi\)
\(108\) 0 0
\(109\) 12.8054 1.22653 0.613265 0.789877i \(-0.289856\pi\)
0.613265 + 0.789877i \(0.289856\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −17.2995 −1.63465
\(113\) −1.36222 −0.128147 −0.0640733 0.997945i \(-0.520409\pi\)
−0.0640733 + 0.997945i \(0.520409\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.48597 0.416512
\(117\) 0 0
\(118\) −17.7538 −1.63437
\(119\) 10.2858 0.942901
\(120\) 0 0
\(121\) 6.00738 0.546125
\(122\) 31.9095 2.88895
\(123\) 0 0
\(124\) −13.9809 −1.25552
\(125\) 0 0
\(126\) 0 0
\(127\) −19.8777 −1.76386 −0.881931 0.471378i \(-0.843757\pi\)
−0.881931 + 0.471378i \(0.843757\pi\)
\(128\) −13.5401 −1.19679
\(129\) 0 0
\(130\) 0 0
\(131\) 1.36222 0.119017 0.0595087 0.998228i \(-0.481047\pi\)
0.0595087 + 0.998228i \(0.481047\pi\)
\(132\) 0 0
\(133\) 2.62981 0.228034
\(134\) 10.0731 0.870182
\(135\) 0 0
\(136\) −23.7789 −2.03902
\(137\) 0.425515 0.0363542 0.0181771 0.999835i \(-0.494214\pi\)
0.0181771 + 0.999835i \(0.494214\pi\)
\(138\) 0 0
\(139\) 0.629813 0.0534201 0.0267100 0.999643i \(-0.491497\pi\)
0.0267100 + 0.999643i \(0.491497\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 17.7538 1.48986
\(143\) 14.6226 1.22280
\(144\) 0 0
\(145\) 0 0
\(146\) −18.1380 −1.50111
\(147\) 0 0
\(148\) −33.2214 −2.73078
\(149\) 0.723945 0.0593079 0.0296539 0.999560i \(-0.490559\pi\)
0.0296539 + 0.999560i \(0.490559\pi\)
\(150\) 0 0
\(151\) 2.16816 0.176443 0.0882214 0.996101i \(-0.471882\pi\)
0.0882214 + 0.996101i \(0.471882\pi\)
\(152\) −6.07962 −0.493122
\(153\) 0 0
\(154\) 27.4426 2.21138
\(155\) 0 0
\(156\) 0 0
\(157\) 20.1373 1.60714 0.803568 0.595213i \(-0.202932\pi\)
0.803568 + 0.595213i \(0.202932\pi\)
\(158\) −29.1664 −2.32036
\(159\) 0 0
\(160\) 0 0
\(161\) 2.46335 0.194139
\(162\) 0 0
\(163\) −10.6298 −0.832591 −0.416296 0.909229i \(-0.636672\pi\)
−0.416296 + 0.909229i \(0.636672\pi\)
\(164\) 8.60997 0.672326
\(165\) 0 0
\(166\) −36.0459 −2.79770
\(167\) 21.0490 1.62882 0.814409 0.580291i \(-0.197061\pi\)
0.814409 + 0.580291i \(0.197061\pi\)
\(168\) 0 0
\(169\) −0.427791 −0.0329070
\(170\) 0 0
\(171\) 0 0
\(172\) 27.9618 2.13207
\(173\) −17.3505 −1.31913 −0.659567 0.751646i \(-0.729260\pi\)
−0.659567 + 0.751646i \(0.729260\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −27.1286 −2.04489
\(177\) 0 0
\(178\) 33.3454 2.49934
\(179\) −19.1756 −1.43325 −0.716625 0.697459i \(-0.754314\pi\)
−0.716625 + 0.697459i \(0.754314\pi\)
\(180\) 0 0
\(181\) −13.6107 −1.01168 −0.505838 0.862628i \(-0.668817\pi\)
−0.505838 + 0.862628i \(0.668817\pi\)
\(182\) 23.5945 1.74894
\(183\) 0 0
\(184\) −5.69480 −0.419826
\(185\) 0 0
\(186\) 0 0
\(187\) 16.1300 1.17954
\(188\) 39.5006 2.88088
\(189\) 0 0
\(190\) 0 0
\(191\) 9.18470 0.664582 0.332291 0.943177i \(-0.392178\pi\)
0.332291 + 0.943177i \(0.392178\pi\)
\(192\) 0 0
\(193\) −24.3511 −1.75283 −0.876415 0.481557i \(-0.840071\pi\)
−0.876415 + 0.481557i \(0.840071\pi\)
\(194\) −8.97195 −0.644148
\(195\) 0 0
\(196\) −0.370187 −0.0264419
\(197\) 1.14946 0.0818956 0.0409478 0.999161i \(-0.486962\pi\)
0.0409478 + 0.999161i \(0.486962\pi\)
\(198\) 0 0
\(199\) 8.62981 0.611751 0.305876 0.952071i \(-0.401051\pi\)
0.305876 + 0.952071i \(0.401051\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.98828 0.491694
\(203\) −2.67957 −0.188069
\(204\) 0 0
\(205\) 0 0
\(206\) 20.1945 1.40702
\(207\) 0 0
\(208\) −23.3246 −1.61727
\(209\) 4.12400 0.285263
\(210\) 0 0
\(211\) 13.5266 0.931212 0.465606 0.884992i \(-0.345836\pi\)
0.465606 + 0.884992i \(0.345836\pi\)
\(212\) −49.0473 −3.36858
\(213\) 0 0
\(214\) 28.7273 1.96376
\(215\) 0 0
\(216\) 0 0
\(217\) 8.35109 0.566909
\(218\) 32.4021 2.19454
\(219\) 0 0
\(220\) 0 0
\(221\) 13.8682 0.932877
\(222\) 0 0
\(223\) −5.91592 −0.396159 −0.198080 0.980186i \(-0.563470\pi\)
−0.198080 + 0.980186i \(0.563470\pi\)
\(224\) −11.7973 −0.788238
\(225\) 0 0
\(226\) −3.44689 −0.229284
\(227\) −13.3909 −0.888787 −0.444393 0.895832i \(-0.646581\pi\)
−0.444393 + 0.895832i \(0.646581\pi\)
\(228\) 0 0
\(229\) −27.8777 −1.84221 −0.921106 0.389312i \(-0.872713\pi\)
−0.921106 + 0.389312i \(0.872713\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.19464 0.406698
\(233\) 23.0046 1.50708 0.753541 0.657401i \(-0.228344\pi\)
0.753541 + 0.657401i \(0.228344\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −30.8906 −2.01081
\(237\) 0 0
\(238\) 26.0268 1.68707
\(239\) −27.0803 −1.75168 −0.875839 0.482604i \(-0.839691\pi\)
−0.875839 + 0.482604i \(0.839691\pi\)
\(240\) 0 0
\(241\) 15.9618 1.02819 0.514095 0.857733i \(-0.328128\pi\)
0.514095 + 0.857733i \(0.328128\pi\)
\(242\) 15.2008 0.977143
\(243\) 0 0
\(244\) 55.5209 3.55436
\(245\) 0 0
\(246\) 0 0
\(247\) 3.54573 0.225609
\(248\) −19.3061 −1.22594
\(249\) 0 0
\(250\) 0 0
\(251\) 18.3694 1.15947 0.579733 0.814806i \(-0.303157\pi\)
0.579733 + 0.814806i \(0.303157\pi\)
\(252\) 0 0
\(253\) 3.86296 0.242862
\(254\) −50.2976 −3.15595
\(255\) 0 0
\(256\) −30.6506 −1.91566
\(257\) 0.854486 0.0533014 0.0266507 0.999645i \(-0.491516\pi\)
0.0266507 + 0.999645i \(0.491516\pi\)
\(258\) 0 0
\(259\) 19.8439 1.23304
\(260\) 0 0
\(261\) 0 0
\(262\) 3.44689 0.212950
\(263\) 4.12400 0.254297 0.127148 0.991884i \(-0.459418\pi\)
0.127148 + 0.991884i \(0.459418\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.65435 0.408005
\(267\) 0 0
\(268\) 17.5266 1.07061
\(269\) 30.5287 1.86136 0.930682 0.365828i \(-0.119214\pi\)
0.930682 + 0.365828i \(0.119214\pi\)
\(270\) 0 0
\(271\) −8.46165 −0.514009 −0.257004 0.966410i \(-0.582735\pi\)
−0.257004 + 0.966410i \(0.582735\pi\)
\(272\) −25.7290 −1.56005
\(273\) 0 0
\(274\) 1.07670 0.0650460
\(275\) 0 0
\(276\) 0 0
\(277\) 12.9618 0.778799 0.389400 0.921069i \(-0.372683\pi\)
0.389400 + 0.921069i \(0.372683\pi\)
\(278\) 1.59365 0.0955807
\(279\) 0 0
\(280\) 0 0
\(281\) −22.9563 −1.36946 −0.684728 0.728799i \(-0.740079\pi\)
−0.684728 + 0.728799i \(0.740079\pi\)
\(282\) 0 0
\(283\) 23.9618 1.42438 0.712191 0.701986i \(-0.247703\pi\)
0.712191 + 0.701986i \(0.247703\pi\)
\(284\) 30.8906 1.83302
\(285\) 0 0
\(286\) 37.0003 2.18787
\(287\) −5.14292 −0.303577
\(288\) 0 0
\(289\) −1.70218 −0.100128
\(290\) 0 0
\(291\) 0 0
\(292\) −31.5591 −1.84686
\(293\) −17.0072 −0.993571 −0.496785 0.867873i \(-0.665486\pi\)
−0.496785 + 0.867873i \(0.665486\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −45.8752 −2.66644
\(297\) 0 0
\(298\) 1.83184 0.106115
\(299\) 3.32130 0.192075
\(300\) 0 0
\(301\) −16.7022 −0.962698
\(302\) 5.48622 0.315696
\(303\) 0 0
\(304\) −6.57822 −0.377287
\(305\) 0 0
\(306\) 0 0
\(307\) −26.8512 −1.53248 −0.766241 0.642554i \(-0.777875\pi\)
−0.766241 + 0.642554i \(0.777875\pi\)
\(308\) 47.7486 2.72073
\(309\) 0 0
\(310\) 0 0
\(311\) 18.2050 1.03231 0.516155 0.856495i \(-0.327363\pi\)
0.516155 + 0.856495i \(0.327363\pi\)
\(312\) 0 0
\(313\) −0.824456 −0.0466010 −0.0233005 0.999729i \(-0.507417\pi\)
−0.0233005 + 0.999729i \(0.507417\pi\)
\(314\) 50.9546 2.87553
\(315\) 0 0
\(316\) −50.7481 −2.85480
\(317\) −10.9759 −0.616468 −0.308234 0.951311i \(-0.599738\pi\)
−0.308234 + 0.951311i \(0.599738\pi\)
\(318\) 0 0
\(319\) −4.20202 −0.235268
\(320\) 0 0
\(321\) 0 0
\(322\) 6.23315 0.347360
\(323\) 3.91124 0.217627
\(324\) 0 0
\(325\) 0 0
\(326\) −26.8972 −1.48970
\(327\) 0 0
\(328\) 11.8894 0.656484
\(329\) −23.5945 −1.30081
\(330\) 0 0
\(331\) −10.6181 −0.583623 −0.291812 0.956476i \(-0.594258\pi\)
−0.291812 + 0.956476i \(0.594258\pi\)
\(332\) −62.7179 −3.44209
\(333\) 0 0
\(334\) 53.2613 2.91433
\(335\) 0 0
\(336\) 0 0
\(337\) −14.5193 −0.790914 −0.395457 0.918484i \(-0.629414\pi\)
−0.395457 + 0.918484i \(0.629414\pi\)
\(338\) −1.08246 −0.0588781
\(339\) 0 0
\(340\) 0 0
\(341\) 13.0959 0.709185
\(342\) 0 0
\(343\) 18.6298 1.00592
\(344\) 38.6122 2.08183
\(345\) 0 0
\(346\) −43.9028 −2.36023
\(347\) −19.0934 −1.02498 −0.512492 0.858692i \(-0.671278\pi\)
−0.512492 + 0.858692i \(0.671278\pi\)
\(348\) 0 0
\(349\) −28.7789 −1.54050 −0.770249 0.637743i \(-0.779868\pi\)
−0.770249 + 0.637743i \(0.779868\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −18.5002 −0.986062
\(353\) −18.5338 −0.986457 −0.493228 0.869900i \(-0.664183\pi\)
−0.493228 + 0.869900i \(0.664183\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 58.0192 3.07501
\(357\) 0 0
\(358\) −48.5209 −2.56441
\(359\) 19.0934 1.00771 0.503854 0.863789i \(-0.331915\pi\)
0.503854 + 0.863789i \(0.331915\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −34.4399 −1.81012
\(363\) 0 0
\(364\) 41.0533 2.15178
\(365\) 0 0
\(366\) 0 0
\(367\) 8.53401 0.445472 0.222736 0.974879i \(-0.428501\pi\)
0.222736 + 0.974879i \(0.428501\pi\)
\(368\) −6.16184 −0.321208
\(369\) 0 0
\(370\) 0 0
\(371\) 29.2970 1.52102
\(372\) 0 0
\(373\) −27.2596 −1.41145 −0.705725 0.708486i \(-0.749379\pi\)
−0.705725 + 0.708486i \(0.749379\pi\)
\(374\) 40.8145 2.11047
\(375\) 0 0
\(376\) 54.5460 2.81300
\(377\) −3.61281 −0.186069
\(378\) 0 0
\(379\) 13.3246 0.684439 0.342220 0.939620i \(-0.388821\pi\)
0.342220 + 0.939620i \(0.388821\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 23.2405 1.18909
\(383\) −23.5123 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −61.6168 −3.13621
\(387\) 0 0
\(388\) −15.6107 −0.792514
\(389\) −29.3792 −1.48958 −0.744792 0.667297i \(-0.767451\pi\)
−0.744792 + 0.667297i \(0.767451\pi\)
\(390\) 0 0
\(391\) 3.66367 0.185280
\(392\) −0.511188 −0.0258189
\(393\) 0 0
\(394\) 2.90854 0.146530
\(395\) 0 0
\(396\) 0 0
\(397\) −21.6948 −1.08883 −0.544415 0.838816i \(-0.683248\pi\)
−0.544415 + 0.838816i \(0.683248\pi\)
\(398\) 21.8365 1.09456
\(399\) 0 0
\(400\) 0 0
\(401\) 33.1743 1.65665 0.828323 0.560250i \(-0.189295\pi\)
0.828323 + 0.560250i \(0.189295\pi\)
\(402\) 0 0
\(403\) 11.2596 0.560882
\(404\) 12.1592 0.604945
\(405\) 0 0
\(406\) −6.78025 −0.336498
\(407\) 31.1186 1.54249
\(408\) 0 0
\(409\) −0.271344 −0.0134171 −0.00670856 0.999977i \(-0.502135\pi\)
−0.00670856 + 0.999977i \(0.502135\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 35.1373 1.73109
\(413\) 18.4516 0.907945
\(414\) 0 0
\(415\) 0 0
\(416\) −15.9061 −0.779858
\(417\) 0 0
\(418\) 10.4352 0.510401
\(419\) 27.6024 1.34847 0.674234 0.738518i \(-0.264474\pi\)
0.674234 + 0.738518i \(0.264474\pi\)
\(420\) 0 0
\(421\) −27.1564 −1.32352 −0.661762 0.749714i \(-0.730191\pi\)
−0.661762 + 0.749714i \(0.730191\pi\)
\(422\) 34.2271 1.66615
\(423\) 0 0
\(424\) −67.7290 −3.28921
\(425\) 0 0
\(426\) 0 0
\(427\) −33.1638 −1.60491
\(428\) 49.9840 2.41607
\(429\) 0 0
\(430\) 0 0
\(431\) 16.8766 0.812920 0.406460 0.913669i \(-0.366763\pi\)
0.406460 + 0.913669i \(0.366763\pi\)
\(432\) 0 0
\(433\) −3.19464 −0.153525 −0.0767624 0.997049i \(-0.524458\pi\)
−0.0767624 + 0.997049i \(0.524458\pi\)
\(434\) 21.1312 1.01433
\(435\) 0 0
\(436\) 56.3779 2.70001
\(437\) 0.936703 0.0448086
\(438\) 0 0
\(439\) −21.6948 −1.03544 −0.517718 0.855551i \(-0.673218\pi\)
−0.517718 + 0.855551i \(0.673218\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 35.0915 1.66913
\(443\) 10.8937 0.517574 0.258787 0.965934i \(-0.416677\pi\)
0.258787 + 0.965934i \(0.416677\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −14.9694 −0.708819
\(447\) 0 0
\(448\) 4.74775 0.224310
\(449\) 40.0567 1.89039 0.945195 0.326506i \(-0.105871\pi\)
0.945195 + 0.326506i \(0.105871\pi\)
\(450\) 0 0
\(451\) −8.06498 −0.379765
\(452\) −5.99741 −0.282094
\(453\) 0 0
\(454\) −33.8837 −1.59024
\(455\) 0 0
\(456\) 0 0
\(457\) −15.4499 −0.722717 −0.361359 0.932427i \(-0.617687\pi\)
−0.361359 + 0.932427i \(0.617687\pi\)
\(458\) −70.5404 −3.29614
\(459\) 0 0
\(460\) 0 0
\(461\) 6.83746 0.318452 0.159226 0.987242i \(-0.449100\pi\)
0.159226 + 0.987242i \(0.449100\pi\)
\(462\) 0 0
\(463\) −29.2362 −1.35872 −0.679361 0.733805i \(-0.737743\pi\)
−0.679361 + 0.733805i \(0.737743\pi\)
\(464\) 6.70268 0.311164
\(465\) 0 0
\(466\) 58.2097 2.69651
\(467\) 24.1057 1.11548 0.557740 0.830016i \(-0.311669\pi\)
0.557740 + 0.830016i \(0.311669\pi\)
\(468\) 0 0
\(469\) −10.4690 −0.483415
\(470\) 0 0
\(471\) 0 0
\(472\) −42.6566 −1.96343
\(473\) −26.1919 −1.20430
\(474\) 0 0
\(475\) 0 0
\(476\) 45.2852 2.07565
\(477\) 0 0
\(478\) −68.5226 −3.13415
\(479\) 34.2271 1.56388 0.781939 0.623355i \(-0.214231\pi\)
0.781939 + 0.623355i \(0.214231\pi\)
\(480\) 0 0
\(481\) 26.7551 1.21993
\(482\) 40.3890 1.83967
\(483\) 0 0
\(484\) 26.4486 1.20221
\(485\) 0 0
\(486\) 0 0
\(487\) −40.0650 −1.81552 −0.907759 0.419492i \(-0.862208\pi\)
−0.907759 + 0.419492i \(0.862208\pi\)
\(488\) 76.6684 3.47061
\(489\) 0 0
\(490\) 0 0
\(491\) 34.7010 1.56603 0.783017 0.622001i \(-0.213680\pi\)
0.783017 + 0.622001i \(0.213680\pi\)
\(492\) 0 0
\(493\) −3.98524 −0.179486
\(494\) 8.97195 0.403667
\(495\) 0 0
\(496\) −20.8894 −0.937964
\(497\) −18.4516 −0.827668
\(498\) 0 0
\(499\) −38.9279 −1.74265 −0.871327 0.490703i \(-0.836740\pi\)
−0.871327 + 0.490703i \(0.836740\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 46.4811 2.07455
\(503\) −2.92622 −0.130474 −0.0652368 0.997870i \(-0.520780\pi\)
−0.0652368 + 0.997870i \(0.520780\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.77465 0.434536
\(507\) 0 0
\(508\) −87.5152 −3.88286
\(509\) −4.66908 −0.206953 −0.103477 0.994632i \(-0.532997\pi\)
−0.103477 + 0.994632i \(0.532997\pi\)
\(510\) 0 0
\(511\) 18.8509 0.833916
\(512\) −50.4765 −2.23077
\(513\) 0 0
\(514\) 2.16215 0.0953684
\(515\) 0 0
\(516\) 0 0
\(517\) −37.0003 −1.62727
\(518\) 50.2120 2.20619
\(519\) 0 0
\(520\) 0 0
\(521\) −15.6415 −0.685267 −0.342634 0.939469i \(-0.611319\pi\)
−0.342634 + 0.939469i \(0.611319\pi\)
\(522\) 0 0
\(523\) 27.1564 1.18747 0.593734 0.804661i \(-0.297653\pi\)
0.593734 + 0.804661i \(0.297653\pi\)
\(524\) 5.99741 0.261998
\(525\) 0 0
\(526\) 10.4352 0.454995
\(527\) 12.4203 0.541038
\(528\) 0 0
\(529\) −22.1226 −0.961852
\(530\) 0 0
\(531\) 0 0
\(532\) 11.5782 0.501980
\(533\) −6.93411 −0.300350
\(534\) 0 0
\(535\) 0 0
\(536\) 24.2024 1.04538
\(537\) 0 0
\(538\) 77.2482 3.33041
\(539\) 0.346755 0.0149358
\(540\) 0 0
\(541\) 21.6566 0.931090 0.465545 0.885024i \(-0.345858\pi\)
0.465545 + 0.885024i \(0.345858\pi\)
\(542\) −21.4109 −0.919679
\(543\) 0 0
\(544\) −17.5457 −0.752267
\(545\) 0 0
\(546\) 0 0
\(547\) −4.35543 −0.186225 −0.0931123 0.995656i \(-0.529682\pi\)
−0.0931123 + 0.995656i \(0.529682\pi\)
\(548\) 1.87341 0.0800279
\(549\) 0 0
\(550\) 0 0
\(551\) −1.01892 −0.0434074
\(552\) 0 0
\(553\) 30.3129 1.28904
\(554\) 32.7979 1.39345
\(555\) 0 0
\(556\) 2.77287 0.117596
\(557\) 42.4268 1.79768 0.898841 0.438275i \(-0.144410\pi\)
0.898841 + 0.438275i \(0.144410\pi\)
\(558\) 0 0
\(559\) −22.5193 −0.952463
\(560\) 0 0
\(561\) 0 0
\(562\) −58.0874 −2.45027
\(563\) 25.2891 1.06581 0.532904 0.846176i \(-0.321101\pi\)
0.532904 + 0.846176i \(0.321101\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 60.6318 2.54854
\(567\) 0 0
\(568\) 42.6566 1.78983
\(569\) 12.2415 0.513189 0.256594 0.966519i \(-0.417400\pi\)
0.256594 + 0.966519i \(0.417400\pi\)
\(570\) 0 0
\(571\) 28.5769 1.19590 0.597952 0.801532i \(-0.295981\pi\)
0.597952 + 0.801532i \(0.295981\pi\)
\(572\) 64.3786 2.69180
\(573\) 0 0
\(574\) −13.0134 −0.543169
\(575\) 0 0
\(576\) 0 0
\(577\) 15.3055 0.637177 0.318588 0.947893i \(-0.396791\pi\)
0.318588 + 0.947893i \(0.396791\pi\)
\(578\) −4.30711 −0.179152
\(579\) 0 0
\(580\) 0 0
\(581\) 37.4628 1.55422
\(582\) 0 0
\(583\) 45.9427 1.90275
\(584\) −43.5797 −1.80334
\(585\) 0 0
\(586\) −43.0342 −1.77773
\(587\) −36.0632 −1.48849 −0.744244 0.667908i \(-0.767190\pi\)
−0.744244 + 0.667908i \(0.767190\pi\)
\(588\) 0 0
\(589\) 3.17554 0.130846
\(590\) 0 0
\(591\) 0 0
\(592\) −49.6375 −2.04009
\(593\) −17.2199 −0.707138 −0.353569 0.935408i \(-0.615032\pi\)
−0.353569 + 0.935408i \(0.615032\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.18730 0.130557
\(597\) 0 0
\(598\) 8.40404 0.343667
\(599\) 18.3694 0.750554 0.375277 0.926913i \(-0.377548\pi\)
0.375277 + 0.926913i \(0.377548\pi\)
\(600\) 0 0
\(601\) −2.23315 −0.0910920 −0.0455460 0.998962i \(-0.514503\pi\)
−0.0455460 + 0.998962i \(0.514503\pi\)
\(602\) −42.2624 −1.72249
\(603\) 0 0
\(604\) 9.54573 0.388410
\(605\) 0 0
\(606\) 0 0
\(607\) 0.331991 0.0134751 0.00673755 0.999977i \(-0.497855\pi\)
0.00673755 + 0.999977i \(0.497855\pi\)
\(608\) −4.48597 −0.181930
\(609\) 0 0
\(610\) 0 0
\(611\) −31.8121 −1.28698
\(612\) 0 0
\(613\) −37.3970 −1.51045 −0.755225 0.655466i \(-0.772472\pi\)
−0.755225 + 0.655466i \(0.772472\pi\)
\(614\) −67.9431 −2.74196
\(615\) 0 0
\(616\) 65.9356 2.65662
\(617\) 16.9589 0.682738 0.341369 0.939929i \(-0.389109\pi\)
0.341369 + 0.939929i \(0.389109\pi\)
\(618\) 0 0
\(619\) 18.8127 0.756148 0.378074 0.925775i \(-0.376587\pi\)
0.378074 + 0.925775i \(0.376587\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 46.0650 1.84704
\(623\) −34.6561 −1.38847
\(624\) 0 0
\(625\) 0 0
\(626\) −2.08616 −0.0833798
\(627\) 0 0
\(628\) 88.6583 3.53785
\(629\) 29.5132 1.17677
\(630\) 0 0
\(631\) 5.27439 0.209970 0.104985 0.994474i \(-0.466521\pi\)
0.104985 + 0.994474i \(0.466521\pi\)
\(632\) −70.0776 −2.78754
\(633\) 0 0
\(634\) −27.7729 −1.10300
\(635\) 0 0
\(636\) 0 0
\(637\) 0.298133 0.0118124
\(638\) −10.6326 −0.420948
\(639\) 0 0
\(640\) 0 0
\(641\) 8.50908 0.336089 0.168044 0.985779i \(-0.446255\pi\)
0.168044 + 0.985779i \(0.446255\pi\)
\(642\) 0 0
\(643\) −27.8512 −1.09835 −0.549173 0.835709i \(-0.685057\pi\)
−0.549173 + 0.835709i \(0.685057\pi\)
\(644\) 10.8454 0.427367
\(645\) 0 0
\(646\) 9.89682 0.389385
\(647\) −2.54903 −0.100213 −0.0501063 0.998744i \(-0.515956\pi\)
−0.0501063 + 0.998744i \(0.515956\pi\)
\(648\) 0 0
\(649\) 28.9353 1.13581
\(650\) 0 0
\(651\) 0 0
\(652\) −46.7997 −1.83282
\(653\) −33.7159 −1.31941 −0.659704 0.751526i \(-0.729318\pi\)
−0.659704 + 0.751526i \(0.729318\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 12.8645 0.502275
\(657\) 0 0
\(658\) −59.7025 −2.32745
\(659\) −10.1214 −0.394274 −0.197137 0.980376i \(-0.563164\pi\)
−0.197137 + 0.980376i \(0.563164\pi\)
\(660\) 0 0
\(661\) −10.3129 −0.401125 −0.200563 0.979681i \(-0.564277\pi\)
−0.200563 + 0.979681i \(0.564277\pi\)
\(662\) −26.8675 −1.04424
\(663\) 0 0
\(664\) −86.6067 −3.36099
\(665\) 0 0
\(666\) 0 0
\(667\) −0.954424 −0.0369554
\(668\) 92.6719 3.58558
\(669\) 0 0
\(670\) 0 0
\(671\) −52.0066 −2.00769
\(672\) 0 0
\(673\) −30.3779 −1.17098 −0.585491 0.810679i \(-0.699098\pi\)
−0.585491 + 0.810679i \(0.699098\pi\)
\(674\) −36.7388 −1.41513
\(675\) 0 0
\(676\) −1.88343 −0.0724395
\(677\) 28.9198 1.11148 0.555739 0.831357i \(-0.312435\pi\)
0.555739 + 0.831357i \(0.312435\pi\)
\(678\) 0 0
\(679\) 9.32461 0.357846
\(680\) 0 0
\(681\) 0 0
\(682\) 33.1373 1.26889
\(683\) −31.3348 −1.19899 −0.599497 0.800377i \(-0.704633\pi\)
−0.599497 + 0.800377i \(0.704633\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 47.1400 1.79981
\(687\) 0 0
\(688\) 41.7789 1.59280
\(689\) 39.5006 1.50485
\(690\) 0 0
\(691\) 38.3511 1.45894 0.729472 0.684011i \(-0.239766\pi\)
0.729472 + 0.684011i \(0.239766\pi\)
\(692\) −76.3886 −2.90386
\(693\) 0 0
\(694\) −48.3129 −1.83393
\(695\) 0 0
\(696\) 0 0
\(697\) −7.64891 −0.289723
\(698\) −72.8207 −2.75630
\(699\) 0 0
\(700\) 0 0
\(701\) 7.39697 0.279380 0.139690 0.990195i \(-0.455389\pi\)
0.139690 + 0.990195i \(0.455389\pi\)
\(702\) 0 0
\(703\) 7.54573 0.284593
\(704\) 7.44530 0.280605
\(705\) 0 0
\(706\) −46.8971 −1.76500
\(707\) −7.26297 −0.273152
\(708\) 0 0
\(709\) −24.4278 −0.917405 −0.458702 0.888590i \(-0.651686\pi\)
−0.458702 + 0.888590i \(0.651686\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 80.1183 3.00256
\(713\) 2.97454 0.111397
\(714\) 0 0
\(715\) 0 0
\(716\) −84.4239 −3.15507
\(717\) 0 0
\(718\) 48.3129 1.80302
\(719\) −24.6652 −0.919858 −0.459929 0.887956i \(-0.652125\pi\)
−0.459929 + 0.887956i \(0.652125\pi\)
\(720\) 0 0
\(721\) −20.9883 −0.781644
\(722\) 2.53035 0.0941699
\(723\) 0 0
\(724\) −59.9236 −2.22704
\(725\) 0 0
\(726\) 0 0
\(727\) −16.6064 −0.615896 −0.307948 0.951403i \(-0.599642\pi\)
−0.307948 + 0.951403i \(0.599642\pi\)
\(728\) 56.6901 2.10108
\(729\) 0 0
\(730\) 0 0
\(731\) −24.8407 −0.918765
\(732\) 0 0
\(733\) −38.4044 −1.41850 −0.709249 0.704958i \(-0.750966\pi\)
−0.709249 + 0.704958i \(0.750966\pi\)
\(734\) 21.5941 0.797051
\(735\) 0 0
\(736\) −4.20202 −0.154889
\(737\) −16.4172 −0.604737
\(738\) 0 0
\(739\) 34.7216 1.27725 0.638627 0.769516i \(-0.279503\pi\)
0.638627 + 0.769516i \(0.279503\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 74.1316 2.72146
\(743\) 26.7370 0.980884 0.490442 0.871474i \(-0.336835\pi\)
0.490442 + 0.871474i \(0.336835\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −68.9764 −2.52541
\(747\) 0 0
\(748\) 71.0151 2.59657
\(749\) −29.8565 −1.09093
\(750\) 0 0
\(751\) 37.8821 1.38234 0.691168 0.722694i \(-0.257096\pi\)
0.691168 + 0.722694i \(0.257096\pi\)
\(752\) 59.0195 2.15222
\(753\) 0 0
\(754\) −9.14169 −0.332921
\(755\) 0 0
\(756\) 0 0
\(757\) −36.0533 −1.31038 −0.655189 0.755465i \(-0.727411\pi\)
−0.655189 + 0.755465i \(0.727411\pi\)
\(758\) 33.7159 1.22462
\(759\) 0 0
\(760\) 0 0
\(761\) 21.6534 0.784933 0.392467 0.919766i \(-0.371622\pi\)
0.392467 + 0.919766i \(0.371622\pi\)
\(762\) 0 0
\(763\) −33.6757 −1.21914
\(764\) 40.4373 1.46297
\(765\) 0 0
\(766\) −59.4945 −2.14962
\(767\) 24.8780 0.898293
\(768\) 0 0
\(769\) 22.2596 0.802703 0.401351 0.915924i \(-0.368541\pi\)
0.401351 + 0.915924i \(0.368541\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −107.210 −3.85857
\(773\) 32.4843 1.16838 0.584189 0.811618i \(-0.301413\pi\)
0.584189 + 0.811618i \(0.301413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −21.5567 −0.773841
\(777\) 0 0
\(778\) −74.3397 −2.66521
\(779\) −1.95562 −0.0700674
\(780\) 0 0
\(781\) −28.9353 −1.03539
\(782\) 9.27038 0.331508
\(783\) 0 0
\(784\) −0.553111 −0.0197540
\(785\) 0 0
\(786\) 0 0
\(787\) 4.70652 0.167769 0.0838846 0.996475i \(-0.473267\pi\)
0.0838846 + 0.996475i \(0.473267\pi\)
\(788\) 5.06070 0.180280
\(789\) 0 0
\(790\) 0 0
\(791\) 3.58238 0.127375
\(792\) 0 0
\(793\) −44.7142 −1.58785
\(794\) −54.8955 −1.94817
\(795\) 0 0
\(796\) 37.9943 1.34667
\(797\) −13.8538 −0.490726 −0.245363 0.969431i \(-0.578907\pi\)
−0.245363 + 0.969431i \(0.578907\pi\)
\(798\) 0 0
\(799\) −35.0915 −1.24145
\(800\) 0 0
\(801\) 0 0
\(802\) 83.9427 2.96412
\(803\) 29.5615 1.04320
\(804\) 0 0
\(805\) 0 0
\(806\) 28.4908 1.00355
\(807\) 0 0
\(808\) 16.7906 0.590691
\(809\) −49.3609 −1.73544 −0.867719 0.497055i \(-0.834415\pi\)
−0.867719 + 0.497055i \(0.834415\pi\)
\(810\) 0 0
\(811\) 16.8747 0.592550 0.296275 0.955103i \(-0.404255\pi\)
0.296275 + 0.955103i \(0.404255\pi\)
\(812\) −11.7973 −0.414003
\(813\) 0 0
\(814\) 78.7410 2.75987
\(815\) 0 0
\(816\) 0 0
\(817\) −6.35109 −0.222196
\(818\) −0.686597 −0.0240063
\(819\) 0 0
\(820\) 0 0
\(821\) −52.6449 −1.83732 −0.918659 0.395051i \(-0.870727\pi\)
−0.918659 + 0.395051i \(0.870727\pi\)
\(822\) 0 0
\(823\) 46.7598 1.62994 0.814972 0.579501i \(-0.196752\pi\)
0.814972 + 0.579501i \(0.196752\pi\)
\(824\) 48.5209 1.69030
\(825\) 0 0
\(826\) 46.6891 1.62452
\(827\) −20.1462 −0.700551 −0.350275 0.936647i \(-0.613912\pi\)
−0.350275 + 0.936647i \(0.613912\pi\)
\(828\) 0 0
\(829\) −9.49278 −0.329698 −0.164849 0.986319i \(-0.552714\pi\)
−0.164849 + 0.986319i \(0.552714\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6.40131 0.221926
\(833\) 0.328866 0.0113945
\(834\) 0 0
\(835\) 0 0
\(836\) 18.1566 0.627961
\(837\) 0 0
\(838\) 69.8439 2.41272
\(839\) −19.2722 −0.665351 −0.332675 0.943041i \(-0.607951\pi\)
−0.332675 + 0.943041i \(0.607951\pi\)
\(840\) 0 0
\(841\) −27.9618 −0.964200
\(842\) −68.7154 −2.36809
\(843\) 0 0
\(844\) 59.5534 2.04991
\(845\) 0 0
\(846\) 0 0
\(847\) −15.7983 −0.542836
\(848\) −73.2835 −2.51657
\(849\) 0 0
\(850\) 0 0
\(851\) 7.06811 0.242292
\(852\) 0 0
\(853\) −1.61810 −0.0554025 −0.0277013 0.999616i \(-0.508819\pi\)
−0.0277013 + 0.999616i \(0.508819\pi\)
\(854\) −83.9161 −2.87155
\(855\) 0 0
\(856\) 69.0225 2.35914
\(857\) 20.5861 0.703208 0.351604 0.936149i \(-0.385636\pi\)
0.351604 + 0.936149i \(0.385636\pi\)
\(858\) 0 0
\(859\) 11.6831 0.398622 0.199311 0.979936i \(-0.436130\pi\)
0.199311 + 0.979936i \(0.436130\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 42.7039 1.45450
\(863\) 10.5021 0.357494 0.178747 0.983895i \(-0.442796\pi\)
0.178747 + 0.983895i \(0.442796\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −8.08357 −0.274691
\(867\) 0 0
\(868\) 36.7672 1.24796
\(869\) 47.5358 1.61254
\(870\) 0 0
\(871\) −14.1152 −0.478276
\(872\) 77.8517 2.63639
\(873\) 0 0
\(874\) 2.37019 0.0801728
\(875\) 0 0
\(876\) 0 0
\(877\) 21.4693 0.724968 0.362484 0.931990i \(-0.381929\pi\)
0.362484 + 0.931990i \(0.381929\pi\)
\(878\) −54.8955 −1.85263
\(879\) 0 0
\(880\) 0 0
\(881\) −44.0018 −1.48246 −0.741229 0.671252i \(-0.765757\pi\)
−0.741229 + 0.671252i \(0.765757\pi\)
\(882\) 0 0
\(883\) −27.1109 −0.912353 −0.456177 0.889889i \(-0.650782\pi\)
−0.456177 + 0.889889i \(0.650782\pi\)
\(884\) 61.0573 2.05358
\(885\) 0 0
\(886\) 27.5648 0.926059
\(887\) −13.8682 −0.465649 −0.232825 0.972519i \(-0.574797\pi\)
−0.232825 + 0.972519i \(0.574797\pi\)
\(888\) 0 0
\(889\) 52.2747 1.75324
\(890\) 0 0
\(891\) 0 0
\(892\) −26.0459 −0.872081
\(893\) −8.97195 −0.300235
\(894\) 0 0
\(895\) 0 0
\(896\) 35.6080 1.18958
\(897\) 0 0
\(898\) 101.357 3.38234
\(899\) −3.23562 −0.107914
\(900\) 0 0
\(901\) 43.5725 1.45161
\(902\) −20.4072 −0.679487
\(903\) 0 0
\(904\) −8.28177 −0.275447
\(905\) 0 0
\(906\) 0 0
\(907\) −0.908538 −0.0301675 −0.0150838 0.999886i \(-0.504801\pi\)
−0.0150838 + 0.999886i \(0.504801\pi\)
\(908\) −58.9559 −1.95652
\(909\) 0 0
\(910\) 0 0
\(911\) −1.91827 −0.0635552 −0.0317776 0.999495i \(-0.510117\pi\)
−0.0317776 + 0.999495i \(0.510117\pi\)
\(912\) 0 0
\(913\) 58.7481 1.94428
\(914\) −39.0938 −1.29311
\(915\) 0 0
\(916\) −122.737 −4.05533
\(917\) −3.58238 −0.118301
\(918\) 0 0
\(919\) −26.0724 −0.860048 −0.430024 0.902817i \(-0.641495\pi\)
−0.430024 + 0.902817i \(0.641495\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.3012 0.569784
\(923\) −24.8780 −0.818869
\(924\) 0 0
\(925\) 0 0
\(926\) −73.9778 −2.43106
\(927\) 0 0
\(928\) 4.57084 0.150045
\(929\) −20.2428 −0.664145 −0.332073 0.943254i \(-0.607748\pi\)
−0.332073 + 0.943254i \(0.607748\pi\)
\(930\) 0 0
\(931\) 0.0840822 0.00275568
\(932\) 101.282 3.31760
\(933\) 0 0
\(934\) 60.9960 1.99585
\(935\) 0 0
\(936\) 0 0
\(937\) 20.0074 0.653613 0.326806 0.945091i \(-0.394028\pi\)
0.326806 + 0.945091i \(0.394028\pi\)
\(938\) −26.4903 −0.864940
\(939\) 0 0
\(940\) 0 0
\(941\) 23.4784 0.765375 0.382688 0.923878i \(-0.374999\pi\)
0.382688 + 0.923878i \(0.374999\pi\)
\(942\) 0 0
\(943\) −1.83184 −0.0596528
\(944\) −46.1549 −1.50222
\(945\) 0 0
\(946\) −66.2747 −2.15478
\(947\) 4.17233 0.135582 0.0677912 0.997700i \(-0.478405\pi\)
0.0677912 + 0.997700i \(0.478405\pi\)
\(948\) 0 0
\(949\) 25.4164 0.825051
\(950\) 0 0
\(951\) 0 0
\(952\) 62.5340 2.02674
\(953\) 36.5709 1.18465 0.592324 0.805700i \(-0.298210\pi\)
0.592324 + 0.805700i \(0.298210\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −119.226 −3.85604
\(957\) 0 0
\(958\) 86.6067 2.79814
\(959\) −1.11902 −0.0361352
\(960\) 0 0
\(961\) −20.9159 −0.674707
\(962\) 67.6999 2.18273
\(963\) 0 0
\(964\) 70.2747 2.26340
\(965\) 0 0
\(966\) 0 0
\(967\) 34.3853 1.10576 0.552878 0.833262i \(-0.313530\pi\)
0.552878 + 0.833262i \(0.313530\pi\)
\(968\) 36.5226 1.17388
\(969\) 0 0
\(970\) 0 0
\(971\) 44.4417 1.42620 0.713102 0.701061i \(-0.247290\pi\)
0.713102 + 0.701061i \(0.247290\pi\)
\(972\) 0 0
\(973\) −1.65629 −0.0530983
\(974\) −101.378 −3.24838
\(975\) 0 0
\(976\) 82.9561 2.65536
\(977\) 44.3969 1.42038 0.710191 0.704009i \(-0.248609\pi\)
0.710191 + 0.704009i \(0.248609\pi\)
\(978\) 0 0
\(979\) −54.3468 −1.73693
\(980\) 0 0
\(981\) 0 0
\(982\) 87.8057 2.80199
\(983\) 7.72584 0.246416 0.123208 0.992381i \(-0.460682\pi\)
0.123208 + 0.992381i \(0.460682\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10.0841 −0.321142
\(987\) 0 0
\(988\) 15.6107 0.496643
\(989\) −5.94908 −0.189170
\(990\) 0 0
\(991\) −41.3705 −1.31418 −0.657089 0.753813i \(-0.728212\pi\)
−0.657089 + 0.753813i \(0.728212\pi\)
\(992\) −14.2454 −0.452292
\(993\) 0 0
\(994\) −46.6891 −1.48089
\(995\) 0 0
\(996\) 0 0
\(997\) −39.2673 −1.24361 −0.621804 0.783173i \(-0.713600\pi\)
−0.621804 + 0.783173i \(0.713600\pi\)
\(998\) −98.5014 −3.11801
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bs.1.6 yes 6
3.2 odd 2 inner 4275.2.a.bs.1.1 6
5.4 even 2 4275.2.a.bt.1.1 yes 6
15.14 odd 2 4275.2.a.bt.1.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4275.2.a.bs.1.1 6 3.2 odd 2 inner
4275.2.a.bs.1.6 yes 6 1.1 even 1 trivial
4275.2.a.bt.1.1 yes 6 5.4 even 2
4275.2.a.bt.1.6 yes 6 15.14 odd 2