Properties

Label 4275.2.a.bs.1.5
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.16717036.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 10x^{4} + 26x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.52185\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.52185 q^{2} +0.316031 q^{4} -1.48028 q^{7} -2.56275 q^{8} -0.730913 q^{11} +2.32850 q^{13} -2.25276 q^{14} -4.53219 q^{16} +6.58733 q^{17} -1.00000 q^{19} -1.11234 q^{22} -2.31279 q^{23} +3.54362 q^{26} -0.467814 q^{28} -5.60645 q^{29} +3.84822 q^{31} -1.77181 q^{32} +10.0249 q^{34} -1.67150 q^{37} -1.52185 q^{38} -3.29366 q^{41} -7.69643 q^{43} -0.230991 q^{44} -3.51972 q^{46} -3.54362 q^{47} -4.80877 q^{49} +0.735877 q^{52} -0.480952 q^{53} +3.79358 q^{56} -8.53219 q^{58} +0.249961 q^{59} -3.73588 q^{61} +5.85641 q^{62} +6.36794 q^{64} -11.2162 q^{67} +2.08180 q^{68} -0.249961 q^{71} -16.6175 q^{73} -2.54378 q^{74} -0.316031 q^{76} +1.08195 q^{77} +9.54465 q^{79} -5.01247 q^{82} -6.81832 q^{83} -11.7128 q^{86} +1.87315 q^{88} -10.7320 q^{89} -3.44682 q^{91} -0.730913 q^{92} -5.39287 q^{94} +2.32850 q^{97} -7.31824 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 16 q^{13} - 6 q^{19} - 10 q^{22} - 30 q^{28} + 2 q^{31} - 12 q^{34} - 40 q^{37} - 4 q^{43} - 30 q^{46} + 10 q^{49} - 20 q^{52} - 24 q^{58} + 2 q^{61} + 26 q^{64} - 34 q^{67} - 22 q^{73}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52185 1.07611 0.538056 0.842909i \(-0.319159\pi\)
0.538056 + 0.842909i \(0.319159\pi\)
\(3\) 0 0
\(4\) 0.316031 0.158015
\(5\) 0 0
\(6\) 0 0
\(7\) −1.48028 −0.559493 −0.279746 0.960074i \(-0.590250\pi\)
−0.279746 + 0.960074i \(0.590250\pi\)
\(8\) −2.56275 −0.906069
\(9\) 0 0
\(10\) 0 0
\(11\) −0.730913 −0.220379 −0.110189 0.993911i \(-0.535146\pi\)
−0.110189 + 0.993911i \(0.535146\pi\)
\(12\) 0 0
\(13\) 2.32850 0.645809 0.322904 0.946432i \(-0.395341\pi\)
0.322904 + 0.946432i \(0.395341\pi\)
\(14\) −2.25276 −0.602076
\(15\) 0 0
\(16\) −4.53219 −1.13305
\(17\) 6.58733 1.59766 0.798831 0.601556i \(-0.205452\pi\)
0.798831 + 0.601556i \(0.205452\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −1.11234 −0.237152
\(23\) −2.31279 −0.482250 −0.241125 0.970494i \(-0.577516\pi\)
−0.241125 + 0.970494i \(0.577516\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.54362 0.694962
\(27\) 0 0
\(28\) −0.467814 −0.0884085
\(29\) −5.60645 −1.04109 −0.520546 0.853834i \(-0.674272\pi\)
−0.520546 + 0.853834i \(0.674272\pi\)
\(30\) 0 0
\(31\) 3.84822 0.691160 0.345580 0.938389i \(-0.387682\pi\)
0.345580 + 0.938389i \(0.387682\pi\)
\(32\) −1.77181 −0.313215
\(33\) 0 0
\(34\) 10.0249 1.71926
\(35\) 0 0
\(36\) 0 0
\(37\) −1.67150 −0.274794 −0.137397 0.990516i \(-0.543874\pi\)
−0.137397 + 0.990516i \(0.543874\pi\)
\(38\) −1.52185 −0.246877
\(39\) 0 0
\(40\) 0 0
\(41\) −3.29366 −0.514384 −0.257192 0.966360i \(-0.582797\pi\)
−0.257192 + 0.966360i \(0.582797\pi\)
\(42\) 0 0
\(43\) −7.69643 −1.17370 −0.586848 0.809697i \(-0.699631\pi\)
−0.586848 + 0.809697i \(0.699631\pi\)
\(44\) −0.230991 −0.0348232
\(45\) 0 0
\(46\) −3.51972 −0.518955
\(47\) −3.54362 −0.516891 −0.258445 0.966026i \(-0.583210\pi\)
−0.258445 + 0.966026i \(0.583210\pi\)
\(48\) 0 0
\(49\) −4.80877 −0.686968
\(50\) 0 0
\(51\) 0 0
\(52\) 0.735877 0.102048
\(53\) −0.480952 −0.0660638 −0.0330319 0.999454i \(-0.510516\pi\)
−0.0330319 + 0.999454i \(0.510516\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.79358 0.506939
\(57\) 0 0
\(58\) −8.53219 −1.12033
\(59\) 0.249961 0.0325421 0.0162711 0.999868i \(-0.494821\pi\)
0.0162711 + 0.999868i \(0.494821\pi\)
\(60\) 0 0
\(61\) −3.73588 −0.478330 −0.239165 0.970979i \(-0.576874\pi\)
−0.239165 + 0.970979i \(0.576874\pi\)
\(62\) 5.85641 0.743765
\(63\) 0 0
\(64\) 6.36794 0.795992
\(65\) 0 0
\(66\) 0 0
\(67\) −11.2162 −1.37027 −0.685136 0.728415i \(-0.740257\pi\)
−0.685136 + 0.728415i \(0.740257\pi\)
\(68\) 2.08180 0.252455
\(69\) 0 0
\(70\) 0 0
\(71\) −0.249961 −0.0296649 −0.0148325 0.999890i \(-0.504721\pi\)
−0.0148325 + 0.999890i \(0.504721\pi\)
\(72\) 0 0
\(73\) −16.6175 −1.94494 −0.972469 0.233034i \(-0.925135\pi\)
−0.972469 + 0.233034i \(0.925135\pi\)
\(74\) −2.54378 −0.295708
\(75\) 0 0
\(76\) −0.316031 −0.0362512
\(77\) 1.08195 0.123300
\(78\) 0 0
\(79\) 9.54465 1.07386 0.536929 0.843628i \(-0.319584\pi\)
0.536929 + 0.843628i \(0.319584\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −5.01247 −0.553534
\(83\) −6.81832 −0.748408 −0.374204 0.927347i \(-0.622084\pi\)
−0.374204 + 0.927347i \(0.622084\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −11.7128 −1.26303
\(87\) 0 0
\(88\) 1.87315 0.199678
\(89\) −10.7320 −1.13758 −0.568792 0.822481i \(-0.692589\pi\)
−0.568792 + 0.822481i \(0.692589\pi\)
\(90\) 0 0
\(91\) −3.44682 −0.361325
\(92\) −0.730913 −0.0762029
\(93\) 0 0
\(94\) −5.39287 −0.556232
\(95\) 0 0
\(96\) 0 0
\(97\) 2.32850 0.236423 0.118211 0.992988i \(-0.462284\pi\)
0.118211 + 0.992988i \(0.462284\pi\)
\(98\) −7.31824 −0.739254
\(99\) 0 0
\(100\) 0 0
\(101\) −16.2184 −1.61379 −0.806893 0.590697i \(-0.798853\pi\)
−0.806893 + 0.590697i \(0.798853\pi\)
\(102\) 0 0
\(103\) −7.21616 −0.711029 −0.355514 0.934671i \(-0.615694\pi\)
−0.355514 + 0.934671i \(0.615694\pi\)
\(104\) −5.96735 −0.585147
\(105\) 0 0
\(106\) −0.731937 −0.0710920
\(107\) 7.79919 0.753976 0.376988 0.926218i \(-0.376960\pi\)
0.376988 + 0.926218i \(0.376960\pi\)
\(108\) 0 0
\(109\) 4.63206 0.443671 0.221836 0.975084i \(-0.428795\pi\)
0.221836 + 0.975084i \(0.428795\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.70890 0.633931
\(113\) −16.9493 −1.59445 −0.797226 0.603680i \(-0.793700\pi\)
−0.797226 + 0.603680i \(0.793700\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.77181 −0.164509
\(117\) 0 0
\(118\) 0.380403 0.0350190
\(119\) −9.75108 −0.893880
\(120\) 0 0
\(121\) −10.4658 −0.951433
\(122\) −5.68545 −0.514736
\(123\) 0 0
\(124\) 1.21616 0.109214
\(125\) 0 0
\(126\) 0 0
\(127\) 15.2411 1.35243 0.676214 0.736705i \(-0.263620\pi\)
0.676214 + 0.736705i \(0.263620\pi\)
\(128\) 13.2347 1.16979
\(129\) 0 0
\(130\) 0 0
\(131\) 16.9493 1.48086 0.740432 0.672131i \(-0.234621\pi\)
0.740432 + 0.672131i \(0.234621\pi\)
\(132\) 0 0
\(133\) 1.48028 0.128356
\(134\) −17.0693 −1.47456
\(135\) 0 0
\(136\) −16.8817 −1.44759
\(137\) 14.6365 1.25048 0.625239 0.780433i \(-0.285001\pi\)
0.625239 + 0.780433i \(0.285001\pi\)
\(138\) 0 0
\(139\) −0.519721 −0.0440822 −0.0220411 0.999757i \(-0.507016\pi\)
−0.0220411 + 0.999757i \(0.507016\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.380403 −0.0319227
\(143\) −1.70193 −0.142322
\(144\) 0 0
\(145\) 0 0
\(146\) −25.2894 −2.09297
\(147\) 0 0
\(148\) −0.528247 −0.0434216
\(149\) −5.00545 −0.410062 −0.205031 0.978755i \(-0.565730\pi\)
−0.205031 + 0.978755i \(0.565730\pi\)
\(150\) 0 0
\(151\) 11.6175 0.945423 0.472711 0.881217i \(-0.343275\pi\)
0.472711 + 0.881217i \(0.343275\pi\)
\(152\) 2.56275 0.207867
\(153\) 0 0
\(154\) 1.64657 0.132685
\(155\) 0 0
\(156\) 0 0
\(157\) −17.2805 −1.37914 −0.689568 0.724221i \(-0.742200\pi\)
−0.689568 + 0.724221i \(0.742200\pi\)
\(158\) 14.5255 1.15559
\(159\) 0 0
\(160\) 0 0
\(161\) 3.42357 0.269815
\(162\) 0 0
\(163\) −9.48028 −0.742553 −0.371276 0.928522i \(-0.621080\pi\)
−0.371276 + 0.928522i \(0.621080\pi\)
\(164\) −1.04090 −0.0812806
\(165\) 0 0
\(166\) −10.3765 −0.805370
\(167\) −0.749883 −0.0580277 −0.0290138 0.999579i \(-0.509237\pi\)
−0.0290138 + 0.999579i \(0.509237\pi\)
\(168\) 0 0
\(169\) −7.57811 −0.582931
\(170\) 0 0
\(171\) 0 0
\(172\) −2.43231 −0.185462
\(173\) −13.1557 −1.00021 −0.500104 0.865965i \(-0.666705\pi\)
−0.500104 + 0.865965i \(0.666705\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.31263 0.249699
\(177\) 0 0
\(178\) −16.3324 −1.22417
\(179\) 5.37546 0.401781 0.200890 0.979614i \(-0.435616\pi\)
0.200890 + 0.979614i \(0.435616\pi\)
\(180\) 0 0
\(181\) 2.73588 0.203356 0.101678 0.994817i \(-0.467579\pi\)
0.101678 + 0.994817i \(0.467579\pi\)
\(182\) −5.24555 −0.388826
\(183\) 0 0
\(184\) 5.92710 0.436952
\(185\) 0 0
\(186\) 0 0
\(187\) −4.81476 −0.352090
\(188\) −1.11989 −0.0816767
\(189\) 0 0
\(190\) 0 0
\(191\) 3.77462 0.273122 0.136561 0.990632i \(-0.456395\pi\)
0.136561 + 0.990632i \(0.456395\pi\)
\(192\) 0 0
\(193\) −10.3036 −0.741667 −0.370833 0.928699i \(-0.620928\pi\)
−0.370833 + 0.928699i \(0.620928\pi\)
\(194\) 3.54362 0.254417
\(195\) 0 0
\(196\) −1.51972 −0.108552
\(197\) 9.63103 0.686182 0.343091 0.939302i \(-0.388526\pi\)
0.343091 + 0.939302i \(0.388526\pi\)
\(198\) 0 0
\(199\) 7.48028 0.530263 0.265131 0.964212i \(-0.414585\pi\)
0.265131 + 0.964212i \(0.414585\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −24.6819 −1.73661
\(203\) 8.29911 0.582484
\(204\) 0 0
\(205\) 0 0
\(206\) −10.9819 −0.765146
\(207\) 0 0
\(208\) −10.5532 −0.731731
\(209\) 0.730913 0.0505583
\(210\) 0 0
\(211\) −7.54465 −0.519395 −0.259698 0.965690i \(-0.583623\pi\)
−0.259698 + 0.965690i \(0.583623\pi\)
\(212\) −0.151996 −0.0104391
\(213\) 0 0
\(214\) 11.8692 0.811362
\(215\) 0 0
\(216\) 0 0
\(217\) −5.69643 −0.386699
\(218\) 7.04931 0.477439
\(219\) 0 0
\(220\) 0 0
\(221\) 15.3386 1.03178
\(222\) 0 0
\(223\) −1.19123 −0.0797703 −0.0398852 0.999204i \(-0.512699\pi\)
−0.0398852 + 0.999204i \(0.512699\pi\)
\(224\) 2.62278 0.175242
\(225\) 0 0
\(226\) −25.7943 −1.71581
\(227\) 3.41371 0.226576 0.113288 0.993562i \(-0.463862\pi\)
0.113288 + 0.993562i \(0.463862\pi\)
\(228\) 0 0
\(229\) 7.24109 0.478504 0.239252 0.970957i \(-0.423098\pi\)
0.239252 + 0.970957i \(0.423098\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 14.3679 0.943301
\(233\) −4.04355 −0.264901 −0.132451 0.991190i \(-0.542285\pi\)
−0.132451 + 0.991190i \(0.542285\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.0789954 0.00514216
\(237\) 0 0
\(238\) −14.8397 −0.961914
\(239\) 26.4694 1.71216 0.856080 0.516843i \(-0.172893\pi\)
0.856080 + 0.516843i \(0.172893\pi\)
\(240\) 0 0
\(241\) −14.4323 −0.929667 −0.464833 0.885398i \(-0.653886\pi\)
−0.464833 + 0.885398i \(0.653886\pi\)
\(242\) −15.9273 −1.02385
\(243\) 0 0
\(244\) −1.18065 −0.0755835
\(245\) 0 0
\(246\) 0 0
\(247\) −2.32850 −0.148159
\(248\) −9.86202 −0.626239
\(249\) 0 0
\(250\) 0 0
\(251\) 7.54923 0.476503 0.238252 0.971203i \(-0.423426\pi\)
0.238252 + 0.971203i \(0.423426\pi\)
\(252\) 0 0
\(253\) 1.69045 0.106278
\(254\) 23.1947 1.45536
\(255\) 0 0
\(256\) 7.40533 0.462833
\(257\) 10.2320 0.638257 0.319128 0.947712i \(-0.396610\pi\)
0.319128 + 0.947712i \(0.396610\pi\)
\(258\) 0 0
\(259\) 2.47429 0.153745
\(260\) 0 0
\(261\) 0 0
\(262\) 25.7943 1.59357
\(263\) 0.730913 0.0450700 0.0225350 0.999746i \(-0.492826\pi\)
0.0225350 + 0.999746i \(0.492826\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.25276 0.138126
\(267\) 0 0
\(268\) −3.54465 −0.216524
\(269\) 2.42373 0.147777 0.0738887 0.997266i \(-0.476459\pi\)
0.0738887 + 0.997266i \(0.476459\pi\)
\(270\) 0 0
\(271\) 2.13727 0.129830 0.0649150 0.997891i \(-0.479322\pi\)
0.0649150 + 0.997891i \(0.479322\pi\)
\(272\) −29.8550 −1.81022
\(273\) 0 0
\(274\) 22.2745 1.34565
\(275\) 0 0
\(276\) 0 0
\(277\) −17.4323 −1.04741 −0.523703 0.851901i \(-0.675450\pi\)
−0.523703 + 0.851901i \(0.675450\pi\)
\(278\) −0.790938 −0.0474373
\(279\) 0 0
\(280\) 0 0
\(281\) 27.2003 1.62263 0.811316 0.584608i \(-0.198752\pi\)
0.811316 + 0.584608i \(0.198752\pi\)
\(282\) 0 0
\(283\) −6.43231 −0.382361 −0.191181 0.981555i \(-0.561232\pi\)
−0.191181 + 0.981555i \(0.561232\pi\)
\(284\) −0.0789954 −0.00468751
\(285\) 0 0
\(286\) −2.59008 −0.153155
\(287\) 4.87554 0.287794
\(288\) 0 0
\(289\) 26.3929 1.55252
\(290\) 0 0
\(291\) 0 0
\(292\) −5.25166 −0.307330
\(293\) 9.40004 0.549156 0.274578 0.961565i \(-0.411462\pi\)
0.274578 + 0.961565i \(0.411462\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.28365 0.248982
\(297\) 0 0
\(298\) −7.61755 −0.441273
\(299\) −5.38532 −0.311441
\(300\) 0 0
\(301\) 11.3929 0.656674
\(302\) 17.6802 1.01738
\(303\) 0 0
\(304\) 4.53219 0.259939
\(305\) 0 0
\(306\) 0 0
\(307\) 6.99147 0.399025 0.199512 0.979895i \(-0.436064\pi\)
0.199512 + 0.979895i \(0.436064\pi\)
\(308\) 0.341931 0.0194833
\(309\) 0 0
\(310\) 0 0
\(311\) 23.3877 1.32620 0.663098 0.748533i \(-0.269241\pi\)
0.663098 + 0.748533i \(0.269241\pi\)
\(312\) 0 0
\(313\) −7.84822 −0.443607 −0.221804 0.975091i \(-0.571194\pi\)
−0.221804 + 0.975091i \(0.571194\pi\)
\(314\) −26.2984 −1.48410
\(315\) 0 0
\(316\) 3.01640 0.169686
\(317\) −16.3194 −0.916591 −0.458295 0.888800i \(-0.651540\pi\)
−0.458295 + 0.888800i \(0.651540\pi\)
\(318\) 0 0
\(319\) 4.09783 0.229434
\(320\) 0 0
\(321\) 0 0
\(322\) 5.21017 0.290351
\(323\) −6.58733 −0.366529
\(324\) 0 0
\(325\) 0 0
\(326\) −14.4276 −0.799069
\(327\) 0 0
\(328\) 8.44084 0.466067
\(329\) 5.24555 0.289197
\(330\) 0 0
\(331\) 22.2016 1.22031 0.610156 0.792281i \(-0.291107\pi\)
0.610156 + 0.792281i \(0.291107\pi\)
\(332\) −2.15480 −0.118260
\(333\) 0 0
\(334\) −1.14121 −0.0624442
\(335\) 0 0
\(336\) 0 0
\(337\) −9.92112 −0.540438 −0.270219 0.962799i \(-0.587096\pi\)
−0.270219 + 0.962799i \(0.587096\pi\)
\(338\) −11.5328 −0.627299
\(339\) 0 0
\(340\) 0 0
\(341\) −2.81271 −0.152317
\(342\) 0 0
\(343\) 17.4803 0.943846
\(344\) 19.7240 1.06345
\(345\) 0 0
\(346\) −20.0210 −1.07634
\(347\) −2.54378 −0.136557 −0.0682786 0.997666i \(-0.521751\pi\)
−0.0682786 + 0.997666i \(0.521751\pi\)
\(348\) 0 0
\(349\) −21.8817 −1.17130 −0.585650 0.810564i \(-0.699161\pi\)
−0.585650 + 0.810564i \(0.699161\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.29504 0.0690259
\(353\) 8.28925 0.441192 0.220596 0.975365i \(-0.429200\pi\)
0.220596 + 0.975365i \(0.429200\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −3.39163 −0.179756
\(357\) 0 0
\(358\) 8.18065 0.432361
\(359\) 2.54378 0.134256 0.0671278 0.997744i \(-0.478616\pi\)
0.0671278 + 0.997744i \(0.478616\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 4.16360 0.218834
\(363\) 0 0
\(364\) −1.08930 −0.0570950
\(365\) 0 0
\(366\) 0 0
\(367\) −29.0104 −1.51433 −0.757166 0.653223i \(-0.773416\pi\)
−0.757166 + 0.653223i \(0.773416\pi\)
\(368\) 10.4820 0.546412
\(369\) 0 0
\(370\) 0 0
\(371\) 0.711943 0.0369622
\(372\) 0 0
\(373\) −24.9606 −1.29241 −0.646204 0.763164i \(-0.723645\pi\)
−0.646204 + 0.763164i \(0.723645\pi\)
\(374\) −7.32735 −0.378888
\(375\) 0 0
\(376\) 9.08142 0.468339
\(377\) −13.0546 −0.672346
\(378\) 0 0
\(379\) 0.553177 0.0284148 0.0142074 0.999899i \(-0.495477\pi\)
0.0142074 + 0.999899i \(0.495477\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5.74440 0.293909
\(383\) −2.67369 −0.136619 −0.0683096 0.997664i \(-0.521761\pi\)
−0.0683096 + 0.997664i \(0.521761\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −15.6805 −0.798116
\(387\) 0 0
\(388\) 0.735877 0.0373585
\(389\) 7.20730 0.365425 0.182712 0.983166i \(-0.441512\pi\)
0.182712 + 0.983166i \(0.441512\pi\)
\(390\) 0 0
\(391\) −15.2351 −0.770472
\(392\) 12.3237 0.622440
\(393\) 0 0
\(394\) 14.6570 0.738409
\(395\) 0 0
\(396\) 0 0
\(397\) −10.0729 −0.505544 −0.252772 0.967526i \(-0.581342\pi\)
−0.252772 + 0.967526i \(0.581342\pi\)
\(398\) 11.3839 0.570622
\(399\) 0 0
\(400\) 0 0
\(401\) 25.2006 1.25846 0.629229 0.777220i \(-0.283371\pi\)
0.629229 + 0.777220i \(0.283371\pi\)
\(402\) 0 0
\(403\) 8.96056 0.446357
\(404\) −5.12550 −0.255003
\(405\) 0 0
\(406\) 12.6300 0.626817
\(407\) 1.22172 0.0605586
\(408\) 0 0
\(409\) −29.6425 −1.46573 −0.732863 0.680376i \(-0.761816\pi\)
−0.732863 + 0.680376i \(0.761816\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2.28053 −0.112354
\(413\) −0.370012 −0.0182071
\(414\) 0 0
\(415\) 0 0
\(416\) −4.12566 −0.202277
\(417\) 0 0
\(418\) 1.11234 0.0544064
\(419\) 34.4806 1.68449 0.842243 0.539098i \(-0.181235\pi\)
0.842243 + 0.539098i \(0.181235\pi\)
\(420\) 0 0
\(421\) −4.93563 −0.240548 −0.120274 0.992741i \(-0.538377\pi\)
−0.120274 + 0.992741i \(0.538377\pi\)
\(422\) −11.4818 −0.558927
\(423\) 0 0
\(424\) 1.23256 0.0598584
\(425\) 0 0
\(426\) 0 0
\(427\) 5.53014 0.267622
\(428\) 2.46479 0.119140
\(429\) 0 0
\(430\) 0 0
\(431\) −24.6375 −1.18675 −0.593374 0.804927i \(-0.702204\pi\)
−0.593374 + 0.804927i \(0.702204\pi\)
\(432\) 0 0
\(433\) −11.3679 −0.546308 −0.273154 0.961970i \(-0.588067\pi\)
−0.273154 + 0.961970i \(0.588067\pi\)
\(434\) −8.66912 −0.416131
\(435\) 0 0
\(436\) 1.46387 0.0701069
\(437\) 2.31279 0.110636
\(438\) 0 0
\(439\) −10.0729 −0.480753 −0.240377 0.970680i \(-0.577271\pi\)
−0.240377 + 0.970680i \(0.577271\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 23.3430 1.11031
\(443\) 24.2387 1.15161 0.575807 0.817586i \(-0.304688\pi\)
0.575807 + 0.817586i \(0.304688\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.81287 −0.0858418
\(447\) 0 0
\(448\) −9.42632 −0.445352
\(449\) 28.7541 1.35699 0.678494 0.734606i \(-0.262633\pi\)
0.678494 + 0.734606i \(0.262633\pi\)
\(450\) 0 0
\(451\) 2.40738 0.113359
\(452\) −5.35649 −0.251948
\(453\) 0 0
\(454\) 5.19516 0.243821
\(455\) 0 0
\(456\) 0 0
\(457\) 26.8192 1.25455 0.627274 0.778798i \(-0.284170\pi\)
0.627274 + 0.778798i \(0.284170\pi\)
\(458\) 11.0199 0.514924
\(459\) 0 0
\(460\) 0 0
\(461\) −38.6442 −1.79984 −0.899919 0.436057i \(-0.856375\pi\)
−0.899919 + 0.436057i \(0.856375\pi\)
\(462\) 0 0
\(463\) 36.4033 1.69180 0.845902 0.533338i \(-0.179063\pi\)
0.845902 + 0.533338i \(0.179063\pi\)
\(464\) 25.4095 1.17961
\(465\) 0 0
\(466\) −6.15367 −0.285063
\(467\) −17.5692 −0.813007 −0.406504 0.913649i \(-0.633252\pi\)
−0.406504 + 0.913649i \(0.633252\pi\)
\(468\) 0 0
\(469\) 16.6030 0.766657
\(470\) 0 0
\(471\) 0 0
\(472\) −0.640587 −0.0294854
\(473\) 5.62542 0.258657
\(474\) 0 0
\(475\) 0 0
\(476\) −3.08164 −0.141247
\(477\) 0 0
\(478\) 40.2824 1.84247
\(479\) −11.4818 −0.524618 −0.262309 0.964984i \(-0.584484\pi\)
−0.262309 + 0.964984i \(0.584484\pi\)
\(480\) 0 0
\(481\) −3.89209 −0.177464
\(482\) −21.9638 −1.00042
\(483\) 0 0
\(484\) −3.30751 −0.150341
\(485\) 0 0
\(486\) 0 0
\(487\) −29.5926 −1.34097 −0.670485 0.741923i \(-0.733914\pi\)
−0.670485 + 0.741923i \(0.733914\pi\)
\(488\) 9.57412 0.433400
\(489\) 0 0
\(490\) 0 0
\(491\) 26.3114 1.18742 0.593708 0.804681i \(-0.297664\pi\)
0.593708 + 0.804681i \(0.297664\pi\)
\(492\) 0 0
\(493\) −36.9315 −1.66331
\(494\) −3.54362 −0.159435
\(495\) 0 0
\(496\) −17.4408 −0.783117
\(497\) 0.370012 0.0165973
\(498\) 0 0
\(499\) −26.2831 −1.17659 −0.588296 0.808646i \(-0.700201\pi\)
−0.588296 + 0.808646i \(0.700201\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 11.4888 0.512770
\(503\) 32.0568 1.42934 0.714672 0.699460i \(-0.246576\pi\)
0.714672 + 0.699460i \(0.246576\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.57261 0.114366
\(507\) 0 0
\(508\) 4.81665 0.213704
\(509\) 42.6687 1.89126 0.945629 0.325246i \(-0.105447\pi\)
0.945629 + 0.325246i \(0.105447\pi\)
\(510\) 0 0
\(511\) 24.5986 1.08818
\(512\) −15.1995 −0.671731
\(513\) 0 0
\(514\) 15.5716 0.686835
\(515\) 0 0
\(516\) 0 0
\(517\) 2.59008 0.113912
\(518\) 3.76550 0.165447
\(519\) 0 0
\(520\) 0 0
\(521\) 7.30838 0.320186 0.160093 0.987102i \(-0.448821\pi\)
0.160093 + 0.987102i \(0.448821\pi\)
\(522\) 0 0
\(523\) 4.93563 0.215820 0.107910 0.994161i \(-0.465584\pi\)
0.107910 + 0.994161i \(0.465584\pi\)
\(524\) 5.35649 0.233999
\(525\) 0 0
\(526\) 1.11234 0.0485004
\(527\) 25.3495 1.10424
\(528\) 0 0
\(529\) −17.6510 −0.767435
\(530\) 0 0
\(531\) 0 0
\(532\) 0.467814 0.0202823
\(533\) −7.66928 −0.332193
\(534\) 0 0
\(535\) 0 0
\(536\) 28.7442 1.24156
\(537\) 0 0
\(538\) 3.68856 0.159025
\(539\) 3.51480 0.151393
\(540\) 0 0
\(541\) −20.3594 −0.875320 −0.437660 0.899141i \(-0.644193\pi\)
−0.437660 + 0.899141i \(0.644193\pi\)
\(542\) 3.25261 0.139711
\(543\) 0 0
\(544\) −11.6715 −0.500412
\(545\) 0 0
\(546\) 0 0
\(547\) −38.4513 −1.64406 −0.822028 0.569446i \(-0.807158\pi\)
−0.822028 + 0.569446i \(0.807158\pi\)
\(548\) 4.62558 0.197595
\(549\) 0 0
\(550\) 0 0
\(551\) 5.60645 0.238843
\(552\) 0 0
\(553\) −14.1287 −0.600815
\(554\) −26.5294 −1.12713
\(555\) 0 0
\(556\) −0.164248 −0.00696566
\(557\) −33.1767 −1.40574 −0.702872 0.711317i \(-0.748099\pi\)
−0.702872 + 0.711317i \(0.748099\pi\)
\(558\) 0 0
\(559\) −17.9211 −0.757982
\(560\) 0 0
\(561\) 0 0
\(562\) 41.3948 1.74613
\(563\) −39.0142 −1.64425 −0.822126 0.569306i \(-0.807212\pi\)
−0.822126 + 0.569306i \(0.807212\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −9.78902 −0.411463
\(567\) 0 0
\(568\) 0.640587 0.0268785
\(569\) −13.0447 −0.546864 −0.273432 0.961891i \(-0.588159\pi\)
−0.273432 + 0.961891i \(0.588159\pi\)
\(570\) 0 0
\(571\) 29.9795 1.25460 0.627302 0.778776i \(-0.284159\pi\)
0.627302 + 0.778776i \(0.284159\pi\)
\(572\) −0.537862 −0.0224891
\(573\) 0 0
\(574\) 7.41985 0.309698
\(575\) 0 0
\(576\) 0 0
\(577\) −12.6630 −0.527167 −0.263583 0.964637i \(-0.584904\pi\)
−0.263583 + 0.964637i \(0.584904\pi\)
\(578\) 40.1660 1.67069
\(579\) 0 0
\(580\) 0 0
\(581\) 10.0930 0.418729
\(582\) 0 0
\(583\) 0.351534 0.0145590
\(584\) 42.5866 1.76225
\(585\) 0 0
\(586\) 14.3055 0.590953
\(587\) −43.2606 −1.78556 −0.892779 0.450495i \(-0.851247\pi\)
−0.892779 + 0.450495i \(0.851247\pi\)
\(588\) 0 0
\(589\) −3.84822 −0.158563
\(590\) 0 0
\(591\) 0 0
\(592\) 7.57557 0.311354
\(593\) 2.08180 0.0854892 0.0427446 0.999086i \(-0.486390\pi\)
0.0427446 + 0.999086i \(0.486390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.58188 −0.0647962
\(597\) 0 0
\(598\) −8.19566 −0.335145
\(599\) 7.54923 0.308453 0.154227 0.988036i \(-0.450711\pi\)
0.154227 + 0.988036i \(0.450711\pi\)
\(600\) 0 0
\(601\) −1.21017 −0.0493638 −0.0246819 0.999695i \(-0.507857\pi\)
−0.0246819 + 0.999695i \(0.507857\pi\)
\(602\) 17.3382 0.706654
\(603\) 0 0
\(604\) 3.67150 0.149391
\(605\) 0 0
\(606\) 0 0
\(607\) −28.9126 −1.17353 −0.586763 0.809759i \(-0.699598\pi\)
−0.586763 + 0.809759i \(0.699598\pi\)
\(608\) 1.77181 0.0718565
\(609\) 0 0
\(610\) 0 0
\(611\) −8.25131 −0.333812
\(612\) 0 0
\(613\) 2.31997 0.0937027 0.0468514 0.998902i \(-0.485081\pi\)
0.0468514 + 0.998902i \(0.485081\pi\)
\(614\) 10.6400 0.429395
\(615\) 0 0
\(616\) −2.77278 −0.111718
\(617\) −32.5568 −1.31069 −0.655343 0.755331i \(-0.727476\pi\)
−0.655343 + 0.755331i \(0.727476\pi\)
\(618\) 0 0
\(619\) −5.83370 −0.234476 −0.117238 0.993104i \(-0.537404\pi\)
−0.117238 + 0.993104i \(0.537404\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 35.5926 1.42713
\(623\) 15.8863 0.636470
\(624\) 0 0
\(625\) 0 0
\(626\) −11.9438 −0.477371
\(627\) 0 0
\(628\) −5.46118 −0.217925
\(629\) −11.0107 −0.439027
\(630\) 0 0
\(631\) −29.9710 −1.19313 −0.596563 0.802566i \(-0.703467\pi\)
−0.596563 + 0.802566i \(0.703467\pi\)
\(632\) −24.4606 −0.972989
\(633\) 0 0
\(634\) −24.8358 −0.986354
\(635\) 0 0
\(636\) 0 0
\(637\) −11.1972 −0.443650
\(638\) 6.23628 0.246897
\(639\) 0 0
\(640\) 0 0
\(641\) 31.9368 1.26143 0.630714 0.776016i \(-0.282762\pi\)
0.630714 + 0.776016i \(0.282762\pi\)
\(642\) 0 0
\(643\) 5.99147 0.236281 0.118140 0.992997i \(-0.462307\pi\)
0.118140 + 0.992997i \(0.462307\pi\)
\(644\) 1.08195 0.0426350
\(645\) 0 0
\(646\) −10.0249 −0.394426
\(647\) 23.5366 0.925319 0.462659 0.886536i \(-0.346895\pi\)
0.462659 + 0.886536i \(0.346895\pi\)
\(648\) 0 0
\(649\) −0.182700 −0.00717159
\(650\) 0 0
\(651\) 0 0
\(652\) −2.99606 −0.117335
\(653\) −0.841853 −0.0329443 −0.0164721 0.999864i \(-0.505243\pi\)
−0.0164721 + 0.999864i \(0.505243\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 14.9275 0.582821
\(657\) 0 0
\(658\) 7.98295 0.311208
\(659\) −6.08740 −0.237132 −0.118566 0.992946i \(-0.537830\pi\)
−0.118566 + 0.992946i \(0.537830\pi\)
\(660\) 0 0
\(661\) 34.1287 1.32745 0.663727 0.747975i \(-0.268974\pi\)
0.663727 + 0.747975i \(0.268974\pi\)
\(662\) 33.7876 1.31319
\(663\) 0 0
\(664\) 17.4736 0.678109
\(665\) 0 0
\(666\) 0 0
\(667\) 12.9665 0.502067
\(668\) −0.236986 −0.00916927
\(669\) 0 0
\(670\) 0 0
\(671\) 2.73060 0.105414
\(672\) 0 0
\(673\) 24.5361 0.945798 0.472899 0.881117i \(-0.343208\pi\)
0.472899 + 0.881117i \(0.343208\pi\)
\(674\) −15.0985 −0.581571
\(675\) 0 0
\(676\) −2.39492 −0.0921121
\(677\) 9.23219 0.354822 0.177411 0.984137i \(-0.443228\pi\)
0.177411 + 0.984137i \(0.443228\pi\)
\(678\) 0 0
\(679\) −3.44682 −0.132277
\(680\) 0 0
\(681\) 0 0
\(682\) −4.28053 −0.163910
\(683\) 10.5010 0.401808 0.200904 0.979611i \(-0.435612\pi\)
0.200904 + 0.979611i \(0.435612\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 26.6024 1.01568
\(687\) 0 0
\(688\) 34.8817 1.32985
\(689\) −1.11989 −0.0426646
\(690\) 0 0
\(691\) 24.3036 0.924551 0.462276 0.886736i \(-0.347033\pi\)
0.462276 + 0.886736i \(0.347033\pi\)
\(692\) −4.15760 −0.158048
\(693\) 0 0
\(694\) −3.87126 −0.146951
\(695\) 0 0
\(696\) 0 0
\(697\) −21.6964 −0.821811
\(698\) −33.3006 −1.26045
\(699\) 0 0
\(700\) 0 0
\(701\) −27.8111 −1.05041 −0.525206 0.850975i \(-0.676012\pi\)
−0.525206 + 0.850975i \(0.676012\pi\)
\(702\) 0 0
\(703\) 1.67150 0.0630420
\(704\) −4.65441 −0.175420
\(705\) 0 0
\(706\) 12.6150 0.474772
\(707\) 24.0077 0.902902
\(708\) 0 0
\(709\) −31.5781 −1.18594 −0.592970 0.805224i \(-0.702045\pi\)
−0.592970 + 0.805224i \(0.702045\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 27.5033 1.03073
\(713\) −8.90012 −0.333312
\(714\) 0 0
\(715\) 0 0
\(716\) 1.69881 0.0634876
\(717\) 0 0
\(718\) 3.87126 0.144474
\(719\) 6.73621 0.251218 0.125609 0.992080i \(-0.459912\pi\)
0.125609 + 0.992080i \(0.459912\pi\)
\(720\) 0 0
\(721\) 10.6819 0.397816
\(722\) 1.52185 0.0566374
\(723\) 0 0
\(724\) 0.864621 0.0321334
\(725\) 0 0
\(726\) 0 0
\(727\) 47.8836 1.77590 0.887952 0.459937i \(-0.152128\pi\)
0.887952 + 0.459937i \(0.152128\pi\)
\(728\) 8.83335 0.327386
\(729\) 0 0
\(730\) 0 0
\(731\) −50.6989 −1.87517
\(732\) 0 0
\(733\) 17.7857 0.656931 0.328466 0.944516i \(-0.393469\pi\)
0.328466 + 0.944516i \(0.393469\pi\)
\(734\) −44.1495 −1.62959
\(735\) 0 0
\(736\) 4.09783 0.151048
\(737\) 8.19803 0.301978
\(738\) 0 0
\(739\) −17.7668 −0.653562 −0.326781 0.945100i \(-0.605964\pi\)
−0.326781 + 0.945100i \(0.605964\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.08347 0.0397755
\(743\) −49.0251 −1.79856 −0.899278 0.437378i \(-0.855907\pi\)
−0.899278 + 0.437378i \(0.855907\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −37.9863 −1.39078
\(747\) 0 0
\(748\) −1.52161 −0.0556357
\(749\) −11.5450 −0.421844
\(750\) 0 0
\(751\) 50.9066 1.85761 0.928804 0.370571i \(-0.120838\pi\)
0.928804 + 0.370571i \(0.120838\pi\)
\(752\) 16.0604 0.585661
\(753\) 0 0
\(754\) −19.8672 −0.723519
\(755\) 0 0
\(756\) 0 0
\(757\) 6.08930 0.221319 0.110660 0.993858i \(-0.464704\pi\)
0.110660 + 0.993858i \(0.464704\pi\)
\(758\) 0.841853 0.0305775
\(759\) 0 0
\(760\) 0 0
\(761\) 52.2808 1.89518 0.947589 0.319493i \(-0.103512\pi\)
0.947589 + 0.319493i \(0.103512\pi\)
\(762\) 0 0
\(763\) −6.85674 −0.248231
\(764\) 1.19289 0.0431574
\(765\) 0 0
\(766\) −4.06896 −0.147017
\(767\) 0.582033 0.0210160
\(768\) 0 0
\(769\) 19.9606 0.719796 0.359898 0.932992i \(-0.382811\pi\)
0.359898 + 0.932992i \(0.382811\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.25624 −0.117195
\(773\) −0.869934 −0.0312893 −0.0156447 0.999878i \(-0.504980\pi\)
−0.0156447 + 0.999878i \(0.504980\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −5.96735 −0.214216
\(777\) 0 0
\(778\) 10.9684 0.393237
\(779\) 3.29366 0.118008
\(780\) 0 0
\(781\) 0.182700 0.00653751
\(782\) −23.1856 −0.829114
\(783\) 0 0
\(784\) 21.7943 0.778367
\(785\) 0 0
\(786\) 0 0
\(787\) 24.7548 0.882414 0.441207 0.897405i \(-0.354550\pi\)
0.441207 + 0.897405i \(0.354550\pi\)
\(788\) 3.04370 0.108427
\(789\) 0 0
\(790\) 0 0
\(791\) 25.0896 0.892085
\(792\) 0 0
\(793\) −8.69897 −0.308910
\(794\) −15.3295 −0.544022
\(795\) 0 0
\(796\) 2.36400 0.0837897
\(797\) 38.8941 1.37770 0.688850 0.724904i \(-0.258116\pi\)
0.688850 + 0.724904i \(0.258116\pi\)
\(798\) 0 0
\(799\) −23.3430 −0.825816
\(800\) 0 0
\(801\) 0 0
\(802\) 38.3515 1.35424
\(803\) 12.1460 0.428622
\(804\) 0 0
\(805\) 0 0
\(806\) 13.6366 0.480330
\(807\) 0 0
\(808\) 41.5636 1.46220
\(809\) 25.5075 0.896794 0.448397 0.893834i \(-0.351995\pi\)
0.448397 + 0.893834i \(0.351995\pi\)
\(810\) 0 0
\(811\) 46.3724 1.62835 0.814177 0.580617i \(-0.197188\pi\)
0.814177 + 0.580617i \(0.197188\pi\)
\(812\) 2.62278 0.0920414
\(813\) 0 0
\(814\) 1.85928 0.0651678
\(815\) 0 0
\(816\) 0 0
\(817\) 7.69643 0.269264
\(818\) −45.1114 −1.57728
\(819\) 0 0
\(820\) 0 0
\(821\) −19.2241 −0.670926 −0.335463 0.942053i \(-0.608893\pi\)
−0.335463 + 0.942053i \(0.608893\pi\)
\(822\) 0 0
\(823\) 24.6655 0.859786 0.429893 0.902880i \(-0.358551\pi\)
0.429893 + 0.902880i \(0.358551\pi\)
\(824\) 18.4932 0.644241
\(825\) 0 0
\(826\) −0.563103 −0.0195929
\(827\) 34.1386 1.18712 0.593558 0.804791i \(-0.297723\pi\)
0.593558 + 0.804791i \(0.297723\pi\)
\(828\) 0 0
\(829\) −6.17073 −0.214318 −0.107159 0.994242i \(-0.534175\pi\)
−0.107159 + 0.994242i \(0.534175\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.8277 0.514059
\(833\) −31.6770 −1.09754
\(834\) 0 0
\(835\) 0 0
\(836\) 0.230991 0.00798899
\(837\) 0 0
\(838\) 52.4743 1.81269
\(839\) −40.9380 −1.41334 −0.706668 0.707545i \(-0.749803\pi\)
−0.706668 + 0.707545i \(0.749803\pi\)
\(840\) 0 0
\(841\) 2.43231 0.0838728
\(842\) −7.51129 −0.258856
\(843\) 0 0
\(844\) −2.38434 −0.0820725
\(845\) 0 0
\(846\) 0 0
\(847\) 15.4923 0.532320
\(848\) 2.17976 0.0748534
\(849\) 0 0
\(850\) 0 0
\(851\) 3.86584 0.132519
\(852\) 0 0
\(853\) 31.2016 1.06832 0.534162 0.845382i \(-0.320627\pi\)
0.534162 + 0.845382i \(0.320627\pi\)
\(854\) 8.41605 0.287991
\(855\) 0 0
\(856\) −19.9874 −0.683155
\(857\) 34.7305 1.18637 0.593186 0.805065i \(-0.297870\pi\)
0.593186 + 0.805065i \(0.297870\pi\)
\(858\) 0 0
\(859\) −31.6090 −1.07849 −0.539243 0.842150i \(-0.681290\pi\)
−0.539243 + 0.842150i \(0.681290\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −37.4946 −1.27707
\(863\) −21.4738 −0.730975 −0.365488 0.930816i \(-0.619098\pi\)
−0.365488 + 0.930816i \(0.619098\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −17.3003 −0.587888
\(867\) 0 0
\(868\) −1.80025 −0.0611044
\(869\) −6.97631 −0.236655
\(870\) 0 0
\(871\) −26.1168 −0.884933
\(872\) −11.8708 −0.401997
\(873\) 0 0
\(874\) 3.51972 0.119056
\(875\) 0 0
\(876\) 0 0
\(877\) −45.1931 −1.52606 −0.763032 0.646361i \(-0.776290\pi\)
−0.763032 + 0.646361i \(0.776290\pi\)
\(878\) −15.3295 −0.517344
\(879\) 0 0
\(880\) 0 0
\(881\) 8.90923 0.300159 0.150080 0.988674i \(-0.452047\pi\)
0.150080 + 0.988674i \(0.452047\pi\)
\(882\) 0 0
\(883\) 9.03092 0.303915 0.151957 0.988387i \(-0.451442\pi\)
0.151957 + 0.988387i \(0.451442\pi\)
\(884\) 4.84746 0.163038
\(885\) 0 0
\(886\) 36.8877 1.23927
\(887\) −15.3386 −0.515019 −0.257509 0.966276i \(-0.582902\pi\)
−0.257509 + 0.966276i \(0.582902\pi\)
\(888\) 0 0
\(889\) −22.5611 −0.756674
\(890\) 0 0
\(891\) 0 0
\(892\) −0.376464 −0.0126049
\(893\) 3.54362 0.118583
\(894\) 0 0
\(895\) 0 0
\(896\) −19.5910 −0.654490
\(897\) 0 0
\(898\) 43.7594 1.46027
\(899\) −21.5748 −0.719561
\(900\) 0 0
\(901\) −3.16819 −0.105548
\(902\) 3.66368 0.121987
\(903\) 0 0
\(904\) 43.4367 1.44468
\(905\) 0 0
\(906\) 0 0
\(907\) −12.6570 −0.420269 −0.210134 0.977673i \(-0.567390\pi\)
−0.210134 + 0.977673i \(0.567390\pi\)
\(908\) 1.07884 0.0358025
\(909\) 0 0
\(910\) 0 0
\(911\) −46.8232 −1.55132 −0.775661 0.631149i \(-0.782584\pi\)
−0.775661 + 0.631149i \(0.782584\pi\)
\(912\) 0 0
\(913\) 4.98360 0.164933
\(914\) 40.8148 1.35003
\(915\) 0 0
\(916\) 2.28841 0.0756111
\(917\) −25.0896 −0.828533
\(918\) 0 0
\(919\) 0.873147 0.0288025 0.0144012 0.999896i \(-0.495416\pi\)
0.0144012 + 0.999896i \(0.495416\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −58.8107 −1.93683
\(923\) −0.582033 −0.0191578
\(924\) 0 0
\(925\) 0 0
\(926\) 55.4004 1.82057
\(927\) 0 0
\(928\) 9.93358 0.326086
\(929\) −12.1748 −0.399443 −0.199721 0.979853i \(-0.564004\pi\)
−0.199721 + 0.979853i \(0.564004\pi\)
\(930\) 0 0
\(931\) 4.80877 0.157601
\(932\) −1.27789 −0.0418585
\(933\) 0 0
\(934\) −26.7378 −0.874887
\(935\) 0 0
\(936\) 0 0
\(937\) 3.53423 0.115458 0.0577292 0.998332i \(-0.481614\pi\)
0.0577292 + 0.998332i \(0.481614\pi\)
\(938\) 25.2674 0.825008
\(939\) 0 0
\(940\) 0 0
\(941\) 33.7497 1.10021 0.550104 0.835096i \(-0.314588\pi\)
0.550104 + 0.835096i \(0.314588\pi\)
\(942\) 0 0
\(943\) 7.61755 0.248062
\(944\) −1.13287 −0.0368718
\(945\) 0 0
\(946\) 8.56106 0.278344
\(947\) 23.8876 0.776244 0.388122 0.921608i \(-0.373124\pi\)
0.388122 + 0.921608i \(0.373124\pi\)
\(948\) 0 0
\(949\) −38.6939 −1.25606
\(950\) 0 0
\(951\) 0 0
\(952\) 24.9896 0.809917
\(953\) 49.9779 1.61894 0.809471 0.587160i \(-0.199754\pi\)
0.809471 + 0.587160i \(0.199754\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 8.36513 0.270548
\(957\) 0 0
\(958\) −17.4736 −0.564548
\(959\) −21.6661 −0.699634
\(960\) 0 0
\(961\) −16.1912 −0.522298
\(962\) −5.92318 −0.190971
\(963\) 0 0
\(964\) −4.56106 −0.146902
\(965\) 0 0
\(966\) 0 0
\(967\) −37.0019 −1.18990 −0.594950 0.803762i \(-0.702828\pi\)
−0.594950 + 0.803762i \(0.702828\pi\)
\(968\) 26.8211 0.862064
\(969\) 0 0
\(970\) 0 0
\(971\) 59.9599 1.92421 0.962103 0.272686i \(-0.0879121\pi\)
0.962103 + 0.272686i \(0.0879121\pi\)
\(972\) 0 0
\(973\) 0.769332 0.0246637
\(974\) −45.0356 −1.44303
\(975\) 0 0
\(976\) 16.9317 0.541970
\(977\) 17.7623 0.568266 0.284133 0.958785i \(-0.408294\pi\)
0.284133 + 0.958785i \(0.408294\pi\)
\(978\) 0 0
\(979\) 7.84412 0.250699
\(980\) 0 0
\(981\) 0 0
\(982\) 40.0420 1.27779
\(983\) −59.4881 −1.89738 −0.948688 0.316214i \(-0.897588\pi\)
−0.948688 + 0.316214i \(0.897588\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −56.2043 −1.78991
\(987\) 0 0
\(988\) −0.735877 −0.0234114
\(989\) 17.8002 0.566014
\(990\) 0 0
\(991\) −2.92964 −0.0930631 −0.0465316 0.998917i \(-0.514817\pi\)
−0.0465316 + 0.998917i \(0.514817\pi\)
\(992\) −6.81832 −0.216482
\(993\) 0 0
\(994\) 0.563103 0.0178605
\(995\) 0 0
\(996\) 0 0
\(997\) 19.0953 0.604754 0.302377 0.953188i \(-0.402220\pi\)
0.302377 + 0.953188i \(0.402220\pi\)
\(998\) −39.9989 −1.26614
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bs.1.5 yes 6
3.2 odd 2 inner 4275.2.a.bs.1.2 6
5.4 even 2 4275.2.a.bt.1.2 yes 6
15.14 odd 2 4275.2.a.bt.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4275.2.a.bs.1.2 6 3.2 odd 2 inner
4275.2.a.bs.1.5 yes 6 1.1 even 1 trivial
4275.2.a.bt.1.2 yes 6 5.4 even 2
4275.2.a.bt.1.5 yes 6 15.14 odd 2