Properties

Label 4275.2.a.br.1.5
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.66064384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 13x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.68667\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.82254 q^{2} +1.32164 q^{4} -1.45033 q^{7} -1.23634 q^{8} +3.89655 q^{11} -3.05888 q^{13} -2.64327 q^{14} -4.89655 q^{16} +3.92301 q^{17} -1.00000 q^{19} +7.10160 q^{22} -5.37334 q^{23} -5.57491 q^{26} -1.91681 q^{28} -6.00000 q^{29} -8.43637 q^{31} -6.45146 q^{32} +7.14982 q^{34} +5.95953 q^{37} -1.82254 q^{38} -10.4364 q^{41} +1.45033 q^{43} +5.14982 q^{44} -9.79310 q^{46} +4.90686 q^{47} -4.89655 q^{49} -4.04272 q^{52} -4.23127 q^{53} +1.79310 q^{56} -10.9352 q^{58} -3.35673 q^{59} +10.3329 q^{61} -15.3756 q^{62} -1.96491 q^{64} +9.84404 q^{67} +5.18479 q^{68} -8.64327 q^{71} +2.43418 q^{73} +10.8615 q^{74} -1.32164 q^{76} -5.65127 q^{77} -12.4364 q^{79} -19.0207 q^{82} +12.6635 q^{83} +2.64327 q^{86} -4.81746 q^{88} -12.3662 q^{89} +4.43637 q^{91} -7.10160 q^{92} +8.94292 q^{94} -3.05888 q^{97} -8.92414 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 2 q^{11} - 16 q^{14} - 4 q^{16} - 6 q^{19} - 8 q^{26} - 36 q^{29} - 8 q^{34} - 12 q^{41} - 20 q^{44} - 8 q^{46} - 4 q^{49} - 40 q^{56} - 20 q^{59} - 14 q^{61} - 12 q^{64} - 52 q^{71} + 40 q^{74}+ \cdots - 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.82254 1.28873 0.644364 0.764719i \(-0.277122\pi\)
0.644364 + 0.764719i \(0.277122\pi\)
\(3\) 0 0
\(4\) 1.32164 0.660819
\(5\) 0 0
\(6\) 0 0
\(7\) −1.45033 −0.548172 −0.274086 0.961705i \(-0.588375\pi\)
−0.274086 + 0.961705i \(0.588375\pi\)
\(8\) −1.23634 −0.437112
\(9\) 0 0
\(10\) 0 0
\(11\) 3.89655 1.17485 0.587427 0.809277i \(-0.300141\pi\)
0.587427 + 0.809277i \(0.300141\pi\)
\(12\) 0 0
\(13\) −3.05888 −0.848380 −0.424190 0.905573i \(-0.639441\pi\)
−0.424190 + 0.905573i \(0.639441\pi\)
\(14\) −2.64327 −0.706445
\(15\) 0 0
\(16\) −4.89655 −1.22414
\(17\) 3.92301 0.951469 0.475735 0.879589i \(-0.342182\pi\)
0.475735 + 0.879589i \(0.342182\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 7.10160 1.51407
\(23\) −5.37334 −1.12042 −0.560209 0.828351i \(-0.689279\pi\)
−0.560209 + 0.828351i \(0.689279\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.57491 −1.09333
\(27\) 0 0
\(28\) −1.91681 −0.362242
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −8.43637 −1.51522 −0.757609 0.652709i \(-0.773632\pi\)
−0.757609 + 0.652709i \(0.773632\pi\)
\(32\) −6.45146 −1.14047
\(33\) 0 0
\(34\) 7.14982 1.22618
\(35\) 0 0
\(36\) 0 0
\(37\) 5.95953 0.979741 0.489871 0.871795i \(-0.337044\pi\)
0.489871 + 0.871795i \(0.337044\pi\)
\(38\) −1.82254 −0.295654
\(39\) 0 0
\(40\) 0 0
\(41\) −10.4364 −1.62989 −0.814944 0.579540i \(-0.803232\pi\)
−0.814944 + 0.579540i \(0.803232\pi\)
\(42\) 0 0
\(43\) 1.45033 0.221173 0.110586 0.993867i \(-0.464727\pi\)
0.110586 + 0.993867i \(0.464727\pi\)
\(44\) 5.14982 0.776365
\(45\) 0 0
\(46\) −9.79310 −1.44391
\(47\) 4.90686 0.715739 0.357869 0.933772i \(-0.383503\pi\)
0.357869 + 0.933772i \(0.383503\pi\)
\(48\) 0 0
\(49\) −4.89655 −0.699507
\(50\) 0 0
\(51\) 0 0
\(52\) −4.04272 −0.560625
\(53\) −4.23127 −0.581209 −0.290605 0.956843i \(-0.593856\pi\)
−0.290605 + 0.956843i \(0.593856\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.79310 0.239613
\(57\) 0 0
\(58\) −10.9352 −1.43586
\(59\) −3.35673 −0.437008 −0.218504 0.975836i \(-0.570118\pi\)
−0.218504 + 0.975836i \(0.570118\pi\)
\(60\) 0 0
\(61\) 10.3329 1.32300 0.661498 0.749947i \(-0.269921\pi\)
0.661498 + 0.749947i \(0.269921\pi\)
\(62\) −15.3756 −1.95270
\(63\) 0 0
\(64\) −1.96491 −0.245614
\(65\) 0 0
\(66\) 0 0
\(67\) 9.84404 1.20264 0.601320 0.799008i \(-0.294642\pi\)
0.601320 + 0.799008i \(0.294642\pi\)
\(68\) 5.18479 0.628749
\(69\) 0 0
\(70\) 0 0
\(71\) −8.64327 −1.02577 −0.512884 0.858458i \(-0.671423\pi\)
−0.512884 + 0.858458i \(0.671423\pi\)
\(72\) 0 0
\(73\) 2.43418 0.284899 0.142449 0.989802i \(-0.454502\pi\)
0.142449 + 0.989802i \(0.454502\pi\)
\(74\) 10.8615 1.26262
\(75\) 0 0
\(76\) −1.32164 −0.151602
\(77\) −5.65127 −0.644022
\(78\) 0 0
\(79\) −12.4364 −1.39920 −0.699601 0.714534i \(-0.746639\pi\)
−0.699601 + 0.714534i \(0.746639\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −19.0207 −2.10048
\(83\) 12.6635 1.39000 0.694999 0.719011i \(-0.255405\pi\)
0.694999 + 0.719011i \(0.255405\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.64327 0.285032
\(87\) 0 0
\(88\) −4.81746 −0.513543
\(89\) −12.3662 −1.31081 −0.655407 0.755276i \(-0.727503\pi\)
−0.655407 + 0.755276i \(0.727503\pi\)
\(90\) 0 0
\(91\) 4.43637 0.465058
\(92\) −7.10160 −0.740393
\(93\) 0 0
\(94\) 8.94292 0.922392
\(95\) 0 0
\(96\) 0 0
\(97\) −3.05888 −0.310582 −0.155291 0.987869i \(-0.549631\pi\)
−0.155291 + 0.987869i \(0.549631\pi\)
\(98\) −8.92414 −0.901474
\(99\) 0 0
\(100\) 0 0
\(101\) −3.35673 −0.334007 −0.167003 0.985956i \(-0.553409\pi\)
−0.167003 + 0.985956i \(0.553409\pi\)
\(102\) 0 0
\(103\) −13.0611 −1.28695 −0.643476 0.765466i \(-0.722508\pi\)
−0.643476 + 0.765466i \(0.722508\pi\)
\(104\) 3.78181 0.370837
\(105\) 0 0
\(106\) −7.71164 −0.749020
\(107\) −5.77099 −0.557903 −0.278951 0.960305i \(-0.589987\pi\)
−0.278951 + 0.960305i \(0.589987\pi\)
\(108\) 0 0
\(109\) 6.64327 0.636310 0.318155 0.948039i \(-0.396937\pi\)
0.318155 + 0.948039i \(0.396937\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.10160 0.671038
\(113\) −9.41606 −0.885789 −0.442894 0.896574i \(-0.646048\pi\)
−0.442894 + 0.896574i \(0.646048\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.92982 −0.736266
\(117\) 0 0
\(118\) −6.11775 −0.563185
\(119\) −5.68965 −0.521569
\(120\) 0 0
\(121\) 4.18310 0.380282
\(122\) 18.8321 1.70498
\(123\) 0 0
\(124\) −11.1498 −1.00128
\(125\) 0 0
\(126\) 0 0
\(127\) −11.0934 −0.984383 −0.492192 0.870487i \(-0.663804\pi\)
−0.492192 + 0.870487i \(0.663804\pi\)
\(128\) 9.32179 0.823938
\(129\) 0 0
\(130\) 0 0
\(131\) −4.61000 −0.402778 −0.201389 0.979511i \(-0.564545\pi\)
−0.201389 + 0.979511i \(0.564545\pi\)
\(132\) 0 0
\(133\) 1.45033 0.125759
\(134\) 17.9411 1.54988
\(135\) 0 0
\(136\) −4.85018 −0.415899
\(137\) −13.1808 −1.12612 −0.563058 0.826417i \(-0.690375\pi\)
−0.563058 + 0.826417i \(0.690375\pi\)
\(138\) 0 0
\(139\) 1.18310 0.100349 0.0501745 0.998740i \(-0.484022\pi\)
0.0501745 + 0.998740i \(0.484022\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −15.7527 −1.32194
\(143\) −11.9191 −0.996722
\(144\) 0 0
\(145\) 0 0
\(146\) 4.43637 0.367157
\(147\) 0 0
\(148\) 7.87634 0.647431
\(149\) −5.46018 −0.447315 −0.223658 0.974668i \(-0.571800\pi\)
−0.223658 + 0.974668i \(0.571800\pi\)
\(150\) 0 0
\(151\) −5.07965 −0.413376 −0.206688 0.978407i \(-0.566268\pi\)
−0.206688 + 0.978407i \(0.566268\pi\)
\(152\) 1.23634 0.100280
\(153\) 0 0
\(154\) −10.2996 −0.829969
\(155\) 0 0
\(156\) 0 0
\(157\) −6.11775 −0.488250 −0.244125 0.969744i \(-0.578501\pi\)
−0.244125 + 0.969744i \(0.578501\pi\)
\(158\) −22.6657 −1.80319
\(159\) 0 0
\(160\) 0 0
\(161\) 7.79310 0.614182
\(162\) 0 0
\(163\) 16.4365 1.28740 0.643701 0.765277i \(-0.277398\pi\)
0.643701 + 0.765277i \(0.277398\pi\)
\(164\) −13.7931 −1.07706
\(165\) 0 0
\(166\) 23.0796 1.79133
\(167\) −3.80329 −0.294308 −0.147154 0.989114i \(-0.547011\pi\)
−0.147154 + 0.989114i \(0.547011\pi\)
\(168\) 0 0
\(169\) −3.64327 −0.280252
\(170\) 0 0
\(171\) 0 0
\(172\) 1.91681 0.146155
\(173\) −11.3838 −0.865491 −0.432746 0.901516i \(-0.642455\pi\)
−0.432746 + 0.901516i \(0.642455\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −19.0796 −1.43818
\(177\) 0 0
\(178\) −22.5378 −1.68928
\(179\) −10.0702 −0.752680 −0.376340 0.926482i \(-0.622818\pi\)
−0.376340 + 0.926482i \(0.622818\pi\)
\(180\) 0 0
\(181\) 0.573097 0.0425980 0.0212990 0.999773i \(-0.493220\pi\)
0.0212990 + 0.999773i \(0.493220\pi\)
\(182\) 8.08545 0.599333
\(183\) 0 0
\(184\) 6.64327 0.489749
\(185\) 0 0
\(186\) 0 0
\(187\) 15.2862 1.11784
\(188\) 6.48509 0.472973
\(189\) 0 0
\(190\) 0 0
\(191\) 3.18310 0.230321 0.115160 0.993347i \(-0.463262\pi\)
0.115160 + 0.993347i \(0.463262\pi\)
\(192\) 0 0
\(193\) −3.05888 −0.220183 −0.110091 0.993921i \(-0.535114\pi\)
−0.110091 + 0.993921i \(0.535114\pi\)
\(194\) −5.57491 −0.400255
\(195\) 0 0
\(196\) −6.47146 −0.462247
\(197\) 21.4933 1.53134 0.765669 0.643235i \(-0.222408\pi\)
0.765669 + 0.643235i \(0.222408\pi\)
\(198\) 0 0
\(199\) −4.81690 −0.341461 −0.170731 0.985318i \(-0.554613\pi\)
−0.170731 + 0.985318i \(0.554613\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −6.11775 −0.430444
\(203\) 8.70197 0.610758
\(204\) 0 0
\(205\) 0 0
\(206\) −23.8044 −1.65853
\(207\) 0 0
\(208\) 14.9779 1.03853
\(209\) −3.89655 −0.269530
\(210\) 0 0
\(211\) 10.5066 0.723301 0.361650 0.932314i \(-0.382213\pi\)
0.361650 + 0.932314i \(0.382213\pi\)
\(212\) −5.59220 −0.384074
\(213\) 0 0
\(214\) −10.5178 −0.718984
\(215\) 0 0
\(216\) 0 0
\(217\) 12.2355 0.830600
\(218\) 12.1076 0.820031
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 16.8947 1.13136 0.565678 0.824626i \(-0.308615\pi\)
0.565678 + 0.824626i \(0.308615\pi\)
\(224\) 9.35673 0.625173
\(225\) 0 0
\(226\) −17.1611 −1.14154
\(227\) 17.1342 1.13724 0.568618 0.822602i \(-0.307478\pi\)
0.568618 + 0.822602i \(0.307478\pi\)
\(228\) 0 0
\(229\) 25.0464 1.65511 0.827555 0.561384i \(-0.189731\pi\)
0.827555 + 0.561384i \(0.189731\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.41804 0.487018
\(233\) 19.2986 1.26429 0.632147 0.774849i \(-0.282174\pi\)
0.632147 + 0.774849i \(0.282174\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.43637 −0.288783
\(237\) 0 0
\(238\) −10.3696 −0.672161
\(239\) −18.7693 −1.21408 −0.607042 0.794669i \(-0.707644\pi\)
−0.607042 + 0.794669i \(0.707644\pi\)
\(240\) 0 0
\(241\) −14.4364 −0.929929 −0.464964 0.885329i \(-0.653933\pi\)
−0.464964 + 0.885329i \(0.653933\pi\)
\(242\) 7.62385 0.490079
\(243\) 0 0
\(244\) 13.6564 0.874260
\(245\) 0 0
\(246\) 0 0
\(247\) 3.05888 0.194632
\(248\) 10.4302 0.662320
\(249\) 0 0
\(250\) 0 0
\(251\) 10.9762 0.692811 0.346406 0.938085i \(-0.387402\pi\)
0.346406 + 0.938085i \(0.387402\pi\)
\(252\) 0 0
\(253\) −20.9375 −1.31633
\(254\) −20.2182 −1.26860
\(255\) 0 0
\(256\) 20.9191 1.30745
\(257\) −17.6392 −1.10030 −0.550150 0.835066i \(-0.685430\pi\)
−0.550150 + 0.835066i \(0.685430\pi\)
\(258\) 0 0
\(259\) −8.64327 −0.537067
\(260\) 0 0
\(261\) 0 0
\(262\) −8.40189 −0.519071
\(263\) −1.68976 −0.104195 −0.0520975 0.998642i \(-0.516591\pi\)
−0.0520975 + 0.998642i \(0.516591\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.64327 0.162070
\(267\) 0 0
\(268\) 13.0102 0.794727
\(269\) 27.1022 1.65245 0.826226 0.563339i \(-0.190484\pi\)
0.826226 + 0.563339i \(0.190484\pi\)
\(270\) 0 0
\(271\) 23.9524 1.45500 0.727502 0.686105i \(-0.240681\pi\)
0.727502 + 0.686105i \(0.240681\pi\)
\(272\) −19.2092 −1.16473
\(273\) 0 0
\(274\) −24.0226 −1.45126
\(275\) 0 0
\(276\) 0 0
\(277\) −8.23549 −0.494822 −0.247411 0.968911i \(-0.579580\pi\)
−0.247411 + 0.968911i \(0.579580\pi\)
\(278\) 2.15624 0.129323
\(279\) 0 0
\(280\) 0 0
\(281\) 10.4364 0.622582 0.311291 0.950315i \(-0.399239\pi\)
0.311291 + 0.950315i \(0.399239\pi\)
\(282\) 0 0
\(283\) 10.4687 0.622302 0.311151 0.950361i \(-0.399286\pi\)
0.311151 + 0.950361i \(0.399286\pi\)
\(284\) −11.4233 −0.677847
\(285\) 0 0
\(286\) −21.7229 −1.28450
\(287\) 15.1362 0.893459
\(288\) 0 0
\(289\) −1.61000 −0.0947059
\(290\) 0 0
\(291\) 0 0
\(292\) 3.21710 0.188266
\(293\) −16.4668 −0.961999 −0.481000 0.876721i \(-0.659726\pi\)
−0.481000 + 0.876721i \(0.659726\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7.36801 −0.428257
\(297\) 0 0
\(298\) −9.95137 −0.576467
\(299\) 16.4364 0.950540
\(300\) 0 0
\(301\) −2.10345 −0.121241
\(302\) −9.25784 −0.532729
\(303\) 0 0
\(304\) 4.89655 0.280836
\(305\) 0 0
\(306\) 0 0
\(307\) −7.87634 −0.449526 −0.224763 0.974413i \(-0.572161\pi\)
−0.224763 + 0.974413i \(0.572161\pi\)
\(308\) −7.46893 −0.425582
\(309\) 0 0
\(310\) 0 0
\(311\) −3.89655 −0.220953 −0.110477 0.993879i \(-0.535238\pi\)
−0.110477 + 0.993879i \(0.535238\pi\)
\(312\) 0 0
\(313\) −7.76901 −0.439130 −0.219565 0.975598i \(-0.570464\pi\)
−0.219565 + 0.975598i \(0.570464\pi\)
\(314\) −11.1498 −0.629221
\(315\) 0 0
\(316\) −16.4364 −0.924618
\(317\) 19.0510 1.07001 0.535005 0.844849i \(-0.320310\pi\)
0.535005 + 0.844849i \(0.320310\pi\)
\(318\) 0 0
\(319\) −23.3793 −1.30899
\(320\) 0 0
\(321\) 0 0
\(322\) 14.2032 0.791514
\(323\) −3.92301 −0.218282
\(324\) 0 0
\(325\) 0 0
\(326\) 29.9560 1.65911
\(327\) 0 0
\(328\) 12.9029 0.712444
\(329\) −7.11655 −0.392348
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 16.7365 0.918536
\(333\) 0 0
\(334\) −6.93164 −0.379282
\(335\) 0 0
\(336\) 0 0
\(337\) 6.89249 0.375458 0.187729 0.982221i \(-0.439887\pi\)
0.187729 + 0.982221i \(0.439887\pi\)
\(338\) −6.64000 −0.361168
\(339\) 0 0
\(340\) 0 0
\(341\) −32.8727 −1.78016
\(342\) 0 0
\(343\) 17.2539 0.931623
\(344\) −1.79310 −0.0966774
\(345\) 0 0
\(346\) −20.7473 −1.11538
\(347\) −30.5503 −1.64002 −0.820012 0.572346i \(-0.806033\pi\)
−0.820012 + 0.572346i \(0.806033\pi\)
\(348\) 0 0
\(349\) 16.7693 0.897640 0.448820 0.893622i \(-0.351844\pi\)
0.448820 + 0.893622i \(0.351844\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −25.1384 −1.33988
\(353\) 29.0999 1.54883 0.774417 0.632676i \(-0.218044\pi\)
0.774417 + 0.632676i \(0.218044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −16.3436 −0.866210
\(357\) 0 0
\(358\) −18.3533 −0.970000
\(359\) 11.6896 0.616956 0.308478 0.951231i \(-0.400180\pi\)
0.308478 + 0.951231i \(0.400180\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 1.04449 0.0548972
\(363\) 0 0
\(364\) 5.86328 0.307319
\(365\) 0 0
\(366\) 0 0
\(367\) 4.20095 0.219288 0.109644 0.993971i \(-0.465029\pi\)
0.109644 + 0.993971i \(0.465029\pi\)
\(368\) 26.3108 1.37155
\(369\) 0 0
\(370\) 0 0
\(371\) 6.13672 0.318603
\(372\) 0 0
\(373\) 16.9456 0.877412 0.438706 0.898631i \(-0.355437\pi\)
0.438706 + 0.898631i \(0.355437\pi\)
\(374\) 27.8596 1.44059
\(375\) 0 0
\(376\) −6.06655 −0.312858
\(377\) 18.3533 0.945241
\(378\) 0 0
\(379\) 10.3662 0.532476 0.266238 0.963907i \(-0.414219\pi\)
0.266238 + 0.963907i \(0.414219\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5.80131 0.296821
\(383\) 20.5907 1.05214 0.526068 0.850442i \(-0.323666\pi\)
0.526068 + 0.850442i \(0.323666\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.57491 −0.283756
\(387\) 0 0
\(388\) −4.04272 −0.205238
\(389\) −8.10345 −0.410861 −0.205431 0.978672i \(-0.565859\pi\)
−0.205431 + 0.978672i \(0.565859\pi\)
\(390\) 0 0
\(391\) −21.0796 −1.06604
\(392\) 6.05380 0.305763
\(393\) 0 0
\(394\) 39.1724 1.97348
\(395\) 0 0
\(396\) 0 0
\(397\) −3.46891 −0.174100 −0.0870499 0.996204i \(-0.527744\pi\)
−0.0870499 + 0.996204i \(0.527744\pi\)
\(398\) −8.77898 −0.440050
\(399\) 0 0
\(400\) 0 0
\(401\) 15.9524 0.796625 0.398312 0.917250i \(-0.369596\pi\)
0.398312 + 0.917250i \(0.369596\pi\)
\(402\) 0 0
\(403\) 25.8058 1.28548
\(404\) −4.43637 −0.220718
\(405\) 0 0
\(406\) 15.8596 0.787101
\(407\) 23.2216 1.15105
\(408\) 0 0
\(409\) −3.92982 −0.194317 −0.0971586 0.995269i \(-0.530975\pi\)
−0.0971586 + 0.995269i \(0.530975\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −17.2621 −0.850442
\(413\) 4.86835 0.239556
\(414\) 0 0
\(415\) 0 0
\(416\) 19.7342 0.967549
\(417\) 0 0
\(418\) −7.10160 −0.347351
\(419\) 34.2996 1.67565 0.837824 0.545941i \(-0.183828\pi\)
0.837824 + 0.545941i \(0.183828\pi\)
\(420\) 0 0
\(421\) −26.0891 −1.27151 −0.635753 0.771893i \(-0.719310\pi\)
−0.635753 + 0.771893i \(0.719310\pi\)
\(422\) 19.1486 0.932138
\(423\) 0 0
\(424\) 5.23129 0.254054
\(425\) 0 0
\(426\) 0 0
\(427\) −14.9861 −0.725229
\(428\) −7.62715 −0.368672
\(429\) 0 0
\(430\) 0 0
\(431\) −10.2996 −0.496117 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(432\) 0 0
\(433\) 36.2319 1.74119 0.870596 0.491999i \(-0.163734\pi\)
0.870596 + 0.491999i \(0.163734\pi\)
\(434\) 22.2996 1.07042
\(435\) 0 0
\(436\) 8.78000 0.420486
\(437\) 5.37334 0.257042
\(438\) 0 0
\(439\) −24.0891 −1.14971 −0.574855 0.818255i \(-0.694942\pi\)
−0.574855 + 0.818255i \(0.694942\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −21.8704 −1.04027
\(443\) −5.52337 −0.262423 −0.131212 0.991354i \(-0.541887\pi\)
−0.131212 + 0.991354i \(0.541887\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 30.7913 1.45801
\(447\) 0 0
\(448\) 2.84977 0.134639
\(449\) −7.92982 −0.374231 −0.187116 0.982338i \(-0.559914\pi\)
−0.187116 + 0.982338i \(0.559914\pi\)
\(450\) 0 0
\(451\) −40.6658 −1.91488
\(452\) −12.4446 −0.585346
\(453\) 0 0
\(454\) 31.2277 1.46559
\(455\) 0 0
\(456\) 0 0
\(457\) 22.6534 1.05968 0.529840 0.848098i \(-0.322252\pi\)
0.529840 + 0.848098i \(0.322252\pi\)
\(458\) 45.6479 2.13299
\(459\) 0 0
\(460\) 0 0
\(461\) −13.3900 −0.623634 −0.311817 0.950142i \(-0.600938\pi\)
−0.311817 + 0.950142i \(0.600938\pi\)
\(462\) 0 0
\(463\) 16.9029 0.785546 0.392773 0.919635i \(-0.371516\pi\)
0.392773 + 0.919635i \(0.371516\pi\)
\(464\) 29.3793 1.36390
\(465\) 0 0
\(466\) 35.1724 1.62933
\(467\) −22.2501 −1.02961 −0.514807 0.857306i \(-0.672136\pi\)
−0.514807 + 0.857306i \(0.672136\pi\)
\(468\) 0 0
\(469\) −14.2771 −0.659254
\(470\) 0 0
\(471\) 0 0
\(472\) 4.15006 0.191022
\(473\) 5.65127 0.259846
\(474\) 0 0
\(475\) 0 0
\(476\) −7.51965 −0.344663
\(477\) 0 0
\(478\) −34.2077 −1.56462
\(479\) −0.366196 −0.0167319 −0.00836597 0.999965i \(-0.502663\pi\)
−0.00836597 + 0.999965i \(0.502663\pi\)
\(480\) 0 0
\(481\) −18.2295 −0.831192
\(482\) −26.3108 −1.19842
\(483\) 0 0
\(484\) 5.52854 0.251297
\(485\) 0 0
\(486\) 0 0
\(487\) 26.8461 1.21651 0.608257 0.793740i \(-0.291869\pi\)
0.608257 + 0.793740i \(0.291869\pi\)
\(488\) −12.7750 −0.578298
\(489\) 0 0
\(490\) 0 0
\(491\) 23.7266 1.07076 0.535382 0.844610i \(-0.320168\pi\)
0.535382 + 0.844610i \(0.320168\pi\)
\(492\) 0 0
\(493\) −23.5381 −1.06010
\(494\) 5.57491 0.250827
\(495\) 0 0
\(496\) 41.3091 1.85483
\(497\) 12.5356 0.562298
\(498\) 0 0
\(499\) 6.81690 0.305166 0.152583 0.988291i \(-0.451241\pi\)
0.152583 + 0.988291i \(0.451241\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 20.0045 0.892845
\(503\) −23.4102 −1.04381 −0.521904 0.853004i \(-0.674778\pi\)
−0.521904 + 0.853004i \(0.674778\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −38.1593 −1.69639
\(507\) 0 0
\(508\) −14.6615 −0.650499
\(509\) −16.9204 −0.749981 −0.374991 0.927029i \(-0.622354\pi\)
−0.374991 + 0.927029i \(0.622354\pi\)
\(510\) 0 0
\(511\) −3.53035 −0.156174
\(512\) 19.4823 0.861003
\(513\) 0 0
\(514\) −32.1480 −1.41799
\(515\) 0 0
\(516\) 0 0
\(517\) 19.1198 0.840888
\(518\) −15.7527 −0.692133
\(519\) 0 0
\(520\) 0 0
\(521\) 3.49345 0.153051 0.0765254 0.997068i \(-0.475617\pi\)
0.0765254 + 0.997068i \(0.475617\pi\)
\(522\) 0 0
\(523\) 14.9271 0.652714 0.326357 0.945247i \(-0.394179\pi\)
0.326357 + 0.945247i \(0.394179\pi\)
\(524\) −6.09275 −0.266163
\(525\) 0 0
\(526\) −3.07965 −0.134279
\(527\) −33.0960 −1.44168
\(528\) 0 0
\(529\) 5.87275 0.255337
\(530\) 0 0
\(531\) 0 0
\(532\) 1.91681 0.0831041
\(533\) 31.9236 1.38276
\(534\) 0 0
\(535\) 0 0
\(536\) −12.1706 −0.525689
\(537\) 0 0
\(538\) 49.3948 2.12956
\(539\) −19.0796 −0.821819
\(540\) 0 0
\(541\) −12.6991 −0.545978 −0.272989 0.962017i \(-0.588012\pi\)
−0.272989 + 0.962017i \(0.588012\pi\)
\(542\) 43.6541 1.87510
\(543\) 0 0
\(544\) −25.3091 −1.08512
\(545\) 0 0
\(546\) 0 0
\(547\) 31.8162 1.36036 0.680182 0.733043i \(-0.261901\pi\)
0.680182 + 0.733043i \(0.261901\pi\)
\(548\) −17.4203 −0.744158
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 18.0368 0.767003
\(554\) −15.0095 −0.637691
\(555\) 0 0
\(556\) 1.56363 0.0663125
\(557\) −9.64731 −0.408770 −0.204385 0.978891i \(-0.565519\pi\)
−0.204385 + 0.978891i \(0.565519\pi\)
\(558\) 0 0
\(559\) −4.43637 −0.187639
\(560\) 0 0
\(561\) 0 0
\(562\) 19.0207 0.802338
\(563\) −4.28216 −0.180471 −0.0902357 0.995920i \(-0.528762\pi\)
−0.0902357 + 0.995920i \(0.528762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 19.0796 0.801977
\(567\) 0 0
\(568\) 10.6860 0.448376
\(569\) −42.2295 −1.77035 −0.885176 0.465257i \(-0.845962\pi\)
−0.885176 + 0.465257i \(0.845962\pi\)
\(570\) 0 0
\(571\) −19.2200 −0.804332 −0.402166 0.915567i \(-0.631743\pi\)
−0.402166 + 0.915567i \(0.631743\pi\)
\(572\) −15.7527 −0.658653
\(573\) 0 0
\(574\) 27.5862 1.15143
\(575\) 0 0
\(576\) 0 0
\(577\) 40.7919 1.69819 0.849096 0.528239i \(-0.177148\pi\)
0.849096 + 0.528239i \(0.177148\pi\)
\(578\) −2.93428 −0.122050
\(579\) 0 0
\(580\) 0 0
\(581\) −18.3662 −0.761958
\(582\) 0 0
\(583\) −16.4873 −0.682836
\(584\) −3.00947 −0.124533
\(585\) 0 0
\(586\) −30.0113 −1.23975
\(587\) −31.8851 −1.31604 −0.658019 0.753001i \(-0.728605\pi\)
−0.658019 + 0.753001i \(0.728605\pi\)
\(588\) 0 0
\(589\) 8.43637 0.347615
\(590\) 0 0
\(591\) 0 0
\(592\) −29.1811 −1.19934
\(593\) −38.8973 −1.59732 −0.798660 0.601783i \(-0.794457\pi\)
−0.798660 + 0.601783i \(0.794457\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.21637 −0.295594
\(597\) 0 0
\(598\) 29.9559 1.22499
\(599\) −28.1629 −1.15071 −0.575353 0.817905i \(-0.695135\pi\)
−0.575353 + 0.817905i \(0.695135\pi\)
\(600\) 0 0
\(601\) −5.56363 −0.226945 −0.113473 0.993541i \(-0.536197\pi\)
−0.113473 + 0.993541i \(0.536197\pi\)
\(602\) −3.83361 −0.156246
\(603\) 0 0
\(604\) −6.71345 −0.273166
\(605\) 0 0
\(606\) 0 0
\(607\) −33.9986 −1.37996 −0.689980 0.723828i \(-0.742381\pi\)
−0.689980 + 0.723828i \(0.742381\pi\)
\(608\) 6.45146 0.261641
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0095 −0.607218
\(612\) 0 0
\(613\) −17.5703 −0.709659 −0.354830 0.934931i \(-0.615461\pi\)
−0.354830 + 0.934931i \(0.615461\pi\)
\(614\) −14.3549 −0.579317
\(615\) 0 0
\(616\) 6.98690 0.281510
\(617\) −13.0791 −0.526544 −0.263272 0.964722i \(-0.584802\pi\)
−0.263272 + 0.964722i \(0.584802\pi\)
\(618\) 0 0
\(619\) −18.9393 −0.761234 −0.380617 0.924733i \(-0.624288\pi\)
−0.380617 + 0.924733i \(0.624288\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.10160 −0.284748
\(623\) 17.9350 0.718552
\(624\) 0 0
\(625\) 0 0
\(626\) −14.1593 −0.565919
\(627\) 0 0
\(628\) −8.08545 −0.322645
\(629\) 23.3793 0.932194
\(630\) 0 0
\(631\) 31.6896 1.26154 0.630772 0.775968i \(-0.282738\pi\)
0.630772 + 0.775968i \(0.282738\pi\)
\(632\) 15.3756 0.611608
\(633\) 0 0
\(634\) 34.7211 1.37895
\(635\) 0 0
\(636\) 0 0
\(637\) 14.9779 0.593448
\(638\) −42.6096 −1.68693
\(639\) 0 0
\(640\) 0 0
\(641\) −47.9750 −1.89490 −0.947449 0.319908i \(-0.896348\pi\)
−0.947449 + 0.319908i \(0.896348\pi\)
\(642\) 0 0
\(643\) 0.200927 0.00792378 0.00396189 0.999992i \(-0.498739\pi\)
0.00396189 + 0.999992i \(0.498739\pi\)
\(644\) 10.2996 0.405863
\(645\) 0 0
\(646\) −7.14982 −0.281306
\(647\) 1.58798 0.0624299 0.0312150 0.999513i \(-0.490062\pi\)
0.0312150 + 0.999513i \(0.490062\pi\)
\(648\) 0 0
\(649\) −13.0796 −0.513421
\(650\) 0 0
\(651\) 0 0
\(652\) 21.7230 0.850739
\(653\) −33.5624 −1.31340 −0.656700 0.754152i \(-0.728048\pi\)
−0.656700 + 0.754152i \(0.728048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 51.1022 1.99521
\(657\) 0 0
\(658\) −12.9702 −0.505630
\(659\) −15.3567 −0.598213 −0.299107 0.954220i \(-0.596689\pi\)
−0.299107 + 0.954220i \(0.596689\pi\)
\(660\) 0 0
\(661\) 12.8026 0.497962 0.248981 0.968508i \(-0.419904\pi\)
0.248981 + 0.968508i \(0.419904\pi\)
\(662\) 14.5803 0.566679
\(663\) 0 0
\(664\) −15.6564 −0.607585
\(665\) 0 0
\(666\) 0 0
\(667\) 32.2400 1.24834
\(668\) −5.02657 −0.194484
\(669\) 0 0
\(670\) 0 0
\(671\) 40.2627 1.55433
\(672\) 0 0
\(673\) −7.82545 −0.301649 −0.150824 0.988561i \(-0.548193\pi\)
−0.150824 + 0.988561i \(0.548193\pi\)
\(674\) 12.5618 0.483863
\(675\) 0 0
\(676\) −4.81509 −0.185196
\(677\) 21.6516 0.832137 0.416069 0.909333i \(-0.363408\pi\)
0.416069 + 0.909333i \(0.363408\pi\)
\(678\) 0 0
\(679\) 4.43637 0.170252
\(680\) 0 0
\(681\) 0 0
\(682\) −59.9118 −2.29414
\(683\) 6.38751 0.244411 0.122206 0.992505i \(-0.461003\pi\)
0.122206 + 0.992505i \(0.461003\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 31.4458 1.20061
\(687\) 0 0
\(688\) −7.10160 −0.270746
\(689\) 12.9429 0.493086
\(690\) 0 0
\(691\) 44.4958 1.69270 0.846351 0.532626i \(-0.178795\pi\)
0.846351 + 0.532626i \(0.178795\pi\)
\(692\) −15.0452 −0.571933
\(693\) 0 0
\(694\) −55.6789 −2.11354
\(695\) 0 0
\(696\) 0 0
\(697\) −40.9420 −1.55079
\(698\) 30.5626 1.15681
\(699\) 0 0
\(700\) 0 0
\(701\) −17.5160 −0.661571 −0.330785 0.943706i \(-0.607314\pi\)
−0.330785 + 0.943706i \(0.607314\pi\)
\(702\) 0 0
\(703\) −5.95953 −0.224768
\(704\) −7.65638 −0.288560
\(705\) 0 0
\(706\) 53.0357 1.99602
\(707\) 4.86835 0.183093
\(708\) 0 0
\(709\) 11.4269 0.429146 0.214573 0.976708i \(-0.431164\pi\)
0.214573 + 0.976708i \(0.431164\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 15.2888 0.572973
\(713\) 45.3315 1.69768
\(714\) 0 0
\(715\) 0 0
\(716\) −13.3091 −0.497385
\(717\) 0 0
\(718\) 21.3048 0.795088
\(719\) −15.8965 −0.592841 −0.296421 0.955057i \(-0.595793\pi\)
−0.296421 + 0.955057i \(0.595793\pi\)
\(720\) 0 0
\(721\) 18.9429 0.705471
\(722\) 1.82254 0.0678278
\(723\) 0 0
\(724\) 0.757427 0.0281495
\(725\) 0 0
\(726\) 0 0
\(727\) −41.9905 −1.55734 −0.778670 0.627434i \(-0.784105\pi\)
−0.778670 + 0.627434i \(0.784105\pi\)
\(728\) −5.48487 −0.203283
\(729\) 0 0
\(730\) 0 0
\(731\) 5.68965 0.210439
\(732\) 0 0
\(733\) 0.632884 0.0233761 0.0116881 0.999932i \(-0.496279\pi\)
0.0116881 + 0.999932i \(0.496279\pi\)
\(734\) 7.65638 0.282602
\(735\) 0 0
\(736\) 34.6658 1.27780
\(737\) 38.3578 1.41293
\(738\) 0 0
\(739\) −29.5493 −1.08699 −0.543494 0.839413i \(-0.682899\pi\)
−0.543494 + 0.839413i \(0.682899\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 11.1844 0.410592
\(743\) −31.3374 −1.14966 −0.574829 0.818274i \(-0.694931\pi\)
−0.574829 + 0.818274i \(0.694931\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 30.8840 1.13074
\(747\) 0 0
\(748\) 20.2028 0.738688
\(749\) 8.36983 0.305827
\(750\) 0 0
\(751\) 25.0131 0.912741 0.456371 0.889790i \(-0.349149\pi\)
0.456371 + 0.889790i \(0.349149\pi\)
\(752\) −24.0267 −0.876163
\(753\) 0 0
\(754\) 33.4495 1.21816
\(755\) 0 0
\(756\) 0 0
\(757\) 32.0900 1.16633 0.583165 0.812354i \(-0.301814\pi\)
0.583165 + 0.812354i \(0.301814\pi\)
\(758\) 18.8928 0.686216
\(759\) 0 0
\(760\) 0 0
\(761\) 40.4922 1.46784 0.733921 0.679235i \(-0.237688\pi\)
0.733921 + 0.679235i \(0.237688\pi\)
\(762\) 0 0
\(763\) −9.63492 −0.348808
\(764\) 4.20690 0.152200
\(765\) 0 0
\(766\) 37.5273 1.35592
\(767\) 10.2678 0.370749
\(768\) 0 0
\(769\) 3.09398 0.111572 0.0557859 0.998443i \(-0.482234\pi\)
0.0557859 + 0.998443i \(0.482234\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.04272 −0.145501
\(773\) −1.96350 −0.0706220 −0.0353110 0.999376i \(-0.511242\pi\)
−0.0353110 + 0.999376i \(0.511242\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.78181 0.135759
\(777\) 0 0
\(778\) −14.7688 −0.529488
\(779\) 10.4364 0.373922
\(780\) 0 0
\(781\) −33.6789 −1.20513
\(782\) −38.4184 −1.37384
\(783\) 0 0
\(784\) 23.9762 0.856293
\(785\) 0 0
\(786\) 0 0
\(787\) 0.107331 0.00382595 0.00191297 0.999998i \(-0.499391\pi\)
0.00191297 + 0.999998i \(0.499391\pi\)
\(788\) 28.4064 1.01194
\(789\) 0 0
\(790\) 0 0
\(791\) 13.6564 0.485565
\(792\) 0 0
\(793\) −31.6071 −1.12240
\(794\) −6.32222 −0.224367
\(795\) 0 0
\(796\) −6.36620 −0.225644
\(797\) −8.32068 −0.294734 −0.147367 0.989082i \(-0.547080\pi\)
−0.147367 + 0.989082i \(0.547080\pi\)
\(798\) 0 0
\(799\) 19.2496 0.681003
\(800\) 0 0
\(801\) 0 0
\(802\) 29.0738 1.02663
\(803\) 9.48489 0.334714
\(804\) 0 0
\(805\) 0 0
\(806\) 47.0320 1.65663
\(807\) 0 0
\(808\) 4.15006 0.145998
\(809\) 27.6231 0.971177 0.485588 0.874188i \(-0.338605\pi\)
0.485588 + 0.874188i \(0.338605\pi\)
\(810\) 0 0
\(811\) 23.0095 0.807972 0.403986 0.914765i \(-0.367624\pi\)
0.403986 + 0.914765i \(0.367624\pi\)
\(812\) 11.5008 0.403600
\(813\) 0 0
\(814\) 42.3222 1.48339
\(815\) 0 0
\(816\) 0 0
\(817\) −1.45033 −0.0507405
\(818\) −7.16224 −0.250422
\(819\) 0 0
\(820\) 0 0
\(821\) −31.1355 −1.08664 −0.543318 0.839527i \(-0.682832\pi\)
−0.543318 + 0.839527i \(0.682832\pi\)
\(822\) 0 0
\(823\) −20.4201 −0.711800 −0.355900 0.934524i \(-0.615826\pi\)
−0.355900 + 0.934524i \(0.615826\pi\)
\(824\) 16.1480 0.562543
\(825\) 0 0
\(826\) 8.87275 0.308722
\(827\) −0.902638 −0.0313878 −0.0156939 0.999877i \(-0.504996\pi\)
−0.0156939 + 0.999877i \(0.504996\pi\)
\(828\) 0 0
\(829\) −13.4971 −0.468773 −0.234386 0.972143i \(-0.575308\pi\)
−0.234386 + 0.972143i \(0.575308\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6.01042 0.208374
\(833\) −19.2092 −0.665560
\(834\) 0 0
\(835\) 0 0
\(836\) −5.14982 −0.178110
\(837\) 0 0
\(838\) 62.5123 2.15945
\(839\) −33.1022 −1.14282 −0.571408 0.820666i \(-0.693603\pi\)
−0.571408 + 0.820666i \(0.693603\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −47.5484 −1.63862
\(843\) 0 0
\(844\) 13.8858 0.477971
\(845\) 0 0
\(846\) 0 0
\(847\) −6.06686 −0.208460
\(848\) 20.7186 0.711480
\(849\) 0 0
\(850\) 0 0
\(851\) −32.0226 −1.09772
\(852\) 0 0
\(853\) −50.9097 −1.74312 −0.871558 0.490293i \(-0.836890\pi\)
−0.871558 + 0.490293i \(0.836890\pi\)
\(854\) −27.3128 −0.934623
\(855\) 0 0
\(856\) 7.13491 0.243866
\(857\) 21.2333 0.725317 0.362659 0.931922i \(-0.381869\pi\)
0.362659 + 0.931922i \(0.381869\pi\)
\(858\) 0 0
\(859\) 29.4827 1.00594 0.502969 0.864304i \(-0.332241\pi\)
0.502969 + 0.864304i \(0.332241\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −18.7715 −0.639359
\(863\) 25.7755 0.877408 0.438704 0.898632i \(-0.355438\pi\)
0.438704 + 0.898632i \(0.355438\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 66.0339 2.24392
\(867\) 0 0
\(868\) 16.1709 0.548876
\(869\) −48.4589 −1.64386
\(870\) 0 0
\(871\) −30.1117 −1.02030
\(872\) −8.21335 −0.278139
\(873\) 0 0
\(874\) 9.79310 0.331257
\(875\) 0 0
\(876\) 0 0
\(877\) −54.2687 −1.83252 −0.916261 0.400581i \(-0.868808\pi\)
−0.916261 + 0.400581i \(0.868808\pi\)
\(878\) −43.9033 −1.48166
\(879\) 0 0
\(880\) 0 0
\(881\) 28.4922 0.959927 0.479964 0.877288i \(-0.340650\pi\)
0.479964 + 0.877288i \(0.340650\pi\)
\(882\) 0 0
\(883\) −40.5264 −1.36382 −0.681911 0.731435i \(-0.738851\pi\)
−0.681911 + 0.731435i \(0.738851\pi\)
\(884\) −15.8596 −0.533418
\(885\) 0 0
\(886\) −10.0665 −0.338192
\(887\) −11.4705 −0.385142 −0.192571 0.981283i \(-0.561683\pi\)
−0.192571 + 0.981283i \(0.561683\pi\)
\(888\) 0 0
\(889\) 16.0891 0.539612
\(890\) 0 0
\(891\) 0 0
\(892\) 22.3287 0.747621
\(893\) −4.90686 −0.164202
\(894\) 0 0
\(895\) 0 0
\(896\) −13.5197 −0.451660
\(897\) 0 0
\(898\) −14.4524 −0.482282
\(899\) 50.6182 1.68821
\(900\) 0 0
\(901\) −16.5993 −0.553003
\(902\) −74.1150 −2.46776
\(903\) 0 0
\(904\) 11.6415 0.387189
\(905\) 0 0
\(906\) 0 0
\(907\) 48.1000 1.59714 0.798568 0.601905i \(-0.205591\pi\)
0.798568 + 0.601905i \(0.205591\pi\)
\(908\) 22.6452 0.751506
\(909\) 0 0
\(910\) 0 0
\(911\) 12.8062 0.424288 0.212144 0.977238i \(-0.431955\pi\)
0.212144 + 0.977238i \(0.431955\pi\)
\(912\) 0 0
\(913\) 49.3439 1.63304
\(914\) 41.2865 1.36564
\(915\) 0 0
\(916\) 33.1022 1.09373
\(917\) 6.68601 0.220792
\(918\) 0 0
\(919\) −38.7135 −1.27704 −0.638519 0.769606i \(-0.720453\pi\)
−0.638519 + 0.769606i \(0.720453\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −24.4038 −0.803695
\(923\) 26.4387 0.870241
\(924\) 0 0
\(925\) 0 0
\(926\) 30.8062 1.01235
\(927\) 0 0
\(928\) 38.7087 1.27068
\(929\) 36.0189 1.18174 0.590872 0.806766i \(-0.298784\pi\)
0.590872 + 0.806766i \(0.298784\pi\)
\(930\) 0 0
\(931\) 4.89655 0.160478
\(932\) 25.5058 0.835469
\(933\) 0 0
\(934\) −40.5517 −1.32689
\(935\) 0 0
\(936\) 0 0
\(937\) −45.2421 −1.47799 −0.738997 0.673709i \(-0.764700\pi\)
−0.738997 + 0.673709i \(0.764700\pi\)
\(938\) −26.0205 −0.849599
\(939\) 0 0
\(940\) 0 0
\(941\) 11.7455 0.382892 0.191446 0.981503i \(-0.438682\pi\)
0.191446 + 0.981503i \(0.438682\pi\)
\(942\) 0 0
\(943\) 56.0781 1.82616
\(944\) 16.4364 0.534958
\(945\) 0 0
\(946\) 10.2996 0.334870
\(947\) 13.7752 0.447635 0.223817 0.974631i \(-0.428148\pi\)
0.223817 + 0.974631i \(0.428148\pi\)
\(948\) 0 0
\(949\) −7.44584 −0.241702
\(950\) 0 0
\(951\) 0 0
\(952\) 7.03434 0.227984
\(953\) −9.01421 −0.291999 −0.145999 0.989285i \(-0.546640\pi\)
−0.145999 + 0.989285i \(0.546640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −24.8062 −0.802290
\(957\) 0 0
\(958\) −0.667406 −0.0215629
\(959\) 19.1166 0.617306
\(960\) 0 0
\(961\) 40.1724 1.29588
\(962\) −33.2239 −1.07118
\(963\) 0 0
\(964\) −19.0796 −0.614514
\(965\) 0 0
\(966\) 0 0
\(967\) 30.3232 0.975129 0.487564 0.873087i \(-0.337885\pi\)
0.487564 + 0.873087i \(0.337885\pi\)
\(968\) −5.17173 −0.166226
\(969\) 0 0
\(970\) 0 0
\(971\) 31.5636 1.01292 0.506462 0.862262i \(-0.330953\pi\)
0.506462 + 0.862262i \(0.330953\pi\)
\(972\) 0 0
\(973\) −1.71588 −0.0550086
\(974\) 48.9280 1.56775
\(975\) 0 0
\(976\) −50.5957 −1.61953
\(977\) −43.1285 −1.37980 −0.689902 0.723903i \(-0.742346\pi\)
−0.689902 + 0.723903i \(0.742346\pi\)
\(978\) 0 0
\(979\) −48.1855 −1.54002
\(980\) 0 0
\(981\) 0 0
\(982\) 43.2425 1.37992
\(983\) −7.81570 −0.249282 −0.124641 0.992202i \(-0.539778\pi\)
−0.124641 + 0.992202i \(0.539778\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −42.8989 −1.36618
\(987\) 0 0
\(988\) 4.04272 0.128616
\(989\) −7.79310 −0.247806
\(990\) 0 0
\(991\) −23.5197 −0.747126 −0.373563 0.927605i \(-0.621864\pi\)
−0.373563 + 0.927605i \(0.621864\pi\)
\(992\) 54.4269 1.72806
\(993\) 0 0
\(994\) 22.8465 0.724648
\(995\) 0 0
\(996\) 0 0
\(997\) −33.6395 −1.06537 −0.532686 0.846313i \(-0.678817\pi\)
−0.532686 + 0.846313i \(0.678817\pi\)
\(998\) 12.4240 0.393276
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.br.1.5 6
3.2 odd 2 475.2.a.j.1.2 6
5.2 odd 4 855.2.c.d.514.5 6
5.3 odd 4 855.2.c.d.514.2 6
5.4 even 2 inner 4275.2.a.br.1.2 6
12.11 even 2 7600.2.a.ck.1.5 6
15.2 even 4 95.2.b.b.39.2 6
15.8 even 4 95.2.b.b.39.5 yes 6
15.14 odd 2 475.2.a.j.1.5 6
57.56 even 2 9025.2.a.bx.1.5 6
60.23 odd 4 1520.2.d.h.609.5 6
60.47 odd 4 1520.2.d.h.609.2 6
60.59 even 2 7600.2.a.ck.1.2 6
285.113 odd 4 1805.2.b.e.1084.2 6
285.227 odd 4 1805.2.b.e.1084.5 6
285.284 even 2 9025.2.a.bx.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.b.b.39.2 6 15.2 even 4
95.2.b.b.39.5 yes 6 15.8 even 4
475.2.a.j.1.2 6 3.2 odd 2
475.2.a.j.1.5 6 15.14 odd 2
855.2.c.d.514.2 6 5.3 odd 4
855.2.c.d.514.5 6 5.2 odd 4
1520.2.d.h.609.2 6 60.47 odd 4
1520.2.d.h.609.5 6 60.23 odd 4
1805.2.b.e.1084.2 6 285.113 odd 4
1805.2.b.e.1084.5 6 285.227 odd 4
4275.2.a.br.1.2 6 5.4 even 2 inner
4275.2.a.br.1.5 6 1.1 even 1 trivial
7600.2.a.ck.1.2 6 60.59 even 2
7600.2.a.ck.1.5 6 12.11 even 2
9025.2.a.bx.1.2 6 285.284 even 2
9025.2.a.bx.1.5 6 57.56 even 2