Properties

Label 4275.2.a.bq.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.15044092.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 4x^{4} + 12x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.14584\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.04406 q^{2} +2.17819 q^{4} +1.43366 q^{7} -0.364240 q^{8} +5.70304 q^{11} -2.00000 q^{13} -2.93050 q^{14} -3.61186 q^{16} +3.35965 q^{17} +1.00000 q^{19} -11.6574 q^{22} -9.06269 q^{23} +4.08813 q^{26} +3.12280 q^{28} +4.45237 q^{29} -4.79005 q^{31} +8.11135 q^{32} -6.86733 q^{34} -4.35639 q^{37} -2.04406 q^{38} -8.69845 q^{41} -8.86733 q^{43} +12.4223 q^{44} +18.5247 q^{46} -3.22984 q^{47} -4.94461 q^{49} -4.35639 q^{52} -3.72389 q^{53} -0.522198 q^{56} -9.10092 q^{58} +12.7866 q^{59} -15.4474 q^{61} +9.79117 q^{62} -9.35639 q^{64} -13.6574 q^{67} +7.31796 q^{68} +0.652009 q^{71} -9.86733 q^{73} +8.90473 q^{74} +2.17819 q^{76} +8.17625 q^{77} +9.14644 q^{79} +17.7802 q^{82} -12.4223 q^{83} +18.1254 q^{86} -2.07728 q^{88} +3.72389 q^{89} -2.86733 q^{91} -19.7403 q^{92} +6.60199 q^{94} +6.09105 q^{97} +10.1071 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 8 q^{4} - 8 q^{7} - 12 q^{13} + 6 q^{19} - 10 q^{22} - 26 q^{28} - 2 q^{31} - 8 q^{34} - 16 q^{37} - 20 q^{43} + 18 q^{46} + 10 q^{49} - 16 q^{52} - 56 q^{58} - 6 q^{61} - 46 q^{64} - 22 q^{67} - 26 q^{73}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.04406 −1.44537 −0.722685 0.691177i \(-0.757092\pi\)
−0.722685 + 0.691177i \(0.757092\pi\)
\(3\) 0 0
\(4\) 2.17819 1.08910
\(5\) 0 0
\(6\) 0 0
\(7\) 1.43366 0.541874 0.270937 0.962597i \(-0.412666\pi\)
0.270937 + 0.962597i \(0.412666\pi\)
\(8\) −0.364240 −0.128778
\(9\) 0 0
\(10\) 0 0
\(11\) 5.70304 1.71953 0.859766 0.510688i \(-0.170609\pi\)
0.859766 + 0.510688i \(0.170609\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.93050 −0.783209
\(15\) 0 0
\(16\) −3.61186 −0.902965
\(17\) 3.35965 0.814834 0.407417 0.913242i \(-0.366430\pi\)
0.407417 + 0.913242i \(0.366430\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −11.6574 −2.48536
\(23\) −9.06269 −1.88970 −0.944851 0.327501i \(-0.893793\pi\)
−0.944851 + 0.327501i \(0.893793\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.08813 0.801748
\(27\) 0 0
\(28\) 3.12280 0.590154
\(29\) 4.45237 0.826784 0.413392 0.910553i \(-0.364344\pi\)
0.413392 + 0.910553i \(0.364344\pi\)
\(30\) 0 0
\(31\) −4.79005 −0.860319 −0.430159 0.902753i \(-0.641543\pi\)
−0.430159 + 0.902753i \(0.641543\pi\)
\(32\) 8.11135 1.43390
\(33\) 0 0
\(34\) −6.86733 −1.17774
\(35\) 0 0
\(36\) 0 0
\(37\) −4.35639 −0.716186 −0.358093 0.933686i \(-0.616573\pi\)
−0.358093 + 0.933686i \(0.616573\pi\)
\(38\) −2.04406 −0.331591
\(39\) 0 0
\(40\) 0 0
\(41\) −8.69845 −1.35847 −0.679235 0.733921i \(-0.737688\pi\)
−0.679235 + 0.733921i \(0.737688\pi\)
\(42\) 0 0
\(43\) −8.86733 −1.35226 −0.676128 0.736785i \(-0.736343\pi\)
−0.676128 + 0.736785i \(0.736343\pi\)
\(44\) 12.4223 1.87274
\(45\) 0 0
\(46\) 18.5247 2.73132
\(47\) −3.22984 −0.471120 −0.235560 0.971860i \(-0.575692\pi\)
−0.235560 + 0.971860i \(0.575692\pi\)
\(48\) 0 0
\(49\) −4.94461 −0.706372
\(50\) 0 0
\(51\) 0 0
\(52\) −4.35639 −0.604122
\(53\) −3.72389 −0.511515 −0.255758 0.966741i \(-0.582325\pi\)
−0.255758 + 0.966741i \(0.582325\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −0.522198 −0.0697816
\(57\) 0 0
\(58\) −9.10092 −1.19501
\(59\) 12.7866 1.66467 0.832335 0.554273i \(-0.187003\pi\)
0.832335 + 0.554273i \(0.187003\pi\)
\(60\) 0 0
\(61\) −15.4474 −1.97784 −0.988921 0.148445i \(-0.952573\pi\)
−0.988921 + 0.148445i \(0.952573\pi\)
\(62\) 9.79117 1.24348
\(63\) 0 0
\(64\) −9.35639 −1.16955
\(65\) 0 0
\(66\) 0 0
\(67\) −13.6574 −1.66851 −0.834257 0.551375i \(-0.814103\pi\)
−0.834257 + 0.551375i \(0.814103\pi\)
\(68\) 7.31796 0.887433
\(69\) 0 0
\(70\) 0 0
\(71\) 0.652009 0.0773792 0.0386896 0.999251i \(-0.487682\pi\)
0.0386896 + 0.999251i \(0.487682\pi\)
\(72\) 0 0
\(73\) −9.86733 −1.15488 −0.577442 0.816432i \(-0.695949\pi\)
−0.577442 + 0.816432i \(0.695949\pi\)
\(74\) 8.90473 1.03515
\(75\) 0 0
\(76\) 2.17819 0.249856
\(77\) 8.17625 0.931770
\(78\) 0 0
\(79\) 9.14644 1.02906 0.514528 0.857474i \(-0.327967\pi\)
0.514528 + 0.857474i \(0.327967\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 17.7802 1.96349
\(83\) −12.4223 −1.36353 −0.681764 0.731572i \(-0.738787\pi\)
−0.681764 + 0.731572i \(0.738787\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.1254 1.95451
\(87\) 0 0
\(88\) −2.07728 −0.221438
\(89\) 3.72389 0.394731 0.197366 0.980330i \(-0.436761\pi\)
0.197366 + 0.980330i \(0.436761\pi\)
\(90\) 0 0
\(91\) −2.86733 −0.300578
\(92\) −19.7403 −2.05807
\(93\) 0 0
\(94\) 6.60199 0.680943
\(95\) 0 0
\(96\) 0 0
\(97\) 6.09105 0.618452 0.309226 0.950989i \(-0.399930\pi\)
0.309226 + 0.950989i \(0.399930\pi\)
\(98\) 10.1071 1.02097
\(99\) 0 0
\(100\) 0 0
\(101\) −16.2227 −1.61422 −0.807109 0.590402i \(-0.798969\pi\)
−0.807109 + 0.590402i \(0.798969\pi\)
\(102\) 0 0
\(103\) −3.20995 −0.316285 −0.158143 0.987416i \(-0.550551\pi\)
−0.158143 + 0.987416i \(0.550551\pi\)
\(104\) 0.728480 0.0714333
\(105\) 0 0
\(106\) 7.61186 0.739329
\(107\) 6.79576 0.656971 0.328486 0.944509i \(-0.393462\pi\)
0.328486 + 0.944509i \(0.393462\pi\)
\(108\) 0 0
\(109\) 16.9584 1.62432 0.812159 0.583436i \(-0.198292\pi\)
0.812159 + 0.583436i \(0.198292\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.17819 −0.489293
\(113\) −3.20169 −0.301190 −0.150595 0.988596i \(-0.548119\pi\)
−0.150595 + 0.988596i \(0.548119\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 9.69812 0.900448
\(117\) 0 0
\(118\) −26.1366 −2.40607
\(119\) 4.81661 0.441538
\(120\) 0 0
\(121\) 21.5247 1.95679
\(122\) 31.5755 2.85871
\(123\) 0 0
\(124\) −10.4337 −0.936971
\(125\) 0 0
\(126\) 0 0
\(127\) −11.3010 −1.00280 −0.501401 0.865215i \(-0.667182\pi\)
−0.501401 + 0.865215i \(0.667182\pi\)
\(128\) 2.90235 0.256534
\(129\) 0 0
\(130\) 0 0
\(131\) 1.48511 0.129754 0.0648772 0.997893i \(-0.479334\pi\)
0.0648772 + 0.997893i \(0.479334\pi\)
\(132\) 0 0
\(133\) 1.43366 0.124314
\(134\) 27.9166 2.41162
\(135\) 0 0
\(136\) −1.22372 −0.104933
\(137\) −2.63117 −0.224796 −0.112398 0.993663i \(-0.535853\pi\)
−0.112398 + 0.993663i \(0.535853\pi\)
\(138\) 0 0
\(139\) −15.0138 −1.27345 −0.636726 0.771090i \(-0.719712\pi\)
−0.636726 + 0.771090i \(0.719712\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.33275 −0.111842
\(143\) −11.4061 −0.953825
\(144\) 0 0
\(145\) 0 0
\(146\) 20.1694 1.66924
\(147\) 0 0
\(148\) −9.48906 −0.779996
\(149\) 1.45696 0.119359 0.0596794 0.998218i \(-0.480992\pi\)
0.0596794 + 0.998218i \(0.480992\pi\)
\(150\) 0 0
\(151\) 0.510941 0.0415798 0.0207899 0.999784i \(-0.493382\pi\)
0.0207899 + 0.999784i \(0.493382\pi\)
\(152\) −0.364240 −0.0295438
\(153\) 0 0
\(154\) −16.7128 −1.34675
\(155\) 0 0
\(156\) 0 0
\(157\) 0.657382 0.0524648 0.0262324 0.999656i \(-0.491649\pi\)
0.0262324 + 0.999656i \(0.491649\pi\)
\(158\) −18.6959 −1.48737
\(159\) 0 0
\(160\) 0 0
\(161\) −12.9929 −1.02398
\(162\) 0 0
\(163\) 15.8811 1.24390 0.621952 0.783055i \(-0.286340\pi\)
0.621952 + 0.783055i \(0.286340\pi\)
\(164\) −18.9469 −1.47951
\(165\) 0 0
\(166\) 25.3920 1.97080
\(167\) 2.10897 0.163197 0.0815984 0.996665i \(-0.473997\pi\)
0.0815984 + 0.996665i \(0.473997\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −19.3148 −1.47274
\(173\) 13.6730 1.03954 0.519770 0.854306i \(-0.326018\pi\)
0.519770 + 0.854306i \(0.326018\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −20.5986 −1.55268
\(177\) 0 0
\(178\) −7.61186 −0.570533
\(179\) −18.9303 −1.41492 −0.707460 0.706754i \(-0.750159\pi\)
−0.707460 + 0.706754i \(0.750159\pi\)
\(180\) 0 0
\(181\) 16.7128 1.24225 0.621125 0.783711i \(-0.286676\pi\)
0.621125 + 0.783711i \(0.286676\pi\)
\(182\) 5.86100 0.434446
\(183\) 0 0
\(184\) 3.30099 0.243352
\(185\) 0 0
\(186\) 0 0
\(187\) 19.1602 1.40113
\(188\) −7.03521 −0.513095
\(189\) 0 0
\(190\) 0 0
\(191\) 9.92098 0.717857 0.358928 0.933365i \(-0.383142\pi\)
0.358928 + 0.933365i \(0.383142\pi\)
\(192\) 0 0
\(193\) 0.201835 0.0145284 0.00726421 0.999974i \(-0.497688\pi\)
0.00726421 + 0.999974i \(0.497688\pi\)
\(194\) −12.4505 −0.893893
\(195\) 0 0
\(196\) −10.7703 −0.769308
\(197\) 1.17421 0.0836588 0.0418294 0.999125i \(-0.486681\pi\)
0.0418294 + 0.999125i \(0.486681\pi\)
\(198\) 0 0
\(199\) −6.30099 −0.446666 −0.223333 0.974742i \(-0.571694\pi\)
−0.223333 + 0.974742i \(0.571694\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 33.1602 2.33314
\(203\) 6.38320 0.448013
\(204\) 0 0
\(205\) 0 0
\(206\) 6.56133 0.457150
\(207\) 0 0
\(208\) 7.22372 0.500875
\(209\) 5.70304 0.394488
\(210\) 0 0
\(211\) −16.1683 −1.11307 −0.556537 0.830823i \(-0.687870\pi\)
−0.556537 + 0.830823i \(0.687870\pi\)
\(212\) −8.11135 −0.557090
\(213\) 0 0
\(214\) −13.8910 −0.949567
\(215\) 0 0
\(216\) 0 0
\(217\) −6.86733 −0.466185
\(218\) −34.6640 −2.34774
\(219\) 0 0
\(220\) 0 0
\(221\) −6.71929 −0.451989
\(222\) 0 0
\(223\) 23.4393 1.56961 0.784807 0.619741i \(-0.212762\pi\)
0.784807 + 0.619741i \(0.212762\pi\)
\(224\) 11.6290 0.776992
\(225\) 0 0
\(226\) 6.54445 0.435331
\(227\) 8.82826 0.585952 0.292976 0.956120i \(-0.405354\pi\)
0.292976 + 0.956120i \(0.405354\pi\)
\(228\) 0 0
\(229\) −3.92272 −0.259221 −0.129610 0.991565i \(-0.541373\pi\)
−0.129610 + 0.991565i \(0.541373\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.62173 −0.106472
\(233\) −15.6240 −1.02356 −0.511782 0.859115i \(-0.671014\pi\)
−0.511782 + 0.859115i \(0.671014\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 27.8516 1.81299
\(237\) 0 0
\(238\) −9.84545 −0.638186
\(239\) −17.6797 −1.14360 −0.571801 0.820392i \(-0.693755\pi\)
−0.571801 + 0.820392i \(0.693755\pi\)
\(240\) 0 0
\(241\) 11.2237 0.722983 0.361492 0.932375i \(-0.382268\pi\)
0.361492 + 0.932375i \(0.382268\pi\)
\(242\) −43.9979 −2.82829
\(243\) 0 0
\(244\) −33.6475 −2.15406
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 1.74473 0.110790
\(249\) 0 0
\(250\) 0 0
\(251\) 18.7240 1.18185 0.590926 0.806726i \(-0.298763\pi\)
0.590926 + 0.806726i \(0.298763\pi\)
\(252\) 0 0
\(253\) −51.6849 −3.24940
\(254\) 23.0999 1.44942
\(255\) 0 0
\(256\) 12.7802 0.798761
\(257\) 10.5961 0.660968 0.330484 0.943812i \(-0.392788\pi\)
0.330484 + 0.943812i \(0.392788\pi\)
\(258\) 0 0
\(259\) −6.24560 −0.388083
\(260\) 0 0
\(261\) 0 0
\(262\) −3.03565 −0.187543
\(263\) 5.10437 0.314749 0.157375 0.987539i \(-0.449697\pi\)
0.157375 + 0.987539i \(0.449697\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.93050 −0.179681
\(267\) 0 0
\(268\) −29.7484 −1.81717
\(269\) −10.9372 −0.666855 −0.333427 0.942776i \(-0.608205\pi\)
−0.333427 + 0.942776i \(0.608205\pi\)
\(270\) 0 0
\(271\) 19.8811 1.20769 0.603845 0.797101i \(-0.293634\pi\)
0.603845 + 0.797101i \(0.293634\pi\)
\(272\) −12.1346 −0.735766
\(273\) 0 0
\(274\) 5.37827 0.324913
\(275\) 0 0
\(276\) 0 0
\(277\) −13.1546 −0.790380 −0.395190 0.918599i \(-0.629321\pi\)
−0.395190 + 0.918599i \(0.629321\pi\)
\(278\) 30.6891 1.84061
\(279\) 0 0
\(280\) 0 0
\(281\) −8.20440 −0.489433 −0.244717 0.969595i \(-0.578695\pi\)
−0.244717 + 0.969595i \(0.578695\pi\)
\(282\) 0 0
\(283\) −13.5801 −0.807253 −0.403627 0.914924i \(-0.632251\pi\)
−0.403627 + 0.914924i \(0.632251\pi\)
\(284\) 1.42020 0.0842735
\(285\) 0 0
\(286\) 23.3148 1.37863
\(287\) −12.4707 −0.736120
\(288\) 0 0
\(289\) −5.71278 −0.336046
\(290\) 0 0
\(291\) 0 0
\(292\) −21.4930 −1.25778
\(293\) 1.16919 0.0683049 0.0341524 0.999417i \(-0.489127\pi\)
0.0341524 + 0.999417i \(0.489127\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.58677 0.0922292
\(297\) 0 0
\(298\) −2.97812 −0.172518
\(299\) 18.1254 1.04822
\(300\) 0 0
\(301\) −12.7128 −0.732752
\(302\) −1.04440 −0.0600982
\(303\) 0 0
\(304\) −3.61186 −0.207154
\(305\) 0 0
\(306\) 0 0
\(307\) 21.2375 1.21209 0.606044 0.795431i \(-0.292756\pi\)
0.606044 + 0.795431i \(0.292756\pi\)
\(308\) 17.8095 1.01479
\(309\) 0 0
\(310\) 0 0
\(311\) −15.6240 −0.885957 −0.442979 0.896532i \(-0.646078\pi\)
−0.442979 + 0.896532i \(0.646078\pi\)
\(312\) 0 0
\(313\) 10.2156 0.577420 0.288710 0.957417i \(-0.406774\pi\)
0.288710 + 0.957417i \(0.406774\pi\)
\(314\) −1.34373 −0.0758311
\(315\) 0 0
\(316\) 19.9227 1.12074
\(317\) 31.2229 1.75365 0.876825 0.480809i \(-0.159657\pi\)
0.876825 + 0.480809i \(0.159657\pi\)
\(318\) 0 0
\(319\) 25.3920 1.42168
\(320\) 0 0
\(321\) 0 0
\(322\) 26.5582 1.48003
\(323\) 3.35965 0.186936
\(324\) 0 0
\(325\) 0 0
\(326\) −32.4620 −1.79790
\(327\) 0 0
\(328\) 3.16832 0.174941
\(329\) −4.63050 −0.255288
\(330\) 0 0
\(331\) −5.20995 −0.286365 −0.143182 0.989696i \(-0.545734\pi\)
−0.143182 + 0.989696i \(0.545734\pi\)
\(332\) −27.0583 −1.48501
\(333\) 0 0
\(334\) −4.31086 −0.235880
\(335\) 0 0
\(336\) 0 0
\(337\) −13.0219 −0.709347 −0.354674 0.934990i \(-0.615408\pi\)
−0.354674 + 0.934990i \(0.615408\pi\)
\(338\) 18.3966 1.00064
\(339\) 0 0
\(340\) 0 0
\(341\) −27.3179 −1.47935
\(342\) 0 0
\(343\) −17.1246 −0.924639
\(344\) 3.22984 0.174141
\(345\) 0 0
\(346\) −27.9485 −1.50252
\(347\) 28.6169 1.53623 0.768117 0.640309i \(-0.221194\pi\)
0.768117 + 0.640309i \(0.221194\pi\)
\(348\) 0 0
\(349\) 16.3148 0.873309 0.436655 0.899629i \(-0.356163\pi\)
0.436655 + 0.899629i \(0.356163\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 46.2594 2.46563
\(353\) 36.9792 1.96821 0.984103 0.177597i \(-0.0568325\pi\)
0.984103 + 0.177597i \(0.0568325\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.11135 0.429901
\(357\) 0 0
\(358\) 38.6948 2.04508
\(359\) −32.1626 −1.69748 −0.848739 0.528811i \(-0.822638\pi\)
−0.848739 + 0.528811i \(0.822638\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −34.1620 −1.79551
\(363\) 0 0
\(364\) −6.24560 −0.327358
\(365\) 0 0
\(366\) 0 0
\(367\) −23.3148 −1.21702 −0.608510 0.793546i \(-0.708233\pi\)
−0.608510 + 0.793546i \(0.708233\pi\)
\(368\) 32.7332 1.70633
\(369\) 0 0
\(370\) 0 0
\(371\) −5.33880 −0.277177
\(372\) 0 0
\(373\) 30.3839 1.57322 0.786610 0.617450i \(-0.211834\pi\)
0.786610 + 0.617450i \(0.211834\pi\)
\(374\) −39.1647 −2.02516
\(375\) 0 0
\(376\) 1.17644 0.0606700
\(377\) −8.90473 −0.458617
\(378\) 0 0
\(379\) −31.9803 −1.64272 −0.821358 0.570413i \(-0.806783\pi\)
−0.821358 + 0.570413i \(0.806783\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −20.2791 −1.03757
\(383\) −30.5960 −1.56338 −0.781692 0.623664i \(-0.785643\pi\)
−0.781692 + 0.623664i \(0.785643\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.412564 −0.0209990
\(387\) 0 0
\(388\) 13.2675 0.673554
\(389\) −14.1671 −0.718299 −0.359149 0.933280i \(-0.616933\pi\)
−0.359149 + 0.933280i \(0.616933\pi\)
\(390\) 0 0
\(391\) −30.4474 −1.53979
\(392\) 1.80102 0.0909654
\(393\) 0 0
\(394\) −2.40015 −0.120918
\(395\) 0 0
\(396\) 0 0
\(397\) −21.5028 −1.07920 −0.539598 0.841923i \(-0.681424\pi\)
−0.539598 + 0.841923i \(0.681424\pi\)
\(398\) 12.8796 0.645597
\(399\) 0 0
\(400\) 0 0
\(401\) 18.4131 0.919509 0.459754 0.888046i \(-0.347937\pi\)
0.459754 + 0.888046i \(0.347937\pi\)
\(402\) 0 0
\(403\) 9.58011 0.477219
\(404\) −35.3362 −1.75804
\(405\) 0 0
\(406\) −13.0477 −0.647545
\(407\) −24.8447 −1.23150
\(408\) 0 0
\(409\) −7.06916 −0.349548 −0.174774 0.984609i \(-0.555919\pi\)
−0.174774 + 0.984609i \(0.555919\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6.99189 −0.344466
\(413\) 18.3317 0.902042
\(414\) 0 0
\(415\) 0 0
\(416\) −16.2227 −0.795383
\(417\) 0 0
\(418\) −11.6574 −0.570181
\(419\) −5.99081 −0.292670 −0.146335 0.989235i \(-0.546748\pi\)
−0.146335 + 0.989235i \(0.546748\pi\)
\(420\) 0 0
\(421\) −13.4256 −0.654321 −0.327161 0.944969i \(-0.606092\pi\)
−0.327161 + 0.944969i \(0.606092\pi\)
\(422\) 33.0491 1.60880
\(423\) 0 0
\(424\) 1.35639 0.0658720
\(425\) 0 0
\(426\) 0 0
\(427\) −22.1464 −1.07174
\(428\) 14.8025 0.715505
\(429\) 0 0
\(430\) 0 0
\(431\) −36.5869 −1.76233 −0.881163 0.472812i \(-0.843239\pi\)
−0.881163 + 0.472812i \(0.843239\pi\)
\(432\) 0 0
\(433\) −23.3148 −1.12044 −0.560218 0.828345i \(-0.689283\pi\)
−0.560218 + 0.828345i \(0.689283\pi\)
\(434\) 14.0373 0.673810
\(435\) 0 0
\(436\) 36.9386 1.76904
\(437\) −9.06269 −0.433527
\(438\) 0 0
\(439\) 9.56634 0.456576 0.228288 0.973594i \(-0.426687\pi\)
0.228288 + 0.973594i \(0.426687\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 13.7347 0.653291
\(443\) 0.440711 0.0209388 0.0104694 0.999945i \(-0.496667\pi\)
0.0104694 + 0.999945i \(0.496667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −47.9115 −2.26867
\(447\) 0 0
\(448\) −13.4139 −0.633748
\(449\) −3.72389 −0.175741 −0.0878705 0.996132i \(-0.528006\pi\)
−0.0878705 + 0.996132i \(0.528006\pi\)
\(450\) 0 0
\(451\) −49.6076 −2.33593
\(452\) −6.97390 −0.328025
\(453\) 0 0
\(454\) −18.0455 −0.846918
\(455\) 0 0
\(456\) 0 0
\(457\) −8.05539 −0.376815 −0.188408 0.982091i \(-0.560333\pi\)
−0.188408 + 0.982091i \(0.560333\pi\)
\(458\) 8.01829 0.374670
\(459\) 0 0
\(460\) 0 0
\(461\) 6.32986 0.294811 0.147405 0.989076i \(-0.452908\pi\)
0.147405 + 0.989076i \(0.452908\pi\)
\(462\) 0 0
\(463\) −23.0057 −1.06916 −0.534582 0.845117i \(-0.679531\pi\)
−0.534582 + 0.845117i \(0.679531\pi\)
\(464\) −16.0813 −0.746556
\(465\) 0 0
\(466\) 31.9365 1.47943
\(467\) 26.9284 1.24610 0.623050 0.782182i \(-0.285893\pi\)
0.623050 + 0.782182i \(0.285893\pi\)
\(468\) 0 0
\(469\) −19.5801 −0.904125
\(470\) 0 0
\(471\) 0 0
\(472\) −4.65738 −0.214373
\(473\) −50.5708 −2.32525
\(474\) 0 0
\(475\) 0 0
\(476\) 10.4915 0.480877
\(477\) 0 0
\(478\) 36.1383 1.65293
\(479\) −7.28981 −0.333080 −0.166540 0.986035i \(-0.553260\pi\)
−0.166540 + 0.986035i \(0.553260\pi\)
\(480\) 0 0
\(481\) 8.71278 0.397268
\(482\) −22.9420 −1.04498
\(483\) 0 0
\(484\) 46.8850 2.13114
\(485\) 0 0
\(486\) 0 0
\(487\) 21.0219 0.952592 0.476296 0.879285i \(-0.341979\pi\)
0.476296 + 0.879285i \(0.341979\pi\)
\(488\) 5.62657 0.254703
\(489\) 0 0
\(490\) 0 0
\(491\) −19.1366 −0.863623 −0.431812 0.901964i \(-0.642125\pi\)
−0.431812 + 0.901964i \(0.642125\pi\)
\(492\) 0 0
\(493\) 14.9584 0.673691
\(494\) 4.08813 0.183933
\(495\) 0 0
\(496\) 17.3010 0.776838
\(497\) 0.934762 0.0419298
\(498\) 0 0
\(499\) 21.6990 0.971381 0.485690 0.874131i \(-0.338568\pi\)
0.485690 + 0.874131i \(0.338568\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −38.2731 −1.70821
\(503\) −11.4061 −0.508572 −0.254286 0.967129i \(-0.581841\pi\)
−0.254286 + 0.967129i \(0.581841\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 105.647 4.69659
\(507\) 0 0
\(508\) −24.6158 −1.09215
\(509\) −24.0347 −1.06532 −0.532660 0.846329i \(-0.678807\pi\)
−0.532660 + 0.846329i \(0.678807\pi\)
\(510\) 0 0
\(511\) −14.1464 −0.625802
\(512\) −31.9282 −1.41104
\(513\) 0 0
\(514\) −21.6591 −0.955344
\(515\) 0 0
\(516\) 0 0
\(517\) −18.4199 −0.810106
\(518\) 12.7664 0.560923
\(519\) 0 0
\(520\) 0 0
\(521\) −17.5750 −0.769976 −0.384988 0.922922i \(-0.625794\pi\)
−0.384988 + 0.922922i \(0.625794\pi\)
\(522\) 0 0
\(523\) −13.5166 −0.591040 −0.295520 0.955337i \(-0.595493\pi\)
−0.295520 + 0.955337i \(0.595493\pi\)
\(524\) 3.23485 0.141315
\(525\) 0 0
\(526\) −10.4337 −0.454929
\(527\) −16.0929 −0.701017
\(528\) 0 0
\(529\) 59.1324 2.57097
\(530\) 0 0
\(531\) 0 0
\(532\) 3.12280 0.135391
\(533\) 17.3969 0.753543
\(534\) 0 0
\(535\) 0 0
\(536\) 4.97456 0.214868
\(537\) 0 0
\(538\) 22.3564 0.963852
\(539\) −28.1993 −1.21463
\(540\) 0 0
\(541\) −2.18807 −0.0940723 −0.0470361 0.998893i \(-0.514978\pi\)
−0.0470361 + 0.998893i \(0.514978\pi\)
\(542\) −40.6382 −1.74556
\(543\) 0 0
\(544\) 27.2513 1.16839
\(545\) 0 0
\(546\) 0 0
\(547\) −20.7265 −0.886203 −0.443102 0.896471i \(-0.646122\pi\)
−0.443102 + 0.896471i \(0.646122\pi\)
\(548\) −5.73119 −0.244824
\(549\) 0 0
\(550\) 0 0
\(551\) 4.45237 0.189677
\(552\) 0 0
\(553\) 13.1129 0.557618
\(554\) 26.8887 1.14239
\(555\) 0 0
\(556\) −32.7029 −1.38691
\(557\) 25.8328 1.09457 0.547285 0.836946i \(-0.315661\pi\)
0.547285 + 0.836946i \(0.315661\pi\)
\(558\) 0 0
\(559\) 17.7347 0.750096
\(560\) 0 0
\(561\) 0 0
\(562\) 16.7703 0.707413
\(563\) −7.11168 −0.299722 −0.149861 0.988707i \(-0.547883\pi\)
−0.149861 + 0.988707i \(0.547883\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 27.7586 1.16678
\(567\) 0 0
\(568\) −0.237488 −0.00996476
\(569\) −5.93747 −0.248912 −0.124456 0.992225i \(-0.539719\pi\)
−0.124456 + 0.992225i \(0.539719\pi\)
\(570\) 0 0
\(571\) 26.0194 1.08888 0.544440 0.838800i \(-0.316742\pi\)
0.544440 + 0.838800i \(0.316742\pi\)
\(572\) −24.8447 −1.03881
\(573\) 0 0
\(574\) 25.4908 1.06397
\(575\) 0 0
\(576\) 0 0
\(577\) 26.8338 1.11711 0.558553 0.829469i \(-0.311357\pi\)
0.558553 + 0.829469i \(0.311357\pi\)
\(578\) 11.6773 0.485711
\(579\) 0 0
\(580\) 0 0
\(581\) −17.8095 −0.738861
\(582\) 0 0
\(583\) −21.2375 −0.879567
\(584\) 3.59408 0.148724
\(585\) 0 0
\(586\) −2.38990 −0.0987259
\(587\) 21.5132 0.887944 0.443972 0.896041i \(-0.353569\pi\)
0.443972 + 0.896041i \(0.353569\pi\)
\(588\) 0 0
\(589\) −4.79005 −0.197371
\(590\) 0 0
\(591\) 0 0
\(592\) 15.7347 0.646690
\(593\) 23.0718 0.947445 0.473723 0.880674i \(-0.342910\pi\)
0.473723 + 0.880674i \(0.342910\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.17354 0.129993
\(597\) 0 0
\(598\) −37.0494 −1.51506
\(599\) −7.29483 −0.298059 −0.149029 0.988833i \(-0.547615\pi\)
−0.149029 + 0.988833i \(0.547615\pi\)
\(600\) 0 0
\(601\) −29.7184 −1.21224 −0.606120 0.795373i \(-0.707275\pi\)
−0.606120 + 0.795373i \(0.707275\pi\)
\(602\) 25.9857 1.05910
\(603\) 0 0
\(604\) 1.11293 0.0452844
\(605\) 0 0
\(606\) 0 0
\(607\) −34.3504 −1.39424 −0.697120 0.716954i \(-0.745536\pi\)
−0.697120 + 0.716954i \(0.745536\pi\)
\(608\) 8.11135 0.328959
\(609\) 0 0
\(610\) 0 0
\(611\) 6.45967 0.261330
\(612\) 0 0
\(613\) −13.4809 −0.544490 −0.272245 0.962228i \(-0.587766\pi\)
−0.272245 + 0.962228i \(0.587766\pi\)
\(614\) −43.4108 −1.75192
\(615\) 0 0
\(616\) −2.97812 −0.119992
\(617\) −8.64511 −0.348039 −0.174020 0.984742i \(-0.555676\pi\)
−0.174020 + 0.984742i \(0.555676\pi\)
\(618\) 0 0
\(619\) 47.6158 1.91384 0.956919 0.290354i \(-0.0937729\pi\)
0.956919 + 0.290354i \(0.0937729\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 31.9365 1.28054
\(623\) 5.33880 0.213895
\(624\) 0 0
\(625\) 0 0
\(626\) −20.8813 −0.834586
\(627\) 0 0
\(628\) 1.43191 0.0571393
\(629\) −14.6359 −0.583572
\(630\) 0 0
\(631\) 41.0770 1.63525 0.817624 0.575752i \(-0.195291\pi\)
0.817624 + 0.575752i \(0.195291\pi\)
\(632\) −3.33150 −0.132520
\(633\) 0 0
\(634\) −63.8215 −2.53468
\(635\) 0 0
\(636\) 0 0
\(637\) 9.88921 0.391825
\(638\) −51.9029 −2.05486
\(639\) 0 0
\(640\) 0 0
\(641\) 20.5704 0.812484 0.406242 0.913766i \(-0.366839\pi\)
0.406242 + 0.913766i \(0.366839\pi\)
\(642\) 0 0
\(643\) 38.5939 1.52199 0.760997 0.648755i \(-0.224710\pi\)
0.760997 + 0.648755i \(0.224710\pi\)
\(644\) −28.3010 −1.11521
\(645\) 0 0
\(646\) −6.86733 −0.270191
\(647\) −39.0399 −1.53482 −0.767408 0.641159i \(-0.778454\pi\)
−0.767408 + 0.641159i \(0.778454\pi\)
\(648\) 0 0
\(649\) 72.9224 2.86245
\(650\) 0 0
\(651\) 0 0
\(652\) 34.5921 1.35473
\(653\) −13.1790 −0.515733 −0.257866 0.966181i \(-0.583019\pi\)
−0.257866 + 0.966181i \(0.583019\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 31.4176 1.22665
\(657\) 0 0
\(658\) 9.46504 0.368986
\(659\) 17.5498 0.683645 0.341822 0.939765i \(-0.388956\pi\)
0.341822 + 0.939765i \(0.388956\pi\)
\(660\) 0 0
\(661\) 20.2731 0.788534 0.394267 0.918996i \(-0.370999\pi\)
0.394267 + 0.918996i \(0.370999\pi\)
\(662\) 10.6495 0.413903
\(663\) 0 0
\(664\) 4.52471 0.175593
\(665\) 0 0
\(666\) 0 0
\(667\) −40.3504 −1.56237
\(668\) 4.59374 0.177737
\(669\) 0 0
\(670\) 0 0
\(671\) −88.0974 −3.40096
\(672\) 0 0
\(673\) −39.1602 −1.50952 −0.754758 0.656004i \(-0.772246\pi\)
−0.754758 + 0.656004i \(0.772246\pi\)
\(674\) 26.6175 1.02527
\(675\) 0 0
\(676\) −19.6037 −0.753990
\(677\) −5.49676 −0.211258 −0.105629 0.994406i \(-0.533686\pi\)
−0.105629 + 0.994406i \(0.533686\pi\)
\(678\) 0 0
\(679\) 8.73252 0.335123
\(680\) 0 0
\(681\) 0 0
\(682\) 55.8395 2.13820
\(683\) −35.5988 −1.36215 −0.681074 0.732214i \(-0.738487\pi\)
−0.681074 + 0.732214i \(0.738487\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 35.0037 1.33645
\(687\) 0 0
\(688\) 32.0275 1.22104
\(689\) 7.44777 0.283738
\(690\) 0 0
\(691\) −12.8673 −0.489496 −0.244748 0.969587i \(-0.578705\pi\)
−0.244748 + 0.969587i \(0.578705\pi\)
\(692\) 29.7825 1.13216
\(693\) 0 0
\(694\) −58.4947 −2.22043
\(695\) 0 0
\(696\) 0 0
\(697\) −29.2237 −1.10693
\(698\) −33.3484 −1.26226
\(699\) 0 0
\(700\) 0 0
\(701\) 1.17421 0.0443492 0.0221746 0.999754i \(-0.492941\pi\)
0.0221746 + 0.999754i \(0.492941\pi\)
\(702\) 0 0
\(703\) −4.35639 −0.164304
\(704\) −53.3599 −2.01108
\(705\) 0 0
\(706\) −75.5879 −2.84479
\(707\) −23.2579 −0.874703
\(708\) 0 0
\(709\) −38.6076 −1.44994 −0.724970 0.688780i \(-0.758147\pi\)
−0.724970 + 0.688780i \(0.758147\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.35639 −0.0508328
\(713\) 43.4108 1.62575
\(714\) 0 0
\(715\) 0 0
\(716\) −41.2339 −1.54098
\(717\) 0 0
\(718\) 65.7425 2.45349
\(719\) −1.33216 −0.0496814 −0.0248407 0.999691i \(-0.507908\pi\)
−0.0248407 + 0.999691i \(0.507908\pi\)
\(720\) 0 0
\(721\) −4.60199 −0.171387
\(722\) −2.04406 −0.0760722
\(723\) 0 0
\(724\) 36.4037 1.35293
\(725\) 0 0
\(726\) 0 0
\(727\) −39.7703 −1.47500 −0.737500 0.675348i \(-0.763994\pi\)
−0.737500 + 0.675348i \(0.763994\pi\)
\(728\) 1.04440 0.0387079
\(729\) 0 0
\(730\) 0 0
\(731\) −29.7911 −1.10186
\(732\) 0 0
\(733\) 9.40367 0.347332 0.173666 0.984805i \(-0.444439\pi\)
0.173666 + 0.984805i \(0.444439\pi\)
\(734\) 47.6568 1.75905
\(735\) 0 0
\(736\) −73.5106 −2.70964
\(737\) −77.8887 −2.86907
\(738\) 0 0
\(739\) −27.3067 −1.00449 −0.502246 0.864725i \(-0.667493\pi\)
−0.502246 + 0.864725i \(0.667493\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 10.9129 0.400623
\(743\) 38.7723 1.42242 0.711209 0.702981i \(-0.248148\pi\)
0.711209 + 0.702981i \(0.248148\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −62.1067 −2.27389
\(747\) 0 0
\(748\) 41.7347 1.52597
\(749\) 9.74285 0.355996
\(750\) 0 0
\(751\) −26.4474 −0.965081 −0.482540 0.875874i \(-0.660286\pi\)
−0.482540 + 0.875874i \(0.660286\pi\)
\(752\) 11.6657 0.425405
\(753\) 0 0
\(754\) 18.2018 0.662872
\(755\) 0 0
\(756\) 0 0
\(757\) −41.4750 −1.50743 −0.753717 0.657199i \(-0.771741\pi\)
−0.753717 + 0.657199i \(0.771741\pi\)
\(758\) 65.3697 2.37433
\(759\) 0 0
\(760\) 0 0
\(761\) 14.4498 0.523806 0.261903 0.965094i \(-0.415650\pi\)
0.261903 + 0.965094i \(0.415650\pi\)
\(762\) 0 0
\(763\) 24.3126 0.880176
\(764\) 21.6098 0.781816
\(765\) 0 0
\(766\) 62.5402 2.25967
\(767\) −25.5732 −0.923393
\(768\) 0 0
\(769\) −18.7622 −0.676582 −0.338291 0.941042i \(-0.609849\pi\)
−0.338291 + 0.941042i \(0.609849\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.439636 0.0158229
\(773\) −23.8536 −0.857955 −0.428977 0.903315i \(-0.641126\pi\)
−0.428977 + 0.903315i \(0.641126\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.21860 −0.0796432
\(777\) 0 0
\(778\) 28.9584 1.03821
\(779\) −8.69845 −0.311654
\(780\) 0 0
\(781\) 3.71843 0.133056
\(782\) 62.2365 2.22557
\(783\) 0 0
\(784\) 17.8592 0.637829
\(785\) 0 0
\(786\) 0 0
\(787\) 39.0632 1.39245 0.696226 0.717822i \(-0.254861\pi\)
0.696226 + 0.717822i \(0.254861\pi\)
\(788\) 2.55765 0.0911125
\(789\) 0 0
\(790\) 0 0
\(791\) −4.59015 −0.163207
\(792\) 0 0
\(793\) 30.8949 1.09711
\(794\) 43.9531 1.55984
\(795\) 0 0
\(796\) −13.7248 −0.486462
\(797\) 48.9075 1.73239 0.866197 0.499703i \(-0.166558\pi\)
0.866197 + 0.499703i \(0.166558\pi\)
\(798\) 0 0
\(799\) −10.8511 −0.383885
\(800\) 0 0
\(801\) 0 0
\(802\) −37.6376 −1.32903
\(803\) −56.2738 −1.98586
\(804\) 0 0
\(805\) 0 0
\(806\) −19.5823 −0.689759
\(807\) 0 0
\(808\) 5.90895 0.207876
\(809\) −3.80537 −0.133790 −0.0668949 0.997760i \(-0.521309\pi\)
−0.0668949 + 0.997760i \(0.521309\pi\)
\(810\) 0 0
\(811\) 2.79005 0.0979720 0.0489860 0.998799i \(-0.484401\pi\)
0.0489860 + 0.998799i \(0.484401\pi\)
\(812\) 13.9038 0.487929
\(813\) 0 0
\(814\) 50.7841 1.77998
\(815\) 0 0
\(816\) 0 0
\(817\) −8.86733 −0.310229
\(818\) 14.4498 0.505226
\(819\) 0 0
\(820\) 0 0
\(821\) 47.7304 1.66580 0.832901 0.553423i \(-0.186679\pi\)
0.832901 + 0.553423i \(0.186679\pi\)
\(822\) 0 0
\(823\) 30.3448 1.05775 0.528876 0.848699i \(-0.322614\pi\)
0.528876 + 0.848699i \(0.322614\pi\)
\(824\) 1.16919 0.0407307
\(825\) 0 0
\(826\) −37.4711 −1.30379
\(827\) 38.0236 1.32221 0.661106 0.750293i \(-0.270087\pi\)
0.661106 + 0.750293i \(0.270087\pi\)
\(828\) 0 0
\(829\) 4.13833 0.143730 0.0718651 0.997414i \(-0.477105\pi\)
0.0718651 + 0.997414i \(0.477105\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 18.7128 0.648749
\(833\) −16.6121 −0.575576
\(834\) 0 0
\(835\) 0 0
\(836\) 12.4223 0.429636
\(837\) 0 0
\(838\) 12.2456 0.423017
\(839\) 8.56864 0.295822 0.147911 0.989001i \(-0.452745\pi\)
0.147911 + 0.989001i \(0.452745\pi\)
\(840\) 0 0
\(841\) −9.17644 −0.316429
\(842\) 27.4427 0.945737
\(843\) 0 0
\(844\) −35.2177 −1.21224
\(845\) 0 0
\(846\) 0 0
\(847\) 30.8592 1.06034
\(848\) 13.4502 0.461880
\(849\) 0 0
\(850\) 0 0
\(851\) 39.4806 1.35338
\(852\) 0 0
\(853\) −35.1048 −1.20197 −0.600983 0.799262i \(-0.705224\pi\)
−0.600983 + 0.799262i \(0.705224\pi\)
\(854\) 45.2687 1.54906
\(855\) 0 0
\(856\) −2.47529 −0.0846036
\(857\) −11.8720 −0.405540 −0.202770 0.979226i \(-0.564994\pi\)
−0.202770 + 0.979226i \(0.564994\pi\)
\(858\) 0 0
\(859\) 49.3229 1.68287 0.841437 0.540355i \(-0.181710\pi\)
0.841437 + 0.540355i \(0.181710\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 74.7858 2.54722
\(863\) 26.9536 0.917513 0.458756 0.888562i \(-0.348295\pi\)
0.458756 + 0.888562i \(0.348295\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 47.6568 1.61945
\(867\) 0 0
\(868\) −14.9584 −0.507720
\(869\) 52.1626 1.76949
\(870\) 0 0
\(871\) 27.3148 0.925525
\(872\) −6.17692 −0.209177
\(873\) 0 0
\(874\) 18.5247 0.626608
\(875\) 0 0
\(876\) 0 0
\(877\) 17.6076 0.594568 0.297284 0.954789i \(-0.403919\pi\)
0.297284 + 0.954789i \(0.403919\pi\)
\(878\) −19.5542 −0.659922
\(879\) 0 0
\(880\) 0 0
\(881\) 52.4503 1.76710 0.883548 0.468340i \(-0.155148\pi\)
0.883548 + 0.468340i \(0.155148\pi\)
\(882\) 0 0
\(883\) 43.0575 1.44900 0.724501 0.689274i \(-0.242070\pi\)
0.724501 + 0.689274i \(0.242070\pi\)
\(884\) −14.6359 −0.492259
\(885\) 0 0
\(886\) −0.900841 −0.0302644
\(887\) −1.19734 −0.0402027 −0.0201013 0.999798i \(-0.506399\pi\)
−0.0201013 + 0.999798i \(0.506399\pi\)
\(888\) 0 0
\(889\) −16.2018 −0.543392
\(890\) 0 0
\(891\) 0 0
\(892\) 51.0554 1.70946
\(893\) −3.22984 −0.108082
\(894\) 0 0
\(895\) 0 0
\(896\) 4.16100 0.139009
\(897\) 0 0
\(898\) 7.61186 0.254011
\(899\) −21.3271 −0.711298
\(900\) 0 0
\(901\) −12.5109 −0.416800
\(902\) 101.401 3.37629
\(903\) 0 0
\(904\) 1.16618 0.0387867
\(905\) 0 0
\(906\) 0 0
\(907\) 31.9640 1.06135 0.530674 0.847576i \(-0.321939\pi\)
0.530674 + 0.847576i \(0.321939\pi\)
\(908\) 19.2297 0.638159
\(909\) 0 0
\(910\) 0 0
\(911\) 6.64282 0.220086 0.110043 0.993927i \(-0.464901\pi\)
0.110043 + 0.993927i \(0.464901\pi\)
\(912\) 0 0
\(913\) −70.8451 −2.34463
\(914\) 16.4657 0.544638
\(915\) 0 0
\(916\) −8.54445 −0.282317
\(917\) 2.12915 0.0703106
\(918\) 0 0
\(919\) −21.0138 −0.693180 −0.346590 0.938017i \(-0.612661\pi\)
−0.346590 + 0.938017i \(0.612661\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −12.9386 −0.426111
\(923\) −1.30402 −0.0429223
\(924\) 0 0
\(925\) 0 0
\(926\) 47.0250 1.54534
\(927\) 0 0
\(928\) 36.1147 1.18552
\(929\) 33.5633 1.10118 0.550588 0.834777i \(-0.314404\pi\)
0.550588 + 0.834777i \(0.314404\pi\)
\(930\) 0 0
\(931\) −4.94461 −0.162053
\(932\) −34.0322 −1.11476
\(933\) 0 0
\(934\) −55.0435 −1.80108
\(935\) 0 0
\(936\) 0 0
\(937\) 10.5191 0.343642 0.171821 0.985128i \(-0.445035\pi\)
0.171821 + 0.985128i \(0.445035\pi\)
\(938\) 40.0230 1.30680
\(939\) 0 0
\(940\) 0 0
\(941\) −54.6639 −1.78199 −0.890996 0.454011i \(-0.849993\pi\)
−0.890996 + 0.454011i \(0.849993\pi\)
\(942\) 0 0
\(943\) 78.8314 2.56710
\(944\) −46.1833 −1.50314
\(945\) 0 0
\(946\) 103.370 3.36084
\(947\) 16.4088 0.533214 0.266607 0.963805i \(-0.414097\pi\)
0.266607 + 0.963805i \(0.414097\pi\)
\(948\) 0 0
\(949\) 19.7347 0.640614
\(950\) 0 0
\(951\) 0 0
\(952\) −1.75440 −0.0568604
\(953\) −4.92122 −0.159414 −0.0797070 0.996818i \(-0.525398\pi\)
−0.0797070 + 0.996818i \(0.525398\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −38.5097 −1.24549
\(957\) 0 0
\(958\) 14.9008 0.481424
\(959\) −3.77221 −0.121811
\(960\) 0 0
\(961\) −8.05539 −0.259851
\(962\) −17.8095 −0.574200
\(963\) 0 0
\(964\) 24.4474 0.787399
\(965\) 0 0
\(966\) 0 0
\(967\) 9.16832 0.294833 0.147417 0.989074i \(-0.452904\pi\)
0.147417 + 0.989074i \(0.452904\pi\)
\(968\) −7.84016 −0.251992
\(969\) 0 0
\(970\) 0 0
\(971\) 58.9302 1.89116 0.945580 0.325391i \(-0.105496\pi\)
0.945580 + 0.325391i \(0.105496\pi\)
\(972\) 0 0
\(973\) −21.5247 −0.690051
\(974\) −42.9701 −1.37685
\(975\) 0 0
\(976\) 55.7940 1.78592
\(977\) 17.6565 0.564882 0.282441 0.959285i \(-0.408856\pi\)
0.282441 + 0.959285i \(0.408856\pi\)
\(978\) 0 0
\(979\) 21.2375 0.678753
\(980\) 0 0
\(981\) 0 0
\(982\) 39.1164 1.24826
\(983\) 2.97021 0.0947351 0.0473676 0.998878i \(-0.484917\pi\)
0.0473676 + 0.998878i \(0.484917\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −30.5759 −0.973734
\(987\) 0 0
\(988\) −4.35639 −0.138595
\(989\) 80.3619 2.55536
\(990\) 0 0
\(991\) −41.9503 −1.33259 −0.666297 0.745686i \(-0.732122\pi\)
−0.666297 + 0.745686i \(0.732122\pi\)
\(992\) −38.8538 −1.23361
\(993\) 0 0
\(994\) −1.91071 −0.0606041
\(995\) 0 0
\(996\) 0 0
\(997\) 19.6412 0.622042 0.311021 0.950403i \(-0.399329\pi\)
0.311021 + 0.950403i \(0.399329\pi\)
\(998\) −44.3541 −1.40401
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bq.1.2 6
3.2 odd 2 inner 4275.2.a.bq.1.5 yes 6
5.4 even 2 4275.2.a.bu.1.5 yes 6
15.14 odd 2 4275.2.a.bu.1.2 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4275.2.a.bq.1.2 6 1.1 even 1 trivial
4275.2.a.bq.1.5 yes 6 3.2 odd 2 inner
4275.2.a.bu.1.2 yes 6 15.14 odd 2
4275.2.a.bu.1.5 yes 6 5.4 even 2