Properties

Label 4275.2.a.bk.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +2.70928 q^{4} -1.07838 q^{7} +1.53919 q^{8} +O(q^{10})\) \(q+2.17009 q^{2} +2.70928 q^{4} -1.07838 q^{7} +1.53919 q^{8} +6.34017 q^{11} -1.36910 q^{13} -2.34017 q^{14} -2.07838 q^{16} +3.26180 q^{17} -1.00000 q^{19} +13.7587 q^{22} +2.34017 q^{23} -2.97107 q^{26} -2.92162 q^{28} -1.41855 q^{29} +8.68035 q^{31} -7.58864 q^{32} +7.07838 q^{34} -5.36910 q^{37} -2.17009 q^{38} +3.26180 q^{41} +11.9155 q^{43} +17.1773 q^{44} +5.07838 q^{46} +1.07838 q^{47} -5.83710 q^{49} -3.70928 q^{52} +6.63090 q^{53} -1.65983 q^{56} -3.07838 q^{58} +11.4186 q^{59} +5.60197 q^{61} +18.8371 q^{62} -12.3112 q^{64} -10.3896 q^{67} +8.83710 q^{68} +10.8371 q^{71} -5.41855 q^{73} -11.6514 q^{74} -2.70928 q^{76} -6.83710 q^{77} +14.2557 q^{79} +7.07838 q^{82} -14.3402 q^{83} +25.8576 q^{86} +9.75872 q^{88} -7.57531 q^{89} +1.47641 q^{91} +6.34017 q^{92} +2.34017 q^{94} +8.88655 q^{97} -12.6670 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} + 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + q^{2} + q^{4} + 3 q^{8} + 8 q^{11} - 8 q^{13} + 4 q^{14} - 3 q^{16} + 2 q^{17} - 3 q^{19} + 16 q^{22} - 4 q^{23} + 6 q^{26} - 12 q^{28} + 10 q^{29} + 4 q^{31} - 3 q^{32} + 18 q^{34} - 20 q^{37} - q^{38} + 2 q^{41} + 4 q^{43} + 12 q^{44} + 12 q^{46} + 11 q^{49} - 4 q^{52} + 16 q^{53} - 16 q^{56} - 6 q^{58} + 20 q^{59} - 2 q^{61} + 28 q^{62} - 11 q^{64} - 2 q^{67} - 2 q^{68} + 4 q^{71} - 2 q^{73} + 2 q^{74} - q^{76} + 8 q^{77} + 18 q^{82} - 32 q^{83} + 16 q^{86} + 4 q^{88} - 2 q^{89} + 20 q^{91} + 8 q^{92} - 4 q^{94} - 20 q^{97} - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 0 0
\(4\) 2.70928 1.35464
\(5\) 0 0
\(6\) 0 0
\(7\) −1.07838 −0.407588 −0.203794 0.979014i \(-0.565327\pi\)
−0.203794 + 0.979014i \(0.565327\pi\)
\(8\) 1.53919 0.544185
\(9\) 0 0
\(10\) 0 0
\(11\) 6.34017 1.91163 0.955817 0.293962i \(-0.0949740\pi\)
0.955817 + 0.293962i \(0.0949740\pi\)
\(12\) 0 0
\(13\) −1.36910 −0.379721 −0.189860 0.981811i \(-0.560804\pi\)
−0.189860 + 0.981811i \(0.560804\pi\)
\(14\) −2.34017 −0.625438
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) 3.26180 0.791102 0.395551 0.918444i \(-0.370554\pi\)
0.395551 + 0.918444i \(0.370554\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 13.7587 2.93337
\(23\) 2.34017 0.487960 0.243980 0.969780i \(-0.421547\pi\)
0.243980 + 0.969780i \(0.421547\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.97107 −0.582675
\(27\) 0 0
\(28\) −2.92162 −0.552135
\(29\) −1.41855 −0.263418 −0.131709 0.991288i \(-0.542046\pi\)
−0.131709 + 0.991288i \(0.542046\pi\)
\(30\) 0 0
\(31\) 8.68035 1.55904 0.779518 0.626380i \(-0.215464\pi\)
0.779518 + 0.626380i \(0.215464\pi\)
\(32\) −7.58864 −1.34149
\(33\) 0 0
\(34\) 7.07838 1.21393
\(35\) 0 0
\(36\) 0 0
\(37\) −5.36910 −0.882675 −0.441337 0.897341i \(-0.645496\pi\)
−0.441337 + 0.897341i \(0.645496\pi\)
\(38\) −2.17009 −0.352035
\(39\) 0 0
\(40\) 0 0
\(41\) 3.26180 0.509407 0.254703 0.967019i \(-0.418022\pi\)
0.254703 + 0.967019i \(0.418022\pi\)
\(42\) 0 0
\(43\) 11.9155 1.81709 0.908547 0.417783i \(-0.137193\pi\)
0.908547 + 0.417783i \(0.137193\pi\)
\(44\) 17.1773 2.58957
\(45\) 0 0
\(46\) 5.07838 0.748766
\(47\) 1.07838 0.157298 0.0786488 0.996902i \(-0.474939\pi\)
0.0786488 + 0.996902i \(0.474939\pi\)
\(48\) 0 0
\(49\) −5.83710 −0.833872
\(50\) 0 0
\(51\) 0 0
\(52\) −3.70928 −0.514384
\(53\) 6.63090 0.910824 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.65983 −0.221804
\(57\) 0 0
\(58\) −3.07838 −0.404211
\(59\) 11.4186 1.48657 0.743284 0.668976i \(-0.233267\pi\)
0.743284 + 0.668976i \(0.233267\pi\)
\(60\) 0 0
\(61\) 5.60197 0.717259 0.358629 0.933480i \(-0.383244\pi\)
0.358629 + 0.933480i \(0.383244\pi\)
\(62\) 18.8371 2.39231
\(63\) 0 0
\(64\) −12.3112 −1.53891
\(65\) 0 0
\(66\) 0 0
\(67\) −10.3896 −1.26929 −0.634647 0.772802i \(-0.718855\pi\)
−0.634647 + 0.772802i \(0.718855\pi\)
\(68\) 8.83710 1.07166
\(69\) 0 0
\(70\) 0 0
\(71\) 10.8371 1.28613 0.643064 0.765813i \(-0.277663\pi\)
0.643064 + 0.765813i \(0.277663\pi\)
\(72\) 0 0
\(73\) −5.41855 −0.634193 −0.317097 0.948393i \(-0.602708\pi\)
−0.317097 + 0.948393i \(0.602708\pi\)
\(74\) −11.6514 −1.35445
\(75\) 0 0
\(76\) −2.70928 −0.310775
\(77\) −6.83710 −0.779160
\(78\) 0 0
\(79\) 14.2557 1.60389 0.801943 0.597400i \(-0.203800\pi\)
0.801943 + 0.597400i \(0.203800\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.07838 0.781676
\(83\) −14.3402 −1.57404 −0.787019 0.616928i \(-0.788377\pi\)
−0.787019 + 0.616928i \(0.788377\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 25.8576 2.78830
\(87\) 0 0
\(88\) 9.75872 1.04028
\(89\) −7.57531 −0.802981 −0.401490 0.915863i \(-0.631508\pi\)
−0.401490 + 0.915863i \(0.631508\pi\)
\(90\) 0 0
\(91\) 1.47641 0.154770
\(92\) 6.34017 0.661009
\(93\) 0 0
\(94\) 2.34017 0.241370
\(95\) 0 0
\(96\) 0 0
\(97\) 8.88655 0.902292 0.451146 0.892450i \(-0.351015\pi\)
0.451146 + 0.892450i \(0.351015\pi\)
\(98\) −12.6670 −1.27956
\(99\) 0 0
\(100\) 0 0
\(101\) 4.92162 0.489720 0.244860 0.969558i \(-0.421258\pi\)
0.244860 + 0.969558i \(0.421258\pi\)
\(102\) 0 0
\(103\) −6.38962 −0.629588 −0.314794 0.949160i \(-0.601935\pi\)
−0.314794 + 0.949160i \(0.601935\pi\)
\(104\) −2.10731 −0.206638
\(105\) 0 0
\(106\) 14.3896 1.39764
\(107\) 2.29072 0.221453 0.110726 0.993851i \(-0.464682\pi\)
0.110726 + 0.993851i \(0.464682\pi\)
\(108\) 0 0
\(109\) −12.8371 −1.22957 −0.614786 0.788694i \(-0.710757\pi\)
−0.614786 + 0.788694i \(0.710757\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.24128 0.211781
\(113\) −12.8865 −1.21226 −0.606132 0.795364i \(-0.707280\pi\)
−0.606132 + 0.795364i \(0.707280\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3.84324 −0.356836
\(117\) 0 0
\(118\) 24.7792 2.28111
\(119\) −3.51745 −0.322444
\(120\) 0 0
\(121\) 29.1978 2.65434
\(122\) 12.1568 1.10062
\(123\) 0 0
\(124\) 23.5174 2.11193
\(125\) 0 0
\(126\) 0 0
\(127\) 8.23287 0.730549 0.365274 0.930900i \(-0.380975\pi\)
0.365274 + 0.930900i \(0.380975\pi\)
\(128\) −11.5392 −1.01993
\(129\) 0 0
\(130\) 0 0
\(131\) −1.47641 −0.128995 −0.0644973 0.997918i \(-0.520544\pi\)
−0.0644973 + 0.997918i \(0.520544\pi\)
\(132\) 0 0
\(133\) 1.07838 0.0935072
\(134\) −22.5464 −1.94771
\(135\) 0 0
\(136\) 5.02052 0.430506
\(137\) −3.94214 −0.336800 −0.168400 0.985719i \(-0.553860\pi\)
−0.168400 + 0.985719i \(0.553860\pi\)
\(138\) 0 0
\(139\) 8.86376 0.751815 0.375907 0.926657i \(-0.377331\pi\)
0.375907 + 0.926657i \(0.377331\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 23.5174 1.97354
\(143\) −8.68035 −0.725887
\(144\) 0 0
\(145\) 0 0
\(146\) −11.7587 −0.973159
\(147\) 0 0
\(148\) −14.5464 −1.19570
\(149\) 19.7587 1.61870 0.809349 0.587328i \(-0.199820\pi\)
0.809349 + 0.587328i \(0.199820\pi\)
\(150\) 0 0
\(151\) 3.41855 0.278198 0.139099 0.990279i \(-0.455579\pi\)
0.139099 + 0.990279i \(0.455579\pi\)
\(152\) −1.53919 −0.124845
\(153\) 0 0
\(154\) −14.8371 −1.19561
\(155\) 0 0
\(156\) 0 0
\(157\) −9.41855 −0.751682 −0.375841 0.926684i \(-0.622646\pi\)
−0.375841 + 0.926684i \(0.622646\pi\)
\(158\) 30.9360 2.46114
\(159\) 0 0
\(160\) 0 0
\(161\) −2.52359 −0.198887
\(162\) 0 0
\(163\) 2.92162 0.228839 0.114420 0.993433i \(-0.463499\pi\)
0.114420 + 0.993433i \(0.463499\pi\)
\(164\) 8.83710 0.690062
\(165\) 0 0
\(166\) −31.1194 −2.41534
\(167\) 20.9132 1.61831 0.809156 0.587593i \(-0.199924\pi\)
0.809156 + 0.587593i \(0.199924\pi\)
\(168\) 0 0
\(169\) −11.1256 −0.855812
\(170\) 0 0
\(171\) 0 0
\(172\) 32.2823 2.46150
\(173\) −1.05559 −0.0802551 −0.0401276 0.999195i \(-0.512776\pi\)
−0.0401276 + 0.999195i \(0.512776\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −13.1773 −0.993274
\(177\) 0 0
\(178\) −16.4391 −1.23216
\(179\) −0.894960 −0.0668925 −0.0334462 0.999441i \(-0.510648\pi\)
−0.0334462 + 0.999441i \(0.510648\pi\)
\(180\) 0 0
\(181\) −0.837101 −0.0622213 −0.0311106 0.999516i \(-0.509904\pi\)
−0.0311106 + 0.999516i \(0.509904\pi\)
\(182\) 3.20394 0.237492
\(183\) 0 0
\(184\) 3.60197 0.265541
\(185\) 0 0
\(186\) 0 0
\(187\) 20.6803 1.51230
\(188\) 2.92162 0.213081
\(189\) 0 0
\(190\) 0 0
\(191\) −22.0410 −1.59483 −0.797417 0.603429i \(-0.793801\pi\)
−0.797417 + 0.603429i \(0.793801\pi\)
\(192\) 0 0
\(193\) −12.7877 −0.920475 −0.460238 0.887796i \(-0.652236\pi\)
−0.460238 + 0.887796i \(0.652236\pi\)
\(194\) 19.2846 1.38455
\(195\) 0 0
\(196\) −15.8143 −1.12959
\(197\) −9.20394 −0.655753 −0.327877 0.944721i \(-0.606333\pi\)
−0.327877 + 0.944721i \(0.606333\pi\)
\(198\) 0 0
\(199\) −16.1978 −1.14823 −0.574116 0.818774i \(-0.694654\pi\)
−0.574116 + 0.818774i \(0.694654\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.6803 0.751467
\(203\) 1.52973 0.107366
\(204\) 0 0
\(205\) 0 0
\(206\) −13.8660 −0.966092
\(207\) 0 0
\(208\) 2.84551 0.197301
\(209\) −6.34017 −0.438559
\(210\) 0 0
\(211\) 7.78539 0.535968 0.267984 0.963423i \(-0.413643\pi\)
0.267984 + 0.963423i \(0.413643\pi\)
\(212\) 17.9649 1.23384
\(213\) 0 0
\(214\) 4.97107 0.339815
\(215\) 0 0
\(216\) 0 0
\(217\) −9.36069 −0.635445
\(218\) −27.8576 −1.88676
\(219\) 0 0
\(220\) 0 0
\(221\) −4.46573 −0.300398
\(222\) 0 0
\(223\) −12.5464 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(224\) 8.18342 0.546778
\(225\) 0 0
\(226\) −27.9649 −1.86020
\(227\) 2.29072 0.152041 0.0760204 0.997106i \(-0.475779\pi\)
0.0760204 + 0.997106i \(0.475779\pi\)
\(228\) 0 0
\(229\) −5.91548 −0.390906 −0.195453 0.980713i \(-0.562618\pi\)
−0.195453 + 0.980713i \(0.562618\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.18342 −0.143348
\(233\) 13.5174 0.885557 0.442779 0.896631i \(-0.353993\pi\)
0.442779 + 0.896631i \(0.353993\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 30.9360 2.01376
\(237\) 0 0
\(238\) −7.63317 −0.494785
\(239\) −13.8432 −0.895445 −0.447723 0.894173i \(-0.647765\pi\)
−0.447723 + 0.894173i \(0.647765\pi\)
\(240\) 0 0
\(241\) 7.26180 0.467773 0.233887 0.972264i \(-0.424856\pi\)
0.233887 + 0.972264i \(0.424856\pi\)
\(242\) 63.3617 4.07305
\(243\) 0 0
\(244\) 15.1773 0.971625
\(245\) 0 0
\(246\) 0 0
\(247\) 1.36910 0.0871139
\(248\) 13.3607 0.848405
\(249\) 0 0
\(250\) 0 0
\(251\) −10.4703 −0.660877 −0.330439 0.943827i \(-0.607197\pi\)
−0.330439 + 0.943827i \(0.607197\pi\)
\(252\) 0 0
\(253\) 14.8371 0.932801
\(254\) 17.8660 1.12101
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) −23.6248 −1.47367 −0.736836 0.676072i \(-0.763681\pi\)
−0.736836 + 0.676072i \(0.763681\pi\)
\(258\) 0 0
\(259\) 5.78992 0.359768
\(260\) 0 0
\(261\) 0 0
\(262\) −3.20394 −0.197940
\(263\) 5.65983 0.349000 0.174500 0.984657i \(-0.444169\pi\)
0.174500 + 0.984657i \(0.444169\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.34017 0.143485
\(267\) 0 0
\(268\) −28.1483 −1.71943
\(269\) 2.31351 0.141057 0.0705286 0.997510i \(-0.477531\pi\)
0.0705286 + 0.997510i \(0.477531\pi\)
\(270\) 0 0
\(271\) −19.7009 −1.19674 −0.598371 0.801219i \(-0.704185\pi\)
−0.598371 + 0.801219i \(0.704185\pi\)
\(272\) −6.77924 −0.411052
\(273\) 0 0
\(274\) −8.55479 −0.516814
\(275\) 0 0
\(276\) 0 0
\(277\) 25.7321 1.54609 0.773045 0.634351i \(-0.218733\pi\)
0.773045 + 0.634351i \(0.218733\pi\)
\(278\) 19.2351 1.15365
\(279\) 0 0
\(280\) 0 0
\(281\) 6.58145 0.392616 0.196308 0.980542i \(-0.437105\pi\)
0.196308 + 0.980542i \(0.437105\pi\)
\(282\) 0 0
\(283\) 0.496928 0.0295393 0.0147697 0.999891i \(-0.495298\pi\)
0.0147697 + 0.999891i \(0.495298\pi\)
\(284\) 29.3607 1.74224
\(285\) 0 0
\(286\) −18.8371 −1.11386
\(287\) −3.51745 −0.207628
\(288\) 0 0
\(289\) −6.36069 −0.374158
\(290\) 0 0
\(291\) 0 0
\(292\) −14.6803 −0.859102
\(293\) 6.63090 0.387381 0.193691 0.981063i \(-0.437954\pi\)
0.193691 + 0.981063i \(0.437954\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.26406 −0.480339
\(297\) 0 0
\(298\) 42.8781 2.48386
\(299\) −3.20394 −0.185288
\(300\) 0 0
\(301\) −12.8494 −0.740626
\(302\) 7.41855 0.426890
\(303\) 0 0
\(304\) 2.07838 0.119203
\(305\) 0 0
\(306\) 0 0
\(307\) −14.6042 −0.833508 −0.416754 0.909019i \(-0.636832\pi\)
−0.416754 + 0.909019i \(0.636832\pi\)
\(308\) −18.5236 −1.05548
\(309\) 0 0
\(310\) 0 0
\(311\) −19.3340 −1.09633 −0.548166 0.836369i \(-0.684674\pi\)
−0.548166 + 0.836369i \(0.684674\pi\)
\(312\) 0 0
\(313\) −30.6803 −1.73416 −0.867078 0.498173i \(-0.834005\pi\)
−0.867078 + 0.498173i \(0.834005\pi\)
\(314\) −20.4391 −1.15344
\(315\) 0 0
\(316\) 38.6225 2.17268
\(317\) 18.7298 1.05197 0.525985 0.850494i \(-0.323697\pi\)
0.525985 + 0.850494i \(0.323697\pi\)
\(318\) 0 0
\(319\) −8.99386 −0.503559
\(320\) 0 0
\(321\) 0 0
\(322\) −5.47641 −0.305188
\(323\) −3.26180 −0.181491
\(324\) 0 0
\(325\) 0 0
\(326\) 6.34017 0.351150
\(327\) 0 0
\(328\) 5.02052 0.277212
\(329\) −1.16290 −0.0641127
\(330\) 0 0
\(331\) −2.73820 −0.150505 −0.0752527 0.997164i \(-0.523976\pi\)
−0.0752527 + 0.997164i \(0.523976\pi\)
\(332\) −38.8515 −2.13225
\(333\) 0 0
\(334\) 45.3835 2.48327
\(335\) 0 0
\(336\) 0 0
\(337\) 6.04945 0.329534 0.164767 0.986332i \(-0.447313\pi\)
0.164767 + 0.986332i \(0.447313\pi\)
\(338\) −24.1434 −1.31323
\(339\) 0 0
\(340\) 0 0
\(341\) 55.0349 2.98031
\(342\) 0 0
\(343\) 13.8432 0.747465
\(344\) 18.3402 0.988836
\(345\) 0 0
\(346\) −2.29072 −0.123150
\(347\) −5.97334 −0.320666 −0.160333 0.987063i \(-0.551257\pi\)
−0.160333 + 0.987063i \(0.551257\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −48.1133 −2.56445
\(353\) −14.0989 −0.750409 −0.375204 0.926942i \(-0.622427\pi\)
−0.375204 + 0.926942i \(0.622427\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −20.5236 −1.08775
\(357\) 0 0
\(358\) −1.94214 −0.102645
\(359\) −6.02666 −0.318075 −0.159038 0.987273i \(-0.550839\pi\)
−0.159038 + 0.987273i \(0.550839\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −1.81658 −0.0954775
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) 0 0
\(367\) −1.07838 −0.0562909 −0.0281454 0.999604i \(-0.508960\pi\)
−0.0281454 + 0.999604i \(0.508960\pi\)
\(368\) −4.86376 −0.253541
\(369\) 0 0
\(370\) 0 0
\(371\) −7.15061 −0.371241
\(372\) 0 0
\(373\) −12.3051 −0.637134 −0.318567 0.947900i \(-0.603202\pi\)
−0.318567 + 0.947900i \(0.603202\pi\)
\(374\) 44.8781 2.32059
\(375\) 0 0
\(376\) 1.65983 0.0855990
\(377\) 1.94214 0.100025
\(378\) 0 0
\(379\) 1.04718 0.0537901 0.0268950 0.999638i \(-0.491438\pi\)
0.0268950 + 0.999638i \(0.491438\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −47.8310 −2.44724
\(383\) 0.0806452 0.00412078 0.00206039 0.999998i \(-0.499344\pi\)
0.00206039 + 0.999998i \(0.499344\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −27.7503 −1.41245
\(387\) 0 0
\(388\) 24.0761 1.22228
\(389\) 20.5236 1.04059 0.520294 0.853987i \(-0.325822\pi\)
0.520294 + 0.853987i \(0.325822\pi\)
\(390\) 0 0
\(391\) 7.63317 0.386026
\(392\) −8.98440 −0.453781
\(393\) 0 0
\(394\) −19.9733 −1.00624
\(395\) 0 0
\(396\) 0 0
\(397\) −39.4596 −1.98042 −0.990210 0.139586i \(-0.955423\pi\)
−0.990210 + 0.139586i \(0.955423\pi\)
\(398\) −35.1506 −1.76194
\(399\) 0 0
\(400\) 0 0
\(401\) −0.470266 −0.0234840 −0.0117420 0.999931i \(-0.503738\pi\)
−0.0117420 + 0.999931i \(0.503738\pi\)
\(402\) 0 0
\(403\) −11.8843 −0.591998
\(404\) 13.3340 0.663393
\(405\) 0 0
\(406\) 3.31965 0.164752
\(407\) −34.0410 −1.68735
\(408\) 0 0
\(409\) 10.4826 0.518329 0.259164 0.965833i \(-0.416553\pi\)
0.259164 + 0.965833i \(0.416553\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −17.3112 −0.852864
\(413\) −12.3135 −0.605908
\(414\) 0 0
\(415\) 0 0
\(416\) 10.3896 0.509393
\(417\) 0 0
\(418\) −13.7587 −0.672961
\(419\) −34.6681 −1.69365 −0.846823 0.531875i \(-0.821488\pi\)
−0.846823 + 0.531875i \(0.821488\pi\)
\(420\) 0 0
\(421\) −34.6102 −1.68680 −0.843399 0.537288i \(-0.819449\pi\)
−0.843399 + 0.537288i \(0.819449\pi\)
\(422\) 16.8950 0.822434
\(423\) 0 0
\(424\) 10.2062 0.495657
\(425\) 0 0
\(426\) 0 0
\(427\) −6.04104 −0.292346
\(428\) 6.20620 0.299988
\(429\) 0 0
\(430\) 0 0
\(431\) −6.73820 −0.324568 −0.162284 0.986744i \(-0.551886\pi\)
−0.162284 + 0.986744i \(0.551886\pi\)
\(432\) 0 0
\(433\) −20.4741 −0.983924 −0.491962 0.870617i \(-0.663720\pi\)
−0.491962 + 0.870617i \(0.663720\pi\)
\(434\) −20.3135 −0.975080
\(435\) 0 0
\(436\) −34.7792 −1.66562
\(437\) −2.34017 −0.111946
\(438\) 0 0
\(439\) −21.4596 −1.02421 −0.512105 0.858923i \(-0.671134\pi\)
−0.512105 + 0.858923i \(0.671134\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.69102 −0.460955
\(443\) −21.5441 −1.02359 −0.511796 0.859107i \(-0.671020\pi\)
−0.511796 + 0.859107i \(0.671020\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −27.2267 −1.28922
\(447\) 0 0
\(448\) 13.2762 0.627240
\(449\) 8.47027 0.399737 0.199868 0.979823i \(-0.435949\pi\)
0.199868 + 0.979823i \(0.435949\pi\)
\(450\) 0 0
\(451\) 20.6803 0.973799
\(452\) −34.9132 −1.64218
\(453\) 0 0
\(454\) 4.97107 0.233304
\(455\) 0 0
\(456\) 0 0
\(457\) −11.3607 −0.531431 −0.265715 0.964052i \(-0.585608\pi\)
−0.265715 + 0.964052i \(0.585608\pi\)
\(458\) −12.8371 −0.599838
\(459\) 0 0
\(460\) 0 0
\(461\) −3.04718 −0.141921 −0.0709607 0.997479i \(-0.522606\pi\)
−0.0709607 + 0.997479i \(0.522606\pi\)
\(462\) 0 0
\(463\) 9.97334 0.463500 0.231750 0.972775i \(-0.425555\pi\)
0.231750 + 0.972775i \(0.425555\pi\)
\(464\) 2.94828 0.136871
\(465\) 0 0
\(466\) 29.3340 1.35887
\(467\) 1.49079 0.0689853 0.0344927 0.999405i \(-0.489018\pi\)
0.0344927 + 0.999405i \(0.489018\pi\)
\(468\) 0 0
\(469\) 11.2039 0.517350
\(470\) 0 0
\(471\) 0 0
\(472\) 17.5753 0.808969
\(473\) 75.5462 3.47362
\(474\) 0 0
\(475\) 0 0
\(476\) −9.52973 −0.436795
\(477\) 0 0
\(478\) −30.0410 −1.37405
\(479\) 10.1711 0.464731 0.232365 0.972629i \(-0.425353\pi\)
0.232365 + 0.972629i \(0.425353\pi\)
\(480\) 0 0
\(481\) 7.35085 0.335170
\(482\) 15.7587 0.717790
\(483\) 0 0
\(484\) 79.1049 3.59568
\(485\) 0 0
\(486\) 0 0
\(487\) 24.2784 1.10016 0.550081 0.835112i \(-0.314597\pi\)
0.550081 + 0.835112i \(0.314597\pi\)
\(488\) 8.62249 0.390322
\(489\) 0 0
\(490\) 0 0
\(491\) −19.2039 −0.866662 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(492\) 0 0
\(493\) −4.62702 −0.208391
\(494\) 2.97107 0.133675
\(495\) 0 0
\(496\) −18.0410 −0.810067
\(497\) −11.6865 −0.524211
\(498\) 0 0
\(499\) 7.33403 0.328316 0.164158 0.986434i \(-0.447509\pi\)
0.164158 + 0.986434i \(0.447509\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −22.7214 −1.01410
\(503\) 29.0616 1.29579 0.647895 0.761729i \(-0.275649\pi\)
0.647895 + 0.761729i \(0.275649\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 32.1978 1.43137
\(507\) 0 0
\(508\) 22.3051 0.989629
\(509\) −26.0456 −1.15445 −0.577225 0.816585i \(-0.695864\pi\)
−0.577225 + 0.816585i \(0.695864\pi\)
\(510\) 0 0
\(511\) 5.84324 0.258490
\(512\) 22.1701 0.979789
\(513\) 0 0
\(514\) −51.2678 −2.26132
\(515\) 0 0
\(516\) 0 0
\(517\) 6.83710 0.300695
\(518\) 12.5646 0.552058
\(519\) 0 0
\(520\) 0 0
\(521\) 38.8248 1.70095 0.850473 0.526019i \(-0.176316\pi\)
0.850473 + 0.526019i \(0.176316\pi\)
\(522\) 0 0
\(523\) −4.59970 −0.201131 −0.100565 0.994930i \(-0.532065\pi\)
−0.100565 + 0.994930i \(0.532065\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 12.2823 0.535534
\(527\) 28.3135 1.23336
\(528\) 0 0
\(529\) −17.5236 −0.761895
\(530\) 0 0
\(531\) 0 0
\(532\) 2.92162 0.126668
\(533\) −4.46573 −0.193432
\(534\) 0 0
\(535\) 0 0
\(536\) −15.9916 −0.690731
\(537\) 0 0
\(538\) 5.02052 0.216450
\(539\) −37.0082 −1.59406
\(540\) 0 0
\(541\) −12.1256 −0.521318 −0.260659 0.965431i \(-0.583940\pi\)
−0.260659 + 0.965431i \(0.583940\pi\)
\(542\) −42.7526 −1.83638
\(543\) 0 0
\(544\) −24.7526 −1.06126
\(545\) 0 0
\(546\) 0 0
\(547\) 9.54023 0.407911 0.203955 0.978980i \(-0.434620\pi\)
0.203955 + 0.978980i \(0.434620\pi\)
\(548\) −10.6803 −0.456242
\(549\) 0 0
\(550\) 0 0
\(551\) 1.41855 0.0604323
\(552\) 0 0
\(553\) −15.3730 −0.653726
\(554\) 55.8408 2.37245
\(555\) 0 0
\(556\) 24.0144 1.01844
\(557\) 19.9421 0.844976 0.422488 0.906369i \(-0.361157\pi\)
0.422488 + 0.906369i \(0.361157\pi\)
\(558\) 0 0
\(559\) −16.3135 −0.689988
\(560\) 0 0
\(561\) 0 0
\(562\) 14.2823 0.602463
\(563\) 23.5525 0.992620 0.496310 0.868145i \(-0.334688\pi\)
0.496310 + 0.868145i \(0.334688\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.07838 0.0453276
\(567\) 0 0
\(568\) 16.6803 0.699892
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −23.5031 −0.983573 −0.491786 0.870716i \(-0.663656\pi\)
−0.491786 + 0.870716i \(0.663656\pi\)
\(572\) −23.5174 −0.983314
\(573\) 0 0
\(574\) −7.63317 −0.318602
\(575\) 0 0
\(576\) 0 0
\(577\) −16.4703 −0.685666 −0.342833 0.939396i \(-0.611387\pi\)
−0.342833 + 0.939396i \(0.611387\pi\)
\(578\) −13.8033 −0.574140
\(579\) 0 0
\(580\) 0 0
\(581\) 15.4641 0.641560
\(582\) 0 0
\(583\) 42.0410 1.74116
\(584\) −8.34017 −0.345119
\(585\) 0 0
\(586\) 14.3896 0.594430
\(587\) −28.8104 −1.18913 −0.594567 0.804046i \(-0.702677\pi\)
−0.594567 + 0.804046i \(0.702677\pi\)
\(588\) 0 0
\(589\) −8.68035 −0.357667
\(590\) 0 0
\(591\) 0 0
\(592\) 11.1590 0.458633
\(593\) −43.2450 −1.77586 −0.887929 0.459980i \(-0.847856\pi\)
−0.887929 + 0.459980i \(0.847856\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 53.5318 2.19275
\(597\) 0 0
\(598\) −6.95282 −0.284322
\(599\) 44.2967 1.80991 0.904957 0.425503i \(-0.139903\pi\)
0.904957 + 0.425503i \(0.139903\pi\)
\(600\) 0 0
\(601\) −24.3090 −0.991584 −0.495792 0.868441i \(-0.665122\pi\)
−0.495792 + 0.868441i \(0.665122\pi\)
\(602\) −27.8843 −1.13648
\(603\) 0 0
\(604\) 9.26180 0.376857
\(605\) 0 0
\(606\) 0 0
\(607\) 6.29072 0.255333 0.127666 0.991817i \(-0.459251\pi\)
0.127666 + 0.991817i \(0.459251\pi\)
\(608\) 7.58864 0.307760
\(609\) 0 0
\(610\) 0 0
\(611\) −1.47641 −0.0597291
\(612\) 0 0
\(613\) 12.7915 0.516645 0.258322 0.966059i \(-0.416830\pi\)
0.258322 + 0.966059i \(0.416830\pi\)
\(614\) −31.6925 −1.27900
\(615\) 0 0
\(616\) −10.5236 −0.424008
\(617\) 17.9299 0.721829 0.360914 0.932599i \(-0.382465\pi\)
0.360914 + 0.932599i \(0.382465\pi\)
\(618\) 0 0
\(619\) 26.8515 1.07925 0.539626 0.841905i \(-0.318566\pi\)
0.539626 + 0.841905i \(0.318566\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −41.9565 −1.68230
\(623\) 8.16904 0.327286
\(624\) 0 0
\(625\) 0 0
\(626\) −66.5790 −2.66103
\(627\) 0 0
\(628\) −25.5174 −1.01826
\(629\) −17.5129 −0.698286
\(630\) 0 0
\(631\) 35.5318 1.41450 0.707250 0.706964i \(-0.249936\pi\)
0.707250 + 0.706964i \(0.249936\pi\)
\(632\) 21.9421 0.872812
\(633\) 0 0
\(634\) 40.6453 1.61423
\(635\) 0 0
\(636\) 0 0
\(637\) 7.99159 0.316638
\(638\) −19.5174 −0.772703
\(639\) 0 0
\(640\) 0 0
\(641\) −12.9360 −0.510941 −0.255471 0.966817i \(-0.582230\pi\)
−0.255471 + 0.966817i \(0.582230\pi\)
\(642\) 0 0
\(643\) −8.49693 −0.335086 −0.167543 0.985865i \(-0.553583\pi\)
−0.167543 + 0.985865i \(0.553583\pi\)
\(644\) −6.83710 −0.269420
\(645\) 0 0
\(646\) −7.07838 −0.278495
\(647\) −45.4908 −1.78843 −0.894214 0.447640i \(-0.852264\pi\)
−0.894214 + 0.447640i \(0.852264\pi\)
\(648\) 0 0
\(649\) 72.3956 2.84178
\(650\) 0 0
\(651\) 0 0
\(652\) 7.91548 0.309994
\(653\) 35.9421 1.40652 0.703262 0.710930i \(-0.251726\pi\)
0.703262 + 0.710930i \(0.251726\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.77924 −0.264685
\(657\) 0 0
\(658\) −2.52359 −0.0983798
\(659\) −30.9360 −1.20510 −0.602548 0.798083i \(-0.705848\pi\)
−0.602548 + 0.798083i \(0.705848\pi\)
\(660\) 0 0
\(661\) 10.0989 0.392802 0.196401 0.980524i \(-0.437075\pi\)
0.196401 + 0.980524i \(0.437075\pi\)
\(662\) −5.94214 −0.230948
\(663\) 0 0
\(664\) −22.0722 −0.856569
\(665\) 0 0
\(666\) 0 0
\(667\) −3.31965 −0.128538
\(668\) 56.6596 2.19223
\(669\) 0 0
\(670\) 0 0
\(671\) 35.5174 1.37114
\(672\) 0 0
\(673\) 8.67194 0.334279 0.167139 0.985933i \(-0.446547\pi\)
0.167139 + 0.985933i \(0.446547\pi\)
\(674\) 13.1278 0.505665
\(675\) 0 0
\(676\) −30.1422 −1.15932
\(677\) 41.9793 1.61340 0.806698 0.590964i \(-0.201253\pi\)
0.806698 + 0.590964i \(0.201253\pi\)
\(678\) 0 0
\(679\) −9.58306 −0.367764
\(680\) 0 0
\(681\) 0 0
\(682\) 119.430 4.57323
\(683\) 46.3896 1.77505 0.887525 0.460760i \(-0.152423\pi\)
0.887525 + 0.460760i \(0.152423\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 30.0410 1.14697
\(687\) 0 0
\(688\) −24.7649 −0.944152
\(689\) −9.07838 −0.345859
\(690\) 0 0
\(691\) −34.8515 −1.32581 −0.662906 0.748702i \(-0.730677\pi\)
−0.662906 + 0.748702i \(0.730677\pi\)
\(692\) −2.85989 −0.108717
\(693\) 0 0
\(694\) −12.9627 −0.492056
\(695\) 0 0
\(696\) 0 0
\(697\) 10.6393 0.402993
\(698\) −21.7009 −0.821390
\(699\) 0 0
\(700\) 0 0
\(701\) −35.6430 −1.34622 −0.673109 0.739543i \(-0.735041\pi\)
−0.673109 + 0.739543i \(0.735041\pi\)
\(702\) 0 0
\(703\) 5.36910 0.202500
\(704\) −78.0554 −2.94182
\(705\) 0 0
\(706\) −30.5958 −1.15149
\(707\) −5.30737 −0.199604
\(708\) 0 0
\(709\) 16.7214 0.627985 0.313992 0.949426i \(-0.398333\pi\)
0.313992 + 0.949426i \(0.398333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.6598 −0.436970
\(713\) 20.3135 0.760747
\(714\) 0 0
\(715\) 0 0
\(716\) −2.42469 −0.0906151
\(717\) 0 0
\(718\) −13.0784 −0.488081
\(719\) 6.85148 0.255517 0.127758 0.991805i \(-0.459222\pi\)
0.127758 + 0.991805i \(0.459222\pi\)
\(720\) 0 0
\(721\) 6.89043 0.256613
\(722\) 2.17009 0.0807623
\(723\) 0 0
\(724\) −2.26794 −0.0842873
\(725\) 0 0
\(726\) 0 0
\(727\) −34.4391 −1.27727 −0.638637 0.769508i \(-0.720502\pi\)
−0.638637 + 0.769508i \(0.720502\pi\)
\(728\) 2.27247 0.0842235
\(729\) 0 0
\(730\) 0 0
\(731\) 38.8659 1.43751
\(732\) 0 0
\(733\) 19.3607 0.715103 0.357552 0.933893i \(-0.383612\pi\)
0.357552 + 0.933893i \(0.383612\pi\)
\(734\) −2.34017 −0.0863774
\(735\) 0 0
\(736\) −17.7587 −0.654595
\(737\) −65.8720 −2.42643
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −15.5174 −0.569663
\(743\) −12.7154 −0.466483 −0.233242 0.972419i \(-0.574933\pi\)
−0.233242 + 0.972419i \(0.574933\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −26.7031 −0.977671
\(747\) 0 0
\(748\) 56.0288 2.04861
\(749\) −2.47027 −0.0902616
\(750\) 0 0
\(751\) 3.15836 0.115250 0.0576252 0.998338i \(-0.481647\pi\)
0.0576252 + 0.998338i \(0.481647\pi\)
\(752\) −2.24128 −0.0817309
\(753\) 0 0
\(754\) 4.21461 0.153487
\(755\) 0 0
\(756\) 0 0
\(757\) −28.0410 −1.01917 −0.509584 0.860421i \(-0.670201\pi\)
−0.509584 + 0.860421i \(0.670201\pi\)
\(758\) 2.27247 0.0825399
\(759\) 0 0
\(760\) 0 0
\(761\) 16.4924 0.597849 0.298924 0.954277i \(-0.403372\pi\)
0.298924 + 0.954277i \(0.403372\pi\)
\(762\) 0 0
\(763\) 13.8432 0.501159
\(764\) −59.7152 −2.16042
\(765\) 0 0
\(766\) 0.175007 0.00632326
\(767\) −15.6332 −0.564481
\(768\) 0 0
\(769\) 26.9627 0.972298 0.486149 0.873876i \(-0.338401\pi\)
0.486149 + 0.873876i \(0.338401\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −34.6453 −1.24691
\(773\) 42.1939 1.51761 0.758805 0.651318i \(-0.225784\pi\)
0.758805 + 0.651318i \(0.225784\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 13.6781 0.491014
\(777\) 0 0
\(778\) 44.5380 1.59676
\(779\) −3.26180 −0.116866
\(780\) 0 0
\(781\) 68.7091 2.45860
\(782\) 16.5646 0.592350
\(783\) 0 0
\(784\) 12.1317 0.433275
\(785\) 0 0
\(786\) 0 0
\(787\) 35.4368 1.26319 0.631593 0.775300i \(-0.282401\pi\)
0.631593 + 0.775300i \(0.282401\pi\)
\(788\) −24.9360 −0.888308
\(789\) 0 0
\(790\) 0 0
\(791\) 13.8966 0.494105
\(792\) 0 0
\(793\) −7.66967 −0.272358
\(794\) −85.6307 −3.03892
\(795\) 0 0
\(796\) −43.8843 −1.55544
\(797\) 15.2579 0.540463 0.270232 0.962795i \(-0.412900\pi\)
0.270232 + 0.962795i \(0.412900\pi\)
\(798\) 0 0
\(799\) 3.51745 0.124438
\(800\) 0 0
\(801\) 0 0
\(802\) −1.02052 −0.0360358
\(803\) −34.3545 −1.21235
\(804\) 0 0
\(805\) 0 0
\(806\) −25.7899 −0.908411
\(807\) 0 0
\(808\) 7.57531 0.266498
\(809\) 7.16290 0.251834 0.125917 0.992041i \(-0.459813\pi\)
0.125917 + 0.992041i \(0.459813\pi\)
\(810\) 0 0
\(811\) −50.3545 −1.76819 −0.884094 0.467310i \(-0.845223\pi\)
−0.884094 + 0.467310i \(0.845223\pi\)
\(812\) 4.14447 0.145442
\(813\) 0 0
\(814\) −73.8720 −2.58921
\(815\) 0 0
\(816\) 0 0
\(817\) −11.9155 −0.416870
\(818\) 22.7480 0.795367
\(819\) 0 0
\(820\) 0 0
\(821\) −0.952819 −0.0332536 −0.0166268 0.999862i \(-0.505293\pi\)
−0.0166268 + 0.999862i \(0.505293\pi\)
\(822\) 0 0
\(823\) 44.2290 1.54173 0.770863 0.637001i \(-0.219825\pi\)
0.770863 + 0.637001i \(0.219825\pi\)
\(824\) −9.83483 −0.342613
\(825\) 0 0
\(826\) −26.7214 −0.929756
\(827\) −37.8615 −1.31657 −0.658287 0.752767i \(-0.728719\pi\)
−0.658287 + 0.752767i \(0.728719\pi\)
\(828\) 0 0
\(829\) −56.7214 −1.97002 −0.985008 0.172511i \(-0.944812\pi\)
−0.985008 + 0.172511i \(0.944812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 16.8554 0.584354
\(833\) −19.0394 −0.659677
\(834\) 0 0
\(835\) 0 0
\(836\) −17.1773 −0.594088
\(837\) 0 0
\(838\) −75.2327 −2.59887
\(839\) 28.3591 0.979064 0.489532 0.871985i \(-0.337168\pi\)
0.489532 + 0.871985i \(0.337168\pi\)
\(840\) 0 0
\(841\) −26.9877 −0.930611
\(842\) −75.1071 −2.58836
\(843\) 0 0
\(844\) 21.0928 0.726043
\(845\) 0 0
\(846\) 0 0
\(847\) −31.4863 −1.08188
\(848\) −13.7815 −0.473259
\(849\) 0 0
\(850\) 0 0
\(851\) −12.5646 −0.430710
\(852\) 0 0
\(853\) 17.0061 0.582279 0.291140 0.956681i \(-0.405966\pi\)
0.291140 + 0.956681i \(0.405966\pi\)
\(854\) −13.1096 −0.448600
\(855\) 0 0
\(856\) 3.52586 0.120511
\(857\) 15.4101 0.526400 0.263200 0.964741i \(-0.415222\pi\)
0.263200 + 0.964741i \(0.415222\pi\)
\(858\) 0 0
\(859\) −37.7275 −1.28725 −0.643623 0.765342i \(-0.722570\pi\)
−0.643623 + 0.765342i \(0.722570\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −14.6225 −0.498044
\(863\) 32.1340 1.09385 0.546927 0.837181i \(-0.315798\pi\)
0.546927 + 0.837181i \(0.315798\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −44.4307 −1.50982
\(867\) 0 0
\(868\) −25.3607 −0.860798
\(869\) 90.3833 3.06604
\(870\) 0 0
\(871\) 14.2245 0.481977
\(872\) −19.7587 −0.669115
\(873\) 0 0
\(874\) −5.07838 −0.171779
\(875\) 0 0
\(876\) 0 0
\(877\) 19.8927 0.671729 0.335864 0.941910i \(-0.390972\pi\)
0.335864 + 0.941910i \(0.390972\pi\)
\(878\) −46.5692 −1.57163
\(879\) 0 0
\(880\) 0 0
\(881\) −24.0722 −0.811014 −0.405507 0.914092i \(-0.632905\pi\)
−0.405507 + 0.914092i \(0.632905\pi\)
\(882\) 0 0
\(883\) 31.1727 1.04905 0.524523 0.851396i \(-0.324244\pi\)
0.524523 + 0.851396i \(0.324244\pi\)
\(884\) −12.0989 −0.406930
\(885\) 0 0
\(886\) −46.7526 −1.57068
\(887\) 4.86764 0.163439 0.0817197 0.996655i \(-0.473959\pi\)
0.0817197 + 0.996655i \(0.473959\pi\)
\(888\) 0 0
\(889\) −8.87814 −0.297763
\(890\) 0 0
\(891\) 0 0
\(892\) −33.9916 −1.13812
\(893\) −1.07838 −0.0360865
\(894\) 0 0
\(895\) 0 0
\(896\) 12.4436 0.415712
\(897\) 0 0
\(898\) 18.3812 0.613389
\(899\) −12.3135 −0.410679
\(900\) 0 0
\(901\) 21.6286 0.720554
\(902\) 44.8781 1.49428
\(903\) 0 0
\(904\) −19.8348 −0.659697
\(905\) 0 0
\(906\) 0 0
\(907\) 45.4778 1.51007 0.755033 0.655686i \(-0.227621\pi\)
0.755033 + 0.655686i \(0.227621\pi\)
\(908\) 6.20620 0.205960
\(909\) 0 0
\(910\) 0 0
\(911\) 20.9483 0.694048 0.347024 0.937856i \(-0.387192\pi\)
0.347024 + 0.937856i \(0.387192\pi\)
\(912\) 0 0
\(913\) −90.9192 −3.00899
\(914\) −24.6537 −0.815471
\(915\) 0 0
\(916\) −16.0267 −0.529536
\(917\) 1.59213 0.0525767
\(918\) 0 0
\(919\) −59.5174 −1.96330 −0.981650 0.190693i \(-0.938926\pi\)
−0.981650 + 0.190693i \(0.938926\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −6.61265 −0.217776
\(923\) −14.8371 −0.488369
\(924\) 0 0
\(925\) 0 0
\(926\) 21.6430 0.711233
\(927\) 0 0
\(928\) 10.7649 0.353374
\(929\) 16.7214 0.548611 0.274305 0.961643i \(-0.411552\pi\)
0.274305 + 0.961643i \(0.411552\pi\)
\(930\) 0 0
\(931\) 5.83710 0.191303
\(932\) 36.6225 1.19961
\(933\) 0 0
\(934\) 3.23513 0.105857
\(935\) 0 0
\(936\) 0 0
\(937\) 32.4534 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(938\) 24.3135 0.793864
\(939\) 0 0
\(940\) 0 0
\(941\) 23.6742 0.771757 0.385878 0.922550i \(-0.373898\pi\)
0.385878 + 0.922550i \(0.373898\pi\)
\(942\) 0 0
\(943\) 7.63317 0.248570
\(944\) −23.7321 −0.772413
\(945\) 0 0
\(946\) 163.942 5.33021
\(947\) 21.9733 0.714038 0.357019 0.934097i \(-0.383793\pi\)
0.357019 + 0.934097i \(0.383793\pi\)
\(948\) 0 0
\(949\) 7.41855 0.240816
\(950\) 0 0
\(951\) 0 0
\(952\) −5.41402 −0.175469
\(953\) −53.2990 −1.72652 −0.863261 0.504757i \(-0.831582\pi\)
−0.863261 + 0.504757i \(0.831582\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −37.5052 −1.21300
\(957\) 0 0
\(958\) 22.0722 0.713122
\(959\) 4.25112 0.137276
\(960\) 0 0
\(961\) 44.3484 1.43059
\(962\) 15.9520 0.514313
\(963\) 0 0
\(964\) 19.6742 0.633663
\(965\) 0 0
\(966\) 0 0
\(967\) −15.8166 −0.508627 −0.254314 0.967122i \(-0.581850\pi\)
−0.254314 + 0.967122i \(0.581850\pi\)
\(968\) 44.9409 1.44446
\(969\) 0 0
\(970\) 0 0
\(971\) 43.1506 1.38477 0.692385 0.721529i \(-0.256560\pi\)
0.692385 + 0.721529i \(0.256560\pi\)
\(972\) 0 0
\(973\) −9.55849 −0.306431
\(974\) 52.6863 1.68818
\(975\) 0 0
\(976\) −11.6430 −0.372684
\(977\) −8.47414 −0.271112 −0.135556 0.990770i \(-0.543282\pi\)
−0.135556 + 0.990770i \(0.543282\pi\)
\(978\) 0 0
\(979\) −48.0288 −1.53501
\(980\) 0 0
\(981\) 0 0
\(982\) −41.6742 −1.32988
\(983\) −5.59356 −0.178407 −0.0892034 0.996013i \(-0.528432\pi\)
−0.0892034 + 0.996013i \(0.528432\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −10.0410 −0.319772
\(987\) 0 0
\(988\) 3.70928 0.118008
\(989\) 27.8843 0.886669
\(990\) 0 0
\(991\) 32.8950 1.04494 0.522471 0.852657i \(-0.325010\pi\)
0.522471 + 0.852657i \(0.325010\pi\)
\(992\) −65.8720 −2.09144
\(993\) 0 0
\(994\) −25.3607 −0.804392
\(995\) 0 0
\(996\) 0 0
\(997\) −23.2618 −0.736708 −0.368354 0.929686i \(-0.620079\pi\)
−0.368354 + 0.929686i \(0.620079\pi\)
\(998\) 15.9155 0.503796
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bk.1.3 3
3.2 odd 2 475.2.a.f.1.1 3
5.4 even 2 855.2.a.i.1.1 3
12.11 even 2 7600.2.a.bx.1.1 3
15.2 even 4 475.2.b.d.324.1 6
15.8 even 4 475.2.b.d.324.6 6
15.14 odd 2 95.2.a.a.1.3 3
57.56 even 2 9025.2.a.bb.1.3 3
60.59 even 2 1520.2.a.p.1.3 3
105.104 even 2 4655.2.a.u.1.3 3
120.29 odd 2 6080.2.a.bo.1.3 3
120.59 even 2 6080.2.a.by.1.1 3
285.284 even 2 1805.2.a.f.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.a.1.3 3 15.14 odd 2
475.2.a.f.1.1 3 3.2 odd 2
475.2.b.d.324.1 6 15.2 even 4
475.2.b.d.324.6 6 15.8 even 4
855.2.a.i.1.1 3 5.4 even 2
1520.2.a.p.1.3 3 60.59 even 2
1805.2.a.f.1.1 3 285.284 even 2
4275.2.a.bk.1.3 3 1.1 even 1 trivial
4655.2.a.u.1.3 3 105.104 even 2
6080.2.a.bo.1.3 3 120.29 odd 2
6080.2.a.by.1.1 3 120.59 even 2
7600.2.a.bx.1.1 3 12.11 even 2
9025.2.a.bb.1.3 3 57.56 even 2