Properties

Label 4275.2.a.bj.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 855)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +2.70928 q^{4} +0.539189 q^{7} +1.53919 q^{8} -3.17009 q^{11} -4.87936 q^{13} +1.17009 q^{14} -2.07838 q^{16} +1.36910 q^{17} -1.00000 q^{19} -6.87936 q^{22} -2.78765 q^{23} -10.5886 q^{26} +1.46081 q^{28} -3.90829 q^{29} -2.44748 q^{31} -7.58864 q^{32} +2.97107 q^{34} +4.14116 q^{37} -2.17009 q^{38} -3.01333 q^{41} -5.95774 q^{43} -8.58864 q^{44} -6.04945 q^{46} -4.04945 q^{47} -6.70928 q^{49} -13.2195 q^{52} +6.63090 q^{53} +0.829914 q^{56} -8.48133 q^{58} +12.4391 q^{59} -9.31124 q^{61} -5.31124 q^{62} -12.3112 q^{64} +7.75872 q^{67} +3.70928 q^{68} -2.18342 q^{71} +7.60197 q^{73} +8.98667 q^{74} -2.70928 q^{76} -1.70928 q^{77} -15.0205 q^{79} -6.53919 q^{82} +2.78765 q^{83} -12.9288 q^{86} -4.87936 q^{88} -0.829914 q^{89} -2.63090 q^{91} -7.55252 q^{92} -8.78765 q^{94} +5.37629 q^{97} -14.5597 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} + 3 q^{8} - 4 q^{11} - 2 q^{13} - 2 q^{14} - 3 q^{16} + 8 q^{17} - 3 q^{19} - 8 q^{22} + 2 q^{23} - 12 q^{26} + 6 q^{28} - 14 q^{29} - 8 q^{31} - 3 q^{32} - 6 q^{34} - 8 q^{37} - q^{38}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 0 0
\(4\) 2.70928 1.35464
\(5\) 0 0
\(6\) 0 0
\(7\) 0.539189 0.203794 0.101897 0.994795i \(-0.467509\pi\)
0.101897 + 0.994795i \(0.467509\pi\)
\(8\) 1.53919 0.544185
\(9\) 0 0
\(10\) 0 0
\(11\) −3.17009 −0.955817 −0.477909 0.878410i \(-0.658605\pi\)
−0.477909 + 0.878410i \(0.658605\pi\)
\(12\) 0 0
\(13\) −4.87936 −1.35329 −0.676646 0.736309i \(-0.736567\pi\)
−0.676646 + 0.736309i \(0.736567\pi\)
\(14\) 1.17009 0.312719
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) 1.36910 0.332056 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −6.87936 −1.46668
\(23\) −2.78765 −0.581266 −0.290633 0.956835i \(-0.593866\pi\)
−0.290633 + 0.956835i \(0.593866\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −10.5886 −2.07660
\(27\) 0 0
\(28\) 1.46081 0.276067
\(29\) −3.90829 −0.725751 −0.362876 0.931838i \(-0.618205\pi\)
−0.362876 + 0.931838i \(0.618205\pi\)
\(30\) 0 0
\(31\) −2.44748 −0.439580 −0.219790 0.975547i \(-0.570537\pi\)
−0.219790 + 0.975547i \(0.570537\pi\)
\(32\) −7.58864 −1.34149
\(33\) 0 0
\(34\) 2.97107 0.509534
\(35\) 0 0
\(36\) 0 0
\(37\) 4.14116 0.680802 0.340401 0.940280i \(-0.389437\pi\)
0.340401 + 0.940280i \(0.389437\pi\)
\(38\) −2.17009 −0.352035
\(39\) 0 0
\(40\) 0 0
\(41\) −3.01333 −0.470603 −0.235302 0.971922i \(-0.575608\pi\)
−0.235302 + 0.971922i \(0.575608\pi\)
\(42\) 0 0
\(43\) −5.95774 −0.908547 −0.454273 0.890862i \(-0.650101\pi\)
−0.454273 + 0.890862i \(0.650101\pi\)
\(44\) −8.58864 −1.29479
\(45\) 0 0
\(46\) −6.04945 −0.891942
\(47\) −4.04945 −0.590673 −0.295336 0.955393i \(-0.595432\pi\)
−0.295336 + 0.955393i \(0.595432\pi\)
\(48\) 0 0
\(49\) −6.70928 −0.958468
\(50\) 0 0
\(51\) 0 0
\(52\) −13.2195 −1.83322
\(53\) 6.63090 0.910824 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.829914 0.110902
\(57\) 0 0
\(58\) −8.48133 −1.11365
\(59\) 12.4391 1.61943 0.809714 0.586824i \(-0.199622\pi\)
0.809714 + 0.586824i \(0.199622\pi\)
\(60\) 0 0
\(61\) −9.31124 −1.19218 −0.596091 0.802917i \(-0.703280\pi\)
−0.596091 + 0.802917i \(0.703280\pi\)
\(62\) −5.31124 −0.674529
\(63\) 0 0
\(64\) −12.3112 −1.53891
\(65\) 0 0
\(66\) 0 0
\(67\) 7.75872 0.947879 0.473939 0.880557i \(-0.342832\pi\)
0.473939 + 0.880557i \(0.342832\pi\)
\(68\) 3.70928 0.449816
\(69\) 0 0
\(70\) 0 0
\(71\) −2.18342 −0.259124 −0.129562 0.991571i \(-0.541357\pi\)
−0.129562 + 0.991571i \(0.541357\pi\)
\(72\) 0 0
\(73\) 7.60197 0.889743 0.444872 0.895594i \(-0.353249\pi\)
0.444872 + 0.895594i \(0.353249\pi\)
\(74\) 8.98667 1.04468
\(75\) 0 0
\(76\) −2.70928 −0.310775
\(77\) −1.70928 −0.194790
\(78\) 0 0
\(79\) −15.0205 −1.68994 −0.844970 0.534813i \(-0.820382\pi\)
−0.844970 + 0.534813i \(0.820382\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −6.53919 −0.722133
\(83\) 2.78765 0.305985 0.152992 0.988227i \(-0.451109\pi\)
0.152992 + 0.988227i \(0.451109\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −12.9288 −1.39415
\(87\) 0 0
\(88\) −4.87936 −0.520142
\(89\) −0.829914 −0.0879707 −0.0439853 0.999032i \(-0.514005\pi\)
−0.0439853 + 0.999032i \(0.514005\pi\)
\(90\) 0 0
\(91\) −2.63090 −0.275793
\(92\) −7.55252 −0.787405
\(93\) 0 0
\(94\) −8.78765 −0.906377
\(95\) 0 0
\(96\) 0 0
\(97\) 5.37629 0.545880 0.272940 0.962031i \(-0.412004\pi\)
0.272940 + 0.962031i \(0.412004\pi\)
\(98\) −14.5597 −1.47075
\(99\) 0 0
\(100\) 0 0
\(101\) −17.3340 −1.72480 −0.862400 0.506227i \(-0.831040\pi\)
−0.862400 + 0.506227i \(0.831040\pi\)
\(102\) 0 0
\(103\) 2.52359 0.248657 0.124328 0.992241i \(-0.460322\pi\)
0.124328 + 0.992241i \(0.460322\pi\)
\(104\) −7.51026 −0.736442
\(105\) 0 0
\(106\) 14.3896 1.39764
\(107\) 10.6537 1.02993 0.514965 0.857211i \(-0.327805\pi\)
0.514965 + 0.857211i \(0.327805\pi\)
\(108\) 0 0
\(109\) −5.81658 −0.557128 −0.278564 0.960418i \(-0.589858\pi\)
−0.278564 + 0.960418i \(0.589858\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.12064 −0.105890
\(113\) 19.6248 1.84614 0.923071 0.384630i \(-0.125671\pi\)
0.923071 + 0.384630i \(0.125671\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.5886 −0.983130
\(117\) 0 0
\(118\) 26.9939 2.48499
\(119\) 0.738205 0.0676711
\(120\) 0 0
\(121\) −0.950552 −0.0864138
\(122\) −20.2062 −1.82938
\(123\) 0 0
\(124\) −6.63090 −0.595472
\(125\) 0 0
\(126\) 0 0
\(127\) 0.340173 0.0301855 0.0150927 0.999886i \(-0.495196\pi\)
0.0150927 + 0.999886i \(0.495196\pi\)
\(128\) −11.5392 −1.01993
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0072 −1.04907 −0.524536 0.851388i \(-0.675761\pi\)
−0.524536 + 0.851388i \(0.675761\pi\)
\(132\) 0 0
\(133\) −0.539189 −0.0467536
\(134\) 16.8371 1.45450
\(135\) 0 0
\(136\) 2.10731 0.180700
\(137\) −19.1773 −1.63843 −0.819213 0.573490i \(-0.805589\pi\)
−0.819213 + 0.573490i \(0.805589\pi\)
\(138\) 0 0
\(139\) 15.3340 1.30062 0.650308 0.759671i \(-0.274640\pi\)
0.650308 + 0.759671i \(0.274640\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.73820 −0.397621
\(143\) 15.4680 1.29350
\(144\) 0 0
\(145\) 0 0
\(146\) 16.4969 1.36530
\(147\) 0 0
\(148\) 11.2195 0.922240
\(149\) 10.5236 0.862126 0.431063 0.902322i \(-0.358139\pi\)
0.431063 + 0.902322i \(0.358139\pi\)
\(150\) 0 0
\(151\) −4.47414 −0.364101 −0.182050 0.983289i \(-0.558273\pi\)
−0.182050 + 0.983289i \(0.558273\pi\)
\(152\) −1.53919 −0.124845
\(153\) 0 0
\(154\) −3.70928 −0.298902
\(155\) 0 0
\(156\) 0 0
\(157\) −19.2039 −1.53264 −0.766320 0.642458i \(-0.777915\pi\)
−0.766320 + 0.642458i \(0.777915\pi\)
\(158\) −32.5958 −2.59318
\(159\) 0 0
\(160\) 0 0
\(161\) −1.50307 −0.118459
\(162\) 0 0
\(163\) 4.53919 0.355537 0.177768 0.984072i \(-0.443112\pi\)
0.177768 + 0.984072i \(0.443112\pi\)
\(164\) −8.16394 −0.637497
\(165\) 0 0
\(166\) 6.04945 0.469528
\(167\) −5.12783 −0.396803 −0.198402 0.980121i \(-0.563575\pi\)
−0.198402 + 0.980121i \(0.563575\pi\)
\(168\) 0 0
\(169\) 10.8082 0.831398
\(170\) 0 0
\(171\) 0 0
\(172\) −16.1412 −1.23075
\(173\) 4.47414 0.340163 0.170081 0.985430i \(-0.445597\pi\)
0.170081 + 0.985430i \(0.445597\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6.58864 0.496637
\(177\) 0 0
\(178\) −1.80098 −0.134989
\(179\) 8.34017 0.623374 0.311687 0.950185i \(-0.399106\pi\)
0.311687 + 0.950185i \(0.399106\pi\)
\(180\) 0 0
\(181\) −9.60197 −0.713709 −0.356854 0.934160i \(-0.616151\pi\)
−0.356854 + 0.934160i \(0.616151\pi\)
\(182\) −5.70928 −0.423200
\(183\) 0 0
\(184\) −4.29072 −0.316316
\(185\) 0 0
\(186\) 0 0
\(187\) −4.34017 −0.317385
\(188\) −10.9711 −0.800148
\(189\) 0 0
\(190\) 0 0
\(191\) 6.48974 0.469581 0.234791 0.972046i \(-0.424560\pi\)
0.234791 + 0.972046i \(0.424560\pi\)
\(192\) 0 0
\(193\) 9.19287 0.661717 0.330859 0.943680i \(-0.392662\pi\)
0.330859 + 0.943680i \(0.392662\pi\)
\(194\) 11.6670 0.837643
\(195\) 0 0
\(196\) −18.1773 −1.29838
\(197\) −3.52586 −0.251207 −0.125603 0.992081i \(-0.540087\pi\)
−0.125603 + 0.992081i \(0.540087\pi\)
\(198\) 0 0
\(199\) −21.1773 −1.50122 −0.750609 0.660747i \(-0.770240\pi\)
−0.750609 + 0.660747i \(0.770240\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −37.6163 −2.64668
\(203\) −2.10731 −0.147904
\(204\) 0 0
\(205\) 0 0
\(206\) 5.47641 0.381560
\(207\) 0 0
\(208\) 10.1412 0.703163
\(209\) 3.17009 0.219279
\(210\) 0 0
\(211\) 11.0205 0.758684 0.379342 0.925257i \(-0.376150\pi\)
0.379342 + 0.925257i \(0.376150\pi\)
\(212\) 17.9649 1.23384
\(213\) 0 0
\(214\) 23.1194 1.58041
\(215\) 0 0
\(216\) 0 0
\(217\) −1.31965 −0.0895840
\(218\) −12.6225 −0.854903
\(219\) 0 0
\(220\) 0 0
\(221\) −6.68035 −0.449369
\(222\) 0 0
\(223\) −11.2039 −0.750271 −0.375136 0.926970i \(-0.622404\pi\)
−0.375136 + 0.926970i \(0.622404\pi\)
\(224\) −4.09171 −0.273389
\(225\) 0 0
\(226\) 42.5874 2.83287
\(227\) 0.546377 0.0362643 0.0181322 0.999836i \(-0.494228\pi\)
0.0181322 + 0.999836i \(0.494228\pi\)
\(228\) 0 0
\(229\) 22.4885 1.48608 0.743042 0.669245i \(-0.233382\pi\)
0.743042 + 0.669245i \(0.233382\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.01560 −0.394943
\(233\) −10.7792 −0.706172 −0.353086 0.935591i \(-0.614868\pi\)
−0.353086 + 0.935591i \(0.614868\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 33.7009 2.19374
\(237\) 0 0
\(238\) 1.60197 0.103840
\(239\) 20.6875 1.33817 0.669083 0.743188i \(-0.266687\pi\)
0.669083 + 0.743188i \(0.266687\pi\)
\(240\) 0 0
\(241\) 17.5174 1.12840 0.564199 0.825639i \(-0.309185\pi\)
0.564199 + 0.825639i \(0.309185\pi\)
\(242\) −2.06278 −0.132600
\(243\) 0 0
\(244\) −25.2267 −1.61498
\(245\) 0 0
\(246\) 0 0
\(247\) 4.87936 0.310466
\(248\) −3.76713 −0.239213
\(249\) 0 0
\(250\) 0 0
\(251\) 14.7454 0.930721 0.465360 0.885121i \(-0.345925\pi\)
0.465360 + 0.885121i \(0.345925\pi\)
\(252\) 0 0
\(253\) 8.83710 0.555584
\(254\) 0.738205 0.0463191
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) 25.8660 1.61348 0.806739 0.590907i \(-0.201230\pi\)
0.806739 + 0.590907i \(0.201230\pi\)
\(258\) 0 0
\(259\) 2.23287 0.138744
\(260\) 0 0
\(261\) 0 0
\(262\) −26.0566 −1.60978
\(263\) −6.19183 −0.381804 −0.190902 0.981609i \(-0.561141\pi\)
−0.190902 + 0.981609i \(0.561141\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.17009 −0.0717426
\(267\) 0 0
\(268\) 21.0205 1.28403
\(269\) −19.6670 −1.19912 −0.599560 0.800330i \(-0.704658\pi\)
−0.599560 + 0.800330i \(0.704658\pi\)
\(270\) 0 0
\(271\) 10.1256 0.615084 0.307542 0.951535i \(-0.400494\pi\)
0.307542 + 0.951535i \(0.400494\pi\)
\(272\) −2.84551 −0.172535
\(273\) 0 0
\(274\) −41.6163 −2.51414
\(275\) 0 0
\(276\) 0 0
\(277\) −4.73820 −0.284691 −0.142346 0.989817i \(-0.545464\pi\)
−0.142346 + 0.989817i \(0.545464\pi\)
\(278\) 33.2762 1.99577
\(279\) 0 0
\(280\) 0 0
\(281\) −13.9083 −0.829699 −0.414850 0.909890i \(-0.636166\pi\)
−0.414850 + 0.909890i \(0.636166\pi\)
\(282\) 0 0
\(283\) −23.9265 −1.42229 −0.711143 0.703048i \(-0.751822\pi\)
−0.711143 + 0.703048i \(0.751822\pi\)
\(284\) −5.91548 −0.351019
\(285\) 0 0
\(286\) 33.5669 1.98485
\(287\) −1.62475 −0.0959062
\(288\) 0 0
\(289\) −15.1256 −0.889739
\(290\) 0 0
\(291\) 0 0
\(292\) 20.5958 1.20528
\(293\) 13.6514 0.797524 0.398762 0.917054i \(-0.369440\pi\)
0.398762 + 0.917054i \(0.369440\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.37402 0.370483
\(297\) 0 0
\(298\) 22.8371 1.32292
\(299\) 13.6020 0.786622
\(300\) 0 0
\(301\) −3.21235 −0.185157
\(302\) −9.70928 −0.558706
\(303\) 0 0
\(304\) 2.07838 0.119203
\(305\) 0 0
\(306\) 0 0
\(307\) −22.9672 −1.31081 −0.655404 0.755279i \(-0.727501\pi\)
−0.655404 + 0.755279i \(0.727501\pi\)
\(308\) −4.63090 −0.263870
\(309\) 0 0
\(310\) 0 0
\(311\) −19.0589 −1.08073 −0.540366 0.841430i \(-0.681714\pi\)
−0.540366 + 0.841430i \(0.681714\pi\)
\(312\) 0 0
\(313\) 3.10504 0.175507 0.0877536 0.996142i \(-0.472031\pi\)
0.0877536 + 0.996142i \(0.472031\pi\)
\(314\) −41.6742 −2.35181
\(315\) 0 0
\(316\) −40.6947 −2.28926
\(317\) 9.96493 0.559686 0.279843 0.960046i \(-0.409718\pi\)
0.279843 + 0.960046i \(0.409718\pi\)
\(318\) 0 0
\(319\) 12.3896 0.693686
\(320\) 0 0
\(321\) 0 0
\(322\) −3.26180 −0.181773
\(323\) −1.36910 −0.0761789
\(324\) 0 0
\(325\) 0 0
\(326\) 9.85043 0.545565
\(327\) 0 0
\(328\) −4.63809 −0.256095
\(329\) −2.18342 −0.120376
\(330\) 0 0
\(331\) −24.6719 −1.35609 −0.678046 0.735019i \(-0.737173\pi\)
−0.678046 + 0.735019i \(0.737173\pi\)
\(332\) 7.55252 0.414498
\(333\) 0 0
\(334\) −11.1278 −0.608888
\(335\) 0 0
\(336\) 0 0
\(337\) −35.9721 −1.95953 −0.979763 0.200161i \(-0.935853\pi\)
−0.979763 + 0.200161i \(0.935853\pi\)
\(338\) 23.4547 1.27577
\(339\) 0 0
\(340\) 0 0
\(341\) 7.75872 0.420158
\(342\) 0 0
\(343\) −7.39189 −0.399124
\(344\) −9.17009 −0.494418
\(345\) 0 0
\(346\) 9.70928 0.521974
\(347\) 33.4101 1.79355 0.896775 0.442487i \(-0.145904\pi\)
0.896775 + 0.442487i \(0.145904\pi\)
\(348\) 0 0
\(349\) 19.2762 1.03183 0.515915 0.856640i \(-0.327452\pi\)
0.515915 + 0.856640i \(0.327452\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 24.0566 1.28222
\(353\) 1.68649 0.0897628 0.0448814 0.998992i \(-0.485709\pi\)
0.0448814 + 0.998992i \(0.485709\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.24846 −0.119168
\(357\) 0 0
\(358\) 18.0989 0.956556
\(359\) −17.0277 −0.898688 −0.449344 0.893359i \(-0.648342\pi\)
−0.449344 + 0.893359i \(0.648342\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −20.8371 −1.09517
\(363\) 0 0
\(364\) −7.12783 −0.373600
\(365\) 0 0
\(366\) 0 0
\(367\) 32.0300 1.67195 0.835976 0.548767i \(-0.184902\pi\)
0.835976 + 0.548767i \(0.184902\pi\)
\(368\) 5.79380 0.302023
\(369\) 0 0
\(370\) 0 0
\(371\) 3.57531 0.185621
\(372\) 0 0
\(373\) −19.3041 −0.999526 −0.499763 0.866162i \(-0.666580\pi\)
−0.499763 + 0.866162i \(0.666580\pi\)
\(374\) −9.41855 −0.487022
\(375\) 0 0
\(376\) −6.23287 −0.321436
\(377\) 19.0700 0.982153
\(378\) 0 0
\(379\) −31.1422 −1.59967 −0.799834 0.600222i \(-0.795079\pi\)
−0.799834 + 0.600222i \(0.795079\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14.0833 0.720564
\(383\) 10.7382 0.548697 0.274348 0.961630i \(-0.411538\pi\)
0.274348 + 0.961630i \(0.411538\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.9493 1.01539
\(387\) 0 0
\(388\) 14.5659 0.739469
\(389\) −23.0472 −1.16854 −0.584269 0.811560i \(-0.698619\pi\)
−0.584269 + 0.811560i \(0.698619\pi\)
\(390\) 0 0
\(391\) −3.81658 −0.193013
\(392\) −10.3268 −0.521584
\(393\) 0 0
\(394\) −7.65142 −0.385473
\(395\) 0 0
\(396\) 0 0
\(397\) 5.05172 0.253538 0.126769 0.991932i \(-0.459539\pi\)
0.126769 + 0.991932i \(0.459539\pi\)
\(398\) −45.9565 −2.30359
\(399\) 0 0
\(400\) 0 0
\(401\) −17.2546 −0.861654 −0.430827 0.902435i \(-0.641778\pi\)
−0.430827 + 0.902435i \(0.641778\pi\)
\(402\) 0 0
\(403\) 11.9421 0.594880
\(404\) −46.9627 −2.33648
\(405\) 0 0
\(406\) −4.57304 −0.226956
\(407\) −13.1278 −0.650722
\(408\) 0 0
\(409\) −19.0472 −0.941822 −0.470911 0.882181i \(-0.656075\pi\)
−0.470911 + 0.882181i \(0.656075\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.83710 0.336840
\(413\) 6.70701 0.330030
\(414\) 0 0
\(415\) 0 0
\(416\) 37.0277 1.81543
\(417\) 0 0
\(418\) 6.87936 0.336481
\(419\) 11.1389 0.544170 0.272085 0.962273i \(-0.412287\pi\)
0.272085 + 0.962273i \(0.412287\pi\)
\(420\) 0 0
\(421\) −29.3340 −1.42965 −0.714827 0.699302i \(-0.753494\pi\)
−0.714827 + 0.699302i \(0.753494\pi\)
\(422\) 23.9155 1.16419
\(423\) 0 0
\(424\) 10.2062 0.495657
\(425\) 0 0
\(426\) 0 0
\(427\) −5.02052 −0.242960
\(428\) 28.8638 1.39518
\(429\) 0 0
\(430\) 0 0
\(431\) 24.2823 1.16964 0.584819 0.811164i \(-0.301166\pi\)
0.584819 + 0.811164i \(0.301166\pi\)
\(432\) 0 0
\(433\) −29.2606 −1.40617 −0.703087 0.711104i \(-0.748195\pi\)
−0.703087 + 0.711104i \(0.748195\pi\)
\(434\) −2.86376 −0.137465
\(435\) 0 0
\(436\) −15.7587 −0.754706
\(437\) 2.78765 0.133352
\(438\) 0 0
\(439\) 21.3074 1.01695 0.508473 0.861078i \(-0.330210\pi\)
0.508473 + 0.861078i \(0.330210\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −14.4969 −0.689549
\(443\) −13.1812 −0.626255 −0.313128 0.949711i \(-0.601377\pi\)
−0.313128 + 0.949711i \(0.601377\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −24.3135 −1.15128
\(447\) 0 0
\(448\) −6.63809 −0.313620
\(449\) 32.0216 1.51119 0.755596 0.655038i \(-0.227348\pi\)
0.755596 + 0.655038i \(0.227348\pi\)
\(450\) 0 0
\(451\) 9.55252 0.449811
\(452\) 53.1689 2.50085
\(453\) 0 0
\(454\) 1.18568 0.0556469
\(455\) 0 0
\(456\) 0 0
\(457\) 37.4063 1.74979 0.874896 0.484312i \(-0.160930\pi\)
0.874896 + 0.484312i \(0.160930\pi\)
\(458\) 48.8020 2.28037
\(459\) 0 0
\(460\) 0 0
\(461\) 31.0349 1.44544 0.722720 0.691141i \(-0.242892\pi\)
0.722720 + 0.691141i \(0.242892\pi\)
\(462\) 0 0
\(463\) −17.8588 −0.829971 −0.414985 0.909828i \(-0.636213\pi\)
−0.414985 + 0.909828i \(0.636213\pi\)
\(464\) 8.12291 0.377096
\(465\) 0 0
\(466\) −23.3919 −1.08361
\(467\) −1.34244 −0.0621207 −0.0310604 0.999518i \(-0.509888\pi\)
−0.0310604 + 0.999518i \(0.509888\pi\)
\(468\) 0 0
\(469\) 4.18342 0.193172
\(470\) 0 0
\(471\) 0 0
\(472\) 19.1461 0.881270
\(473\) 18.8865 0.868404
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 44.8937 2.05339
\(479\) 13.9350 0.636704 0.318352 0.947973i \(-0.396871\pi\)
0.318352 + 0.947973i \(0.396871\pi\)
\(480\) 0 0
\(481\) −20.2062 −0.921324
\(482\) 38.0144 1.73151
\(483\) 0 0
\(484\) −2.57531 −0.117059
\(485\) 0 0
\(486\) 0 0
\(487\) −39.8720 −1.80677 −0.903386 0.428828i \(-0.858927\pi\)
−0.903386 + 0.428828i \(0.858927\pi\)
\(488\) −14.3318 −0.648768
\(489\) 0 0
\(490\) 0 0
\(491\) 21.3268 0.962467 0.481233 0.876592i \(-0.340189\pi\)
0.481233 + 0.876592i \(0.340189\pi\)
\(492\) 0 0
\(493\) −5.35085 −0.240990
\(494\) 10.5886 0.476405
\(495\) 0 0
\(496\) 5.08679 0.228404
\(497\) −1.17727 −0.0528080
\(498\) 0 0
\(499\) 12.8638 0.575861 0.287931 0.957651i \(-0.407033\pi\)
0.287931 + 0.957651i \(0.407033\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 31.9988 1.42818
\(503\) −19.3835 −0.864267 −0.432133 0.901810i \(-0.642239\pi\)
−0.432133 + 0.901810i \(0.642239\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 19.1773 0.852534
\(507\) 0 0
\(508\) 0.921622 0.0408904
\(509\) 7.21112 0.319627 0.159814 0.987147i \(-0.448911\pi\)
0.159814 + 0.987147i \(0.448911\pi\)
\(510\) 0 0
\(511\) 4.09890 0.181325
\(512\) 22.1701 0.979789
\(513\) 0 0
\(514\) 56.1315 2.47586
\(515\) 0 0
\(516\) 0 0
\(517\) 12.8371 0.564575
\(518\) 4.84551 0.212900
\(519\) 0 0
\(520\) 0 0
\(521\) −29.1578 −1.27743 −0.638713 0.769445i \(-0.720533\pi\)
−0.638713 + 0.769445i \(0.720533\pi\)
\(522\) 0 0
\(523\) −20.1568 −0.881393 −0.440697 0.897656i \(-0.645269\pi\)
−0.440697 + 0.897656i \(0.645269\pi\)
\(524\) −32.5308 −1.42111
\(525\) 0 0
\(526\) −13.4368 −0.585872
\(527\) −3.35085 −0.145965
\(528\) 0 0
\(529\) −15.2290 −0.662130
\(530\) 0 0
\(531\) 0 0
\(532\) −1.46081 −0.0633342
\(533\) 14.7031 0.636863
\(534\) 0 0
\(535\) 0 0
\(536\) 11.9421 0.515822
\(537\) 0 0
\(538\) −42.6791 −1.84003
\(539\) 21.2690 0.916120
\(540\) 0 0
\(541\) −15.3607 −0.660408 −0.330204 0.943910i \(-0.607117\pi\)
−0.330204 + 0.943910i \(0.607117\pi\)
\(542\) 21.9733 0.943836
\(543\) 0 0
\(544\) −10.3896 −0.445451
\(545\) 0 0
\(546\) 0 0
\(547\) 2.92162 0.124920 0.0624598 0.998047i \(-0.480105\pi\)
0.0624598 + 0.998047i \(0.480105\pi\)
\(548\) −51.9565 −2.21947
\(549\) 0 0
\(550\) 0 0
\(551\) 3.90829 0.166499
\(552\) 0 0
\(553\) −8.09890 −0.344400
\(554\) −10.2823 −0.436854
\(555\) 0 0
\(556\) 41.5441 1.76186
\(557\) −11.0784 −0.469406 −0.234703 0.972067i \(-0.575412\pi\)
−0.234703 + 0.972067i \(0.575412\pi\)
\(558\) 0 0
\(559\) 29.0700 1.22953
\(560\) 0 0
\(561\) 0 0
\(562\) −30.1822 −1.27316
\(563\) 25.5936 1.07864 0.539320 0.842101i \(-0.318681\pi\)
0.539320 + 0.842101i \(0.318681\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −51.9227 −2.18247
\(567\) 0 0
\(568\) −3.36069 −0.141011
\(569\) −0.0605119 −0.00253679 −0.00126840 0.999999i \(-0.500404\pi\)
−0.00126840 + 0.999999i \(0.500404\pi\)
\(570\) 0 0
\(571\) −14.7382 −0.616775 −0.308387 0.951261i \(-0.599789\pi\)
−0.308387 + 0.951261i \(0.599789\pi\)
\(572\) 41.9071 1.75222
\(573\) 0 0
\(574\) −3.52586 −0.147166
\(575\) 0 0
\(576\) 0 0
\(577\) 22.0410 0.917580 0.458790 0.888545i \(-0.348283\pi\)
0.458790 + 0.888545i \(0.348283\pi\)
\(578\) −32.8238 −1.36529
\(579\) 0 0
\(580\) 0 0
\(581\) 1.50307 0.0623579
\(582\) 0 0
\(583\) −21.0205 −0.870581
\(584\) 11.7009 0.484185
\(585\) 0 0
\(586\) 29.6248 1.22379
\(587\) −24.2329 −1.00020 −0.500099 0.865968i \(-0.666703\pi\)
−0.500099 + 0.865968i \(0.666703\pi\)
\(588\) 0 0
\(589\) 2.44748 0.100847
\(590\) 0 0
\(591\) 0 0
\(592\) −8.60689 −0.353741
\(593\) 38.1133 1.56512 0.782562 0.622572i \(-0.213912\pi\)
0.782562 + 0.622572i \(0.213912\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.5113 1.16787
\(597\) 0 0
\(598\) 29.5174 1.20706
\(599\) 48.5523 1.98379 0.991897 0.127041i \(-0.0405480\pi\)
0.991897 + 0.127041i \(0.0405480\pi\)
\(600\) 0 0
\(601\) 34.7936 1.41926 0.709631 0.704574i \(-0.248862\pi\)
0.709631 + 0.704574i \(0.248862\pi\)
\(602\) −6.97107 −0.284120
\(603\) 0 0
\(604\) −12.1217 −0.493224
\(605\) 0 0
\(606\) 0 0
\(607\) 45.2039 1.83477 0.917386 0.398000i \(-0.130295\pi\)
0.917386 + 0.398000i \(0.130295\pi\)
\(608\) 7.58864 0.307760
\(609\) 0 0
\(610\) 0 0
\(611\) 19.7587 0.799352
\(612\) 0 0
\(613\) −38.8203 −1.56794 −0.783968 0.620801i \(-0.786807\pi\)
−0.783968 + 0.620801i \(0.786807\pi\)
\(614\) −49.8408 −2.01141
\(615\) 0 0
\(616\) −2.63090 −0.106002
\(617\) 31.5259 1.26918 0.634592 0.772848i \(-0.281168\pi\)
0.634592 + 0.772848i \(0.281168\pi\)
\(618\) 0 0
\(619\) −10.9360 −0.439555 −0.219777 0.975550i \(-0.570533\pi\)
−0.219777 + 0.975550i \(0.570533\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −41.3595 −1.65836
\(623\) −0.447480 −0.0179279
\(624\) 0 0
\(625\) 0 0
\(626\) 6.73820 0.269313
\(627\) 0 0
\(628\) −52.0288 −2.07617
\(629\) 5.66967 0.226064
\(630\) 0 0
\(631\) −19.5318 −0.777550 −0.388775 0.921333i \(-0.627102\pi\)
−0.388775 + 0.921333i \(0.627102\pi\)
\(632\) −23.1194 −0.919641
\(633\) 0 0
\(634\) 21.6248 0.858829
\(635\) 0 0
\(636\) 0 0
\(637\) 32.7370 1.29709
\(638\) 26.8865 1.06445
\(639\) 0 0
\(640\) 0 0
\(641\) −8.87549 −0.350561 −0.175280 0.984519i \(-0.556083\pi\)
−0.175280 + 0.984519i \(0.556083\pi\)
\(642\) 0 0
\(643\) −28.6647 −1.13043 −0.565214 0.824945i \(-0.691206\pi\)
−0.565214 + 0.824945i \(0.691206\pi\)
\(644\) −4.07223 −0.160469
\(645\) 0 0
\(646\) −2.97107 −0.116895
\(647\) 43.6802 1.71724 0.858622 0.512609i \(-0.171321\pi\)
0.858622 + 0.512609i \(0.171321\pi\)
\(648\) 0 0
\(649\) −39.4329 −1.54788
\(650\) 0 0
\(651\) 0 0
\(652\) 12.2979 0.481623
\(653\) 12.0905 0.473137 0.236569 0.971615i \(-0.423977\pi\)
0.236569 + 0.971615i \(0.423977\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.26284 0.244523
\(657\) 0 0
\(658\) −4.73820 −0.184714
\(659\) −49.2327 −1.91783 −0.958917 0.283688i \(-0.908442\pi\)
−0.958917 + 0.283688i \(0.908442\pi\)
\(660\) 0 0
\(661\) −1.90110 −0.0739443 −0.0369722 0.999316i \(-0.511771\pi\)
−0.0369722 + 0.999316i \(0.511771\pi\)
\(662\) −53.5402 −2.08090
\(663\) 0 0
\(664\) 4.29072 0.166512
\(665\) 0 0
\(666\) 0 0
\(667\) 10.8950 0.421855
\(668\) −13.8927 −0.537524
\(669\) 0 0
\(670\) 0 0
\(671\) 29.5174 1.13951
\(672\) 0 0
\(673\) 19.3763 0.746901 0.373451 0.927650i \(-0.378175\pi\)
0.373451 + 0.927650i \(0.378175\pi\)
\(674\) −78.0626 −3.00686
\(675\) 0 0
\(676\) 29.2823 1.12624
\(677\) −0.237401 −0.00912405 −0.00456202 0.999990i \(-0.501452\pi\)
−0.00456202 + 0.999990i \(0.501452\pi\)
\(678\) 0 0
\(679\) 2.89884 0.111247
\(680\) 0 0
\(681\) 0 0
\(682\) 16.8371 0.644726
\(683\) −48.0144 −1.83722 −0.918610 0.395166i \(-0.870687\pi\)
−0.918610 + 0.395166i \(0.870687\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −16.0410 −0.612450
\(687\) 0 0
\(688\) 12.3824 0.472076
\(689\) −32.3545 −1.23261
\(690\) 0 0
\(691\) −29.5753 −1.12510 −0.562549 0.826764i \(-0.690179\pi\)
−0.562549 + 0.826764i \(0.690179\pi\)
\(692\) 12.1217 0.460797
\(693\) 0 0
\(694\) 72.5029 2.75217
\(695\) 0 0
\(696\) 0 0
\(697\) −4.12556 −0.156267
\(698\) 41.8310 1.58333
\(699\) 0 0
\(700\) 0 0
\(701\) 41.4596 1.56591 0.782954 0.622080i \(-0.213712\pi\)
0.782954 + 0.622080i \(0.213712\pi\)
\(702\) 0 0
\(703\) −4.14116 −0.156187
\(704\) 39.0277 1.47091
\(705\) 0 0
\(706\) 3.65983 0.137739
\(707\) −9.34632 −0.351504
\(708\) 0 0
\(709\) −2.52747 −0.0949210 −0.0474605 0.998873i \(-0.515113\pi\)
−0.0474605 + 0.998873i \(0.515113\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.27739 −0.0478724
\(713\) 6.82273 0.255513
\(714\) 0 0
\(715\) 0 0
\(716\) 22.5958 0.844446
\(717\) 0 0
\(718\) −36.9516 −1.37902
\(719\) 49.8504 1.85911 0.929554 0.368687i \(-0.120192\pi\)
0.929554 + 0.368687i \(0.120192\pi\)
\(720\) 0 0
\(721\) 1.36069 0.0506748
\(722\) 2.17009 0.0807623
\(723\) 0 0
\(724\) −26.0144 −0.966817
\(725\) 0 0
\(726\) 0 0
\(727\) 20.4547 0.758622 0.379311 0.925269i \(-0.376161\pi\)
0.379311 + 0.925269i \(0.376161\pi\)
\(728\) −4.04945 −0.150083
\(729\) 0 0
\(730\) 0 0
\(731\) −8.15676 −0.301688
\(732\) 0 0
\(733\) 30.6369 1.13160 0.565799 0.824543i \(-0.308568\pi\)
0.565799 + 0.824543i \(0.308568\pi\)
\(734\) 69.5078 2.56558
\(735\) 0 0
\(736\) 21.1545 0.779765
\(737\) −24.5958 −0.905999
\(738\) 0 0
\(739\) 29.4908 1.08484 0.542418 0.840109i \(-0.317509\pi\)
0.542418 + 0.840109i \(0.317509\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 7.75872 0.284832
\(743\) 41.5129 1.52296 0.761481 0.648188i \(-0.224473\pi\)
0.761481 + 0.648188i \(0.224473\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −41.8915 −1.53376
\(747\) 0 0
\(748\) −11.7587 −0.429942
\(749\) 5.74435 0.209894
\(750\) 0 0
\(751\) −19.5792 −0.714454 −0.357227 0.934018i \(-0.616278\pi\)
−0.357227 + 0.934018i \(0.616278\pi\)
\(752\) 8.41628 0.306910
\(753\) 0 0
\(754\) 41.3835 1.50710
\(755\) 0 0
\(756\) 0 0
\(757\) −51.7875 −1.88225 −0.941124 0.338062i \(-0.890229\pi\)
−0.941124 + 0.338062i \(0.890229\pi\)
\(758\) −67.5813 −2.45466
\(759\) 0 0
\(760\) 0 0
\(761\) −3.62863 −0.131538 −0.0657689 0.997835i \(-0.520950\pi\)
−0.0657689 + 0.997835i \(0.520950\pi\)
\(762\) 0 0
\(763\) −3.13624 −0.113539
\(764\) 17.5825 0.636112
\(765\) 0 0
\(766\) 23.3028 0.841966
\(767\) −60.6947 −2.19156
\(768\) 0 0
\(769\) 23.7275 0.855637 0.427818 0.903865i \(-0.359282\pi\)
0.427818 + 0.903865i \(0.359282\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.9060 0.896387
\(773\) −40.3584 −1.45159 −0.725796 0.687910i \(-0.758528\pi\)
−0.725796 + 0.687910i \(0.758528\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.27513 0.297060
\(777\) 0 0
\(778\) −50.0144 −1.79310
\(779\) 3.01333 0.107964
\(780\) 0 0
\(781\) 6.92162 0.247675
\(782\) −8.28231 −0.296175
\(783\) 0 0
\(784\) 13.9444 0.498015
\(785\) 0 0
\(786\) 0 0
\(787\) 32.5236 1.15934 0.579670 0.814851i \(-0.303181\pi\)
0.579670 + 0.814851i \(0.303181\pi\)
\(788\) −9.55252 −0.340294
\(789\) 0 0
\(790\) 0 0
\(791\) 10.5814 0.376233
\(792\) 0 0
\(793\) 45.4329 1.61337
\(794\) 10.9627 0.389050
\(795\) 0 0
\(796\) −57.3751 −2.03361
\(797\) −32.4885 −1.15080 −0.575401 0.817871i \(-0.695154\pi\)
−0.575401 + 0.817871i \(0.695154\pi\)
\(798\) 0 0
\(799\) −5.54411 −0.196136
\(800\) 0 0
\(801\) 0 0
\(802\) −37.4440 −1.32219
\(803\) −24.0989 −0.850432
\(804\) 0 0
\(805\) 0 0
\(806\) 25.9155 0.912834
\(807\) 0 0
\(808\) −26.6803 −0.938611
\(809\) 1.16290 0.0408853 0.0204427 0.999791i \(-0.493492\pi\)
0.0204427 + 0.999791i \(0.493492\pi\)
\(810\) 0 0
\(811\) 37.7275 1.32479 0.662396 0.749154i \(-0.269540\pi\)
0.662396 + 0.749154i \(0.269540\pi\)
\(812\) −5.70928 −0.200356
\(813\) 0 0
\(814\) −28.4885 −0.998522
\(815\) 0 0
\(816\) 0 0
\(817\) 5.95774 0.208435
\(818\) −41.3340 −1.44521
\(819\) 0 0
\(820\) 0 0
\(821\) −24.0554 −0.839540 −0.419770 0.907631i \(-0.637889\pi\)
−0.419770 + 0.907631i \(0.637889\pi\)
\(822\) 0 0
\(823\) −19.6032 −0.683324 −0.341662 0.939823i \(-0.610990\pi\)
−0.341662 + 0.939823i \(0.610990\pi\)
\(824\) 3.88428 0.135315
\(825\) 0 0
\(826\) 14.5548 0.506426
\(827\) −4.54638 −0.158093 −0.0790465 0.996871i \(-0.525188\pi\)
−0.0790465 + 0.996871i \(0.525188\pi\)
\(828\) 0 0
\(829\) −49.4473 −1.71738 −0.858688 0.512499i \(-0.828720\pi\)
−0.858688 + 0.512499i \(0.828720\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 60.0710 2.08259
\(833\) −9.18568 −0.318265
\(834\) 0 0
\(835\) 0 0
\(836\) 8.58864 0.297044
\(837\) 0 0
\(838\) 24.1724 0.835020
\(839\) −25.3874 −0.876469 −0.438234 0.898861i \(-0.644396\pi\)
−0.438234 + 0.898861i \(0.644396\pi\)
\(840\) 0 0
\(841\) −13.7253 −0.473285
\(842\) −63.6574 −2.19378
\(843\) 0 0
\(844\) 29.8576 1.02774
\(845\) 0 0
\(846\) 0 0
\(847\) −0.512527 −0.0176106
\(848\) −13.7815 −0.473259
\(849\) 0 0
\(850\) 0 0
\(851\) −11.5441 −0.395727
\(852\) 0 0
\(853\) −1.71769 −0.0588124 −0.0294062 0.999568i \(-0.509362\pi\)
−0.0294062 + 0.999568i \(0.509362\pi\)
\(854\) −10.8950 −0.372818
\(855\) 0 0
\(856\) 16.3980 0.560473
\(857\) 45.8804 1.56724 0.783622 0.621237i \(-0.213370\pi\)
0.783622 + 0.621237i \(0.213370\pi\)
\(858\) 0 0
\(859\) −4.96266 −0.169324 −0.0846619 0.996410i \(-0.526981\pi\)
−0.0846619 + 0.996410i \(0.526981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 52.6947 1.79479
\(863\) −33.5441 −1.14185 −0.570927 0.821001i \(-0.693416\pi\)
−0.570927 + 0.821001i \(0.693416\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −63.4980 −2.15775
\(867\) 0 0
\(868\) −3.57531 −0.121354
\(869\) 47.6163 1.61527
\(870\) 0 0
\(871\) −37.8576 −1.28276
\(872\) −8.95282 −0.303181
\(873\) 0 0
\(874\) 6.04945 0.204626
\(875\) 0 0
\(876\) 0 0
\(877\) −40.5991 −1.37094 −0.685468 0.728103i \(-0.740402\pi\)
−0.685468 + 0.728103i \(0.740402\pi\)
\(878\) 46.2388 1.56048
\(879\) 0 0
\(880\) 0 0
\(881\) −5.13170 −0.172891 −0.0864457 0.996257i \(-0.527551\pi\)
−0.0864457 + 0.996257i \(0.527551\pi\)
\(882\) 0 0
\(883\) 47.4752 1.59767 0.798834 0.601552i \(-0.205451\pi\)
0.798834 + 0.601552i \(0.205451\pi\)
\(884\) −18.0989 −0.608732
\(885\) 0 0
\(886\) −28.6042 −0.960978
\(887\) −39.4017 −1.32298 −0.661490 0.749954i \(-0.730076\pi\)
−0.661490 + 0.749954i \(0.730076\pi\)
\(888\) 0 0
\(889\) 0.183417 0.00615162
\(890\) 0 0
\(891\) 0 0
\(892\) −30.3545 −1.01635
\(893\) 4.04945 0.135510
\(894\) 0 0
\(895\) 0 0
\(896\) −6.22180 −0.207856
\(897\) 0 0
\(898\) 69.4896 2.31890
\(899\) 9.56547 0.319026
\(900\) 0 0
\(901\) 9.07838 0.302445
\(902\) 20.7298 0.690227
\(903\) 0 0
\(904\) 30.2062 1.00464
\(905\) 0 0
\(906\) 0 0
\(907\) 10.0533 0.333815 0.166908 0.985973i \(-0.446622\pi\)
0.166908 + 0.985973i \(0.446622\pi\)
\(908\) 1.48029 0.0491250
\(909\) 0 0
\(910\) 0 0
\(911\) 5.16290 0.171054 0.0855272 0.996336i \(-0.472743\pi\)
0.0855272 + 0.996336i \(0.472743\pi\)
\(912\) 0 0
\(913\) −8.83710 −0.292465
\(914\) 81.1748 2.68502
\(915\) 0 0
\(916\) 60.9276 2.01310
\(917\) −6.47414 −0.213795
\(918\) 0 0
\(919\) 36.2290 1.19508 0.597542 0.801838i \(-0.296144\pi\)
0.597542 + 0.801838i \(0.296144\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 67.3484 2.21800
\(923\) 10.6537 0.350670
\(924\) 0 0
\(925\) 0 0
\(926\) −38.7552 −1.27358
\(927\) 0 0
\(928\) 29.6586 0.973591
\(929\) −18.0845 −0.593334 −0.296667 0.954981i \(-0.595875\pi\)
−0.296667 + 0.954981i \(0.595875\pi\)
\(930\) 0 0
\(931\) 6.70928 0.219888
\(932\) −29.2039 −0.956607
\(933\) 0 0
\(934\) −2.91321 −0.0953232
\(935\) 0 0
\(936\) 0 0
\(937\) 27.1773 0.887843 0.443921 0.896066i \(-0.353587\pi\)
0.443921 + 0.896066i \(0.353587\pi\)
\(938\) 9.07838 0.296420
\(939\) 0 0
\(940\) 0 0
\(941\) 10.8488 0.353662 0.176831 0.984241i \(-0.443415\pi\)
0.176831 + 0.984241i \(0.443415\pi\)
\(942\) 0 0
\(943\) 8.40012 0.273546
\(944\) −25.8531 −0.841446
\(945\) 0 0
\(946\) 40.9854 1.33255
\(947\) −12.6842 −0.412182 −0.206091 0.978533i \(-0.566074\pi\)
−0.206091 + 0.978533i \(0.566074\pi\)
\(948\) 0 0
\(949\) −37.0928 −1.20408
\(950\) 0 0
\(951\) 0 0
\(952\) 1.13624 0.0368256
\(953\) −0.573039 −0.0185625 −0.00928127 0.999957i \(-0.502954\pi\)
−0.00928127 + 0.999957i \(0.502954\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 56.0482 1.81273
\(957\) 0 0
\(958\) 30.2401 0.977012
\(959\) −10.3402 −0.333902
\(960\) 0 0
\(961\) −25.0098 −0.806769
\(962\) −43.8492 −1.41376
\(963\) 0 0
\(964\) 47.4596 1.52857
\(965\) 0 0
\(966\) 0 0
\(967\) 30.5659 0.982931 0.491466 0.870897i \(-0.336461\pi\)
0.491466 + 0.870897i \(0.336461\pi\)
\(968\) −1.46308 −0.0470251
\(969\) 0 0
\(970\) 0 0
\(971\) −61.8310 −1.98425 −0.992125 0.125252i \(-0.960026\pi\)
−0.992125 + 0.125252i \(0.960026\pi\)
\(972\) 0 0
\(973\) 8.26794 0.265058
\(974\) −86.5257 −2.77246
\(975\) 0 0
\(976\) 19.3523 0.619451
\(977\) 10.5464 0.337408 0.168704 0.985667i \(-0.446042\pi\)
0.168704 + 0.985667i \(0.446042\pi\)
\(978\) 0 0
\(979\) 2.63090 0.0840839
\(980\) 0 0
\(981\) 0 0
\(982\) 46.2811 1.47689
\(983\) 4.95878 0.158161 0.0790803 0.996868i \(-0.474802\pi\)
0.0790803 + 0.996868i \(0.474802\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −11.6118 −0.369795
\(987\) 0 0
\(988\) 13.2195 0.420569
\(989\) 16.6081 0.528107
\(990\) 0 0
\(991\) −5.78992 −0.183923 −0.0919614 0.995763i \(-0.529314\pi\)
−0.0919614 + 0.995763i \(0.529314\pi\)
\(992\) 18.5730 0.589695
\(993\) 0 0
\(994\) −2.55479 −0.0810329
\(995\) 0 0
\(996\) 0 0
\(997\) −23.7321 −0.751602 −0.375801 0.926700i \(-0.622632\pi\)
−0.375801 + 0.926700i \(0.622632\pi\)
\(998\) 27.9155 0.883649
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bj.1.3 3
3.2 odd 2 4275.2.a.bb.1.1 3
5.4 even 2 855.2.a.h.1.1 3
15.14 odd 2 855.2.a.l.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.a.h.1.1 3 5.4 even 2
855.2.a.l.1.3 yes 3 15.14 odd 2
4275.2.a.bb.1.1 3 3.2 odd 2
4275.2.a.bj.1.3 3 1.1 even 1 trivial