Properties

Label 4275.2.a.bj.1.1
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 855)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48119 q^{2} +0.193937 q^{4} +1.67513 q^{7} +2.67513 q^{8} +0.481194 q^{11} +1.28726 q^{13} -2.48119 q^{14} -4.35026 q^{16} +6.15633 q^{17} -1.00000 q^{19} -0.712742 q^{22} -2.54420 q^{23} -1.90668 q^{26} +0.324869 q^{28} -9.83146 q^{29} -9.50659 q^{31} +1.09332 q^{32} -9.11871 q^{34} -11.5999 q^{37} +1.48119 q^{38} +5.18172 q^{41} -2.06300 q^{43} +0.0933212 q^{44} +3.76845 q^{46} +5.76845 q^{47} -4.19394 q^{49} +0.249646 q^{52} +1.84367 q^{53} +4.48119 q^{56} +14.5623 q^{58} -14.4993 q^{59} +10.0811 q^{61} +14.0811 q^{62} +7.08110 q^{64} -4.57452 q^{67} +1.19394 q^{68} +9.66291 q^{71} -9.27504 q^{73} +17.1817 q^{74} -0.193937 q^{76} +0.806063 q^{77} +6.88717 q^{79} -7.67513 q^{82} +2.54420 q^{83} +3.05571 q^{86} +1.28726 q^{88} -4.48119 q^{89} +2.15633 q^{91} -0.493413 q^{92} -8.54420 q^{94} -3.54912 q^{97} +6.21203 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} + 3 q^{8} - 4 q^{11} - 2 q^{13} - 2 q^{14} - 3 q^{16} + 8 q^{17} - 3 q^{19} - 8 q^{22} + 2 q^{23} - 12 q^{26} + 6 q^{28} - 14 q^{29} - 8 q^{31} - 3 q^{32} - 6 q^{34} - 8 q^{37} - q^{38}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48119 −1.04736 −0.523681 0.851914i \(-0.675442\pi\)
−0.523681 + 0.851914i \(0.675442\pi\)
\(3\) 0 0
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) 0 0
\(7\) 1.67513 0.633140 0.316570 0.948569i \(-0.397469\pi\)
0.316570 + 0.948569i \(0.397469\pi\)
\(8\) 2.67513 0.945802
\(9\) 0 0
\(10\) 0 0
\(11\) 0.481194 0.145086 0.0725428 0.997365i \(-0.476889\pi\)
0.0725428 + 0.997365i \(0.476889\pi\)
\(12\) 0 0
\(13\) 1.28726 0.357021 0.178511 0.983938i \(-0.442872\pi\)
0.178511 + 0.983938i \(0.442872\pi\)
\(14\) −2.48119 −0.663127
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 6.15633 1.49313 0.746564 0.665314i \(-0.231702\pi\)
0.746564 + 0.665314i \(0.231702\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −0.712742 −0.151957
\(23\) −2.54420 −0.530502 −0.265251 0.964179i \(-0.585455\pi\)
−0.265251 + 0.964179i \(0.585455\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.90668 −0.373930
\(27\) 0 0
\(28\) 0.324869 0.0613945
\(29\) −9.83146 −1.82566 −0.912828 0.408345i \(-0.866106\pi\)
−0.912828 + 0.408345i \(0.866106\pi\)
\(30\) 0 0
\(31\) −9.50659 −1.70743 −0.853717 0.520738i \(-0.825657\pi\)
−0.853717 + 0.520738i \(0.825657\pi\)
\(32\) 1.09332 0.193274
\(33\) 0 0
\(34\) −9.11871 −1.56385
\(35\) 0 0
\(36\) 0 0
\(37\) −11.5999 −1.90701 −0.953507 0.301372i \(-0.902555\pi\)
−0.953507 + 0.301372i \(0.902555\pi\)
\(38\) 1.48119 0.240281
\(39\) 0 0
\(40\) 0 0
\(41\) 5.18172 0.809248 0.404624 0.914483i \(-0.367402\pi\)
0.404624 + 0.914483i \(0.367402\pi\)
\(42\) 0 0
\(43\) −2.06300 −0.314605 −0.157303 0.987550i \(-0.550280\pi\)
−0.157303 + 0.987550i \(0.550280\pi\)
\(44\) 0.0933212 0.0140687
\(45\) 0 0
\(46\) 3.76845 0.555628
\(47\) 5.76845 0.841415 0.420708 0.907196i \(-0.361782\pi\)
0.420708 + 0.907196i \(0.361782\pi\)
\(48\) 0 0
\(49\) −4.19394 −0.599134
\(50\) 0 0
\(51\) 0 0
\(52\) 0.249646 0.0346197
\(53\) 1.84367 0.253248 0.126624 0.991951i \(-0.459586\pi\)
0.126624 + 0.991951i \(0.459586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.48119 0.598825
\(57\) 0 0
\(58\) 14.5623 1.91212
\(59\) −14.4993 −1.88765 −0.943824 0.330450i \(-0.892800\pi\)
−0.943824 + 0.330450i \(0.892800\pi\)
\(60\) 0 0
\(61\) 10.0811 1.29075 0.645376 0.763865i \(-0.276701\pi\)
0.645376 + 0.763865i \(0.276701\pi\)
\(62\) 14.0811 1.78830
\(63\) 0 0
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) 0 0
\(67\) −4.57452 −0.558866 −0.279433 0.960165i \(-0.590146\pi\)
−0.279433 + 0.960165i \(0.590146\pi\)
\(68\) 1.19394 0.144786
\(69\) 0 0
\(70\) 0 0
\(71\) 9.66291 1.14678 0.573388 0.819284i \(-0.305629\pi\)
0.573388 + 0.819284i \(0.305629\pi\)
\(72\) 0 0
\(73\) −9.27504 −1.08556 −0.542781 0.839875i \(-0.682628\pi\)
−0.542781 + 0.839875i \(0.682628\pi\)
\(74\) 17.1817 1.99733
\(75\) 0 0
\(76\) −0.193937 −0.0222460
\(77\) 0.806063 0.0918595
\(78\) 0 0
\(79\) 6.88717 0.774867 0.387433 0.921898i \(-0.373362\pi\)
0.387433 + 0.921898i \(0.373362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −7.67513 −0.847576
\(83\) 2.54420 0.279262 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.05571 0.329506
\(87\) 0 0
\(88\) 1.28726 0.137222
\(89\) −4.48119 −0.475006 −0.237503 0.971387i \(-0.576329\pi\)
−0.237503 + 0.971387i \(0.576329\pi\)
\(90\) 0 0
\(91\) 2.15633 0.226044
\(92\) −0.493413 −0.0514419
\(93\) 0 0
\(94\) −8.54420 −0.881267
\(95\) 0 0
\(96\) 0 0
\(97\) −3.54912 −0.360359 −0.180179 0.983634i \(-0.557668\pi\)
−0.180179 + 0.983634i \(0.557668\pi\)
\(98\) 6.21203 0.627510
\(99\) 0 0
\(100\) 0 0
\(101\) −4.51388 −0.449148 −0.224574 0.974457i \(-0.572099\pi\)
−0.224574 + 0.974457i \(0.572099\pi\)
\(102\) 0 0
\(103\) −16.6253 −1.63814 −0.819070 0.573694i \(-0.805510\pi\)
−0.819070 + 0.573694i \(0.805510\pi\)
\(104\) 3.44358 0.337671
\(105\) 0 0
\(106\) −2.73084 −0.265243
\(107\) 12.4387 1.20249 0.601245 0.799065i \(-0.294671\pi\)
0.601245 + 0.799065i \(0.294671\pi\)
\(108\) 0 0
\(109\) −17.6629 −1.69180 −0.845900 0.533341i \(-0.820936\pi\)
−0.845900 + 0.533341i \(0.820936\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.28726 −0.688581
\(113\) 9.31994 0.876747 0.438373 0.898793i \(-0.355555\pi\)
0.438373 + 0.898793i \(0.355555\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.90668 −0.177031
\(117\) 0 0
\(118\) 21.4763 1.97705
\(119\) 10.3127 0.945359
\(120\) 0 0
\(121\) −10.7685 −0.978950
\(122\) −14.9321 −1.35189
\(123\) 0 0
\(124\) −1.84367 −0.165567
\(125\) 0 0
\(126\) 0 0
\(127\) −6.96239 −0.617812 −0.308906 0.951093i \(-0.599963\pi\)
−0.308906 + 0.951093i \(0.599963\pi\)
\(128\) −12.6751 −1.12033
\(129\) 0 0
\(130\) 0 0
\(131\) 1.70545 0.149006 0.0745028 0.997221i \(-0.476263\pi\)
0.0745028 + 0.997221i \(0.476263\pi\)
\(132\) 0 0
\(133\) −1.67513 −0.145252
\(134\) 6.77575 0.585335
\(135\) 0 0
\(136\) 16.4690 1.41220
\(137\) −1.81336 −0.154926 −0.0774628 0.996995i \(-0.524682\pi\)
−0.0774628 + 0.996995i \(0.524682\pi\)
\(138\) 0 0
\(139\) 2.51388 0.213225 0.106612 0.994301i \(-0.466000\pi\)
0.106612 + 0.994301i \(0.466000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −14.3127 −1.20109
\(143\) 0.619421 0.0517986
\(144\) 0 0
\(145\) 0 0
\(146\) 13.7381 1.13698
\(147\) 0 0
\(148\) −2.24965 −0.184920
\(149\) −8.62530 −0.706612 −0.353306 0.935508i \(-0.614943\pi\)
−0.353306 + 0.935508i \(0.614943\pi\)
\(150\) 0 0
\(151\) 4.85685 0.395245 0.197622 0.980278i \(-0.436678\pi\)
0.197622 + 0.980278i \(0.436678\pi\)
\(152\) −2.67513 −0.216982
\(153\) 0 0
\(154\) −1.19394 −0.0962102
\(155\) 0 0
\(156\) 0 0
\(157\) 14.5501 1.16122 0.580611 0.814181i \(-0.302814\pi\)
0.580611 + 0.814181i \(0.302814\pi\)
\(158\) −10.2012 −0.811566
\(159\) 0 0
\(160\) 0 0
\(161\) −4.26187 −0.335882
\(162\) 0 0
\(163\) 5.67513 0.444511 0.222255 0.974989i \(-0.428658\pi\)
0.222255 + 0.974989i \(0.428658\pi\)
\(164\) 1.00492 0.0784714
\(165\) 0 0
\(166\) −3.76845 −0.292489
\(167\) 2.41819 0.187125 0.0935626 0.995613i \(-0.470174\pi\)
0.0935626 + 0.995613i \(0.470174\pi\)
\(168\) 0 0
\(169\) −11.3430 −0.872536
\(170\) 0 0
\(171\) 0 0
\(172\) −0.400092 −0.0305067
\(173\) −4.85685 −0.369259 −0.184630 0.982808i \(-0.559109\pi\)
−0.184630 + 0.982808i \(0.559109\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.09332 −0.157790
\(177\) 0 0
\(178\) 6.63752 0.497503
\(179\) 1.03761 0.0775547 0.0387774 0.999248i \(-0.487654\pi\)
0.0387774 + 0.999248i \(0.487654\pi\)
\(180\) 0 0
\(181\) 7.27504 0.540749 0.270375 0.962755i \(-0.412852\pi\)
0.270375 + 0.962755i \(0.412852\pi\)
\(182\) −3.19394 −0.236750
\(183\) 0 0
\(184\) −6.80606 −0.501750
\(185\) 0 0
\(186\) 0 0
\(187\) 2.96239 0.216631
\(188\) 1.11871 0.0815906
\(189\) 0 0
\(190\) 0 0
\(191\) 17.4436 1.26217 0.631087 0.775712i \(-0.282609\pi\)
0.631087 + 0.775712i \(0.282609\pi\)
\(192\) 0 0
\(193\) 12.1138 0.871970 0.435985 0.899954i \(-0.356400\pi\)
0.435985 + 0.899954i \(0.356400\pi\)
\(194\) 5.25694 0.377426
\(195\) 0 0
\(196\) −0.813358 −0.0580970
\(197\) −12.8568 −0.916013 −0.458006 0.888949i \(-0.651436\pi\)
−0.458006 + 0.888949i \(0.651436\pi\)
\(198\) 0 0
\(199\) −3.81336 −0.270322 −0.135161 0.990824i \(-0.543155\pi\)
−0.135161 + 0.990824i \(0.543155\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.68594 0.470421
\(203\) −16.4690 −1.15590
\(204\) 0 0
\(205\) 0 0
\(206\) 24.6253 1.71573
\(207\) 0 0
\(208\) −5.59991 −0.388284
\(209\) −0.481194 −0.0332849
\(210\) 0 0
\(211\) −10.8872 −0.749503 −0.374752 0.927125i \(-0.622272\pi\)
−0.374752 + 0.927125i \(0.622272\pi\)
\(212\) 0.357556 0.0245570
\(213\) 0 0
\(214\) −18.4241 −1.25944
\(215\) 0 0
\(216\) 0 0
\(217\) −15.9248 −1.08104
\(218\) 26.1622 1.77193
\(219\) 0 0
\(220\) 0 0
\(221\) 7.92478 0.533078
\(222\) 0 0
\(223\) 22.5501 1.51006 0.755032 0.655687i \(-0.227621\pi\)
0.755032 + 0.655687i \(0.227621\pi\)
\(224\) 1.83146 0.122369
\(225\) 0 0
\(226\) −13.8046 −0.918272
\(227\) −12.0303 −0.798480 −0.399240 0.916846i \(-0.630726\pi\)
−0.399240 + 0.916846i \(0.630726\pi\)
\(228\) 0 0
\(229\) −14.2677 −0.942839 −0.471420 0.881909i \(-0.656258\pi\)
−0.471420 + 0.881909i \(0.656258\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −26.3004 −1.72671
\(233\) 23.4617 1.53703 0.768513 0.639834i \(-0.220997\pi\)
0.768513 + 0.639834i \(0.220997\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.81194 −0.183042
\(237\) 0 0
\(238\) −15.2750 −0.990134
\(239\) −7.63023 −0.493558 −0.246779 0.969072i \(-0.579372\pi\)
−0.246779 + 0.969072i \(0.579372\pi\)
\(240\) 0 0
\(241\) −7.14903 −0.460510 −0.230255 0.973130i \(-0.573956\pi\)
−0.230255 + 0.973130i \(0.573956\pi\)
\(242\) 15.9502 1.02532
\(243\) 0 0
\(244\) 1.95509 0.125162
\(245\) 0 0
\(246\) 0 0
\(247\) −1.28726 −0.0819062
\(248\) −25.4314 −1.61489
\(249\) 0 0
\(250\) 0 0
\(251\) 10.6072 0.669521 0.334760 0.942303i \(-0.391345\pi\)
0.334760 + 0.942303i \(0.391345\pi\)
\(252\) 0 0
\(253\) −1.22425 −0.0769682
\(254\) 10.3127 0.647073
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 27.8945 1.74001 0.870004 0.493044i \(-0.164116\pi\)
0.870004 + 0.493044i \(0.164116\pi\)
\(258\) 0 0
\(259\) −19.4314 −1.20741
\(260\) 0 0
\(261\) 0 0
\(262\) −2.52610 −0.156063
\(263\) −28.3430 −1.74770 −0.873851 0.486194i \(-0.838385\pi\)
−0.873851 + 0.486194i \(0.838385\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.48119 0.152132
\(267\) 0 0
\(268\) −0.887166 −0.0541923
\(269\) −13.2569 −0.808290 −0.404145 0.914695i \(-0.632431\pi\)
−0.404145 + 0.914695i \(0.632431\pi\)
\(270\) 0 0
\(271\) −25.9003 −1.57333 −0.786667 0.617378i \(-0.788195\pi\)
−0.786667 + 0.617378i \(0.788195\pi\)
\(272\) −26.7816 −1.62387
\(273\) 0 0
\(274\) 2.68594 0.162263
\(275\) 0 0
\(276\) 0 0
\(277\) −14.3127 −0.859964 −0.429982 0.902838i \(-0.641480\pi\)
−0.429982 + 0.902838i \(0.641480\pi\)
\(278\) −3.72355 −0.223323
\(279\) 0 0
\(280\) 0 0
\(281\) −19.8315 −1.18305 −0.591523 0.806288i \(-0.701473\pi\)
−0.591523 + 0.806288i \(0.701473\pi\)
\(282\) 0 0
\(283\) 20.5379 1.22085 0.610425 0.792074i \(-0.290999\pi\)
0.610425 + 0.792074i \(0.290999\pi\)
\(284\) 1.87399 0.111201
\(285\) 0 0
\(286\) −0.917483 −0.0542519
\(287\) 8.68006 0.512367
\(288\) 0 0
\(289\) 20.9003 1.22943
\(290\) 0 0
\(291\) 0 0
\(292\) −1.79877 −0.105265
\(293\) −13.0435 −0.762009 −0.381004 0.924573i \(-0.624422\pi\)
−0.381004 + 0.924573i \(0.624422\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −31.0313 −1.80366
\(297\) 0 0
\(298\) 12.7757 0.740079
\(299\) −3.27504 −0.189400
\(300\) 0 0
\(301\) −3.45580 −0.199189
\(302\) −7.19394 −0.413965
\(303\) 0 0
\(304\) 4.35026 0.249505
\(305\) 0 0
\(306\) 0 0
\(307\) −33.8397 −1.93133 −0.965667 0.259783i \(-0.916349\pi\)
−0.965667 + 0.259783i \(0.916349\pi\)
\(308\) 0.156325 0.00890745
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0082 −1.36138 −0.680691 0.732570i \(-0.738321\pi\)
−0.680691 + 0.732570i \(0.738321\pi\)
\(312\) 0 0
\(313\) −11.0132 −0.622501 −0.311251 0.950328i \(-0.600748\pi\)
−0.311251 + 0.950328i \(0.600748\pi\)
\(314\) −21.5515 −1.21622
\(315\) 0 0
\(316\) 1.33567 0.0751375
\(317\) −7.64244 −0.429242 −0.214621 0.976697i \(-0.568852\pi\)
−0.214621 + 0.976697i \(0.568852\pi\)
\(318\) 0 0
\(319\) −4.73084 −0.264876
\(320\) 0 0
\(321\) 0 0
\(322\) 6.31265 0.351790
\(323\) −6.15633 −0.342547
\(324\) 0 0
\(325\) 0 0
\(326\) −8.40597 −0.465564
\(327\) 0 0
\(328\) 13.8618 0.765388
\(329\) 9.66291 0.532734
\(330\) 0 0
\(331\) 23.9307 1.31535 0.657674 0.753303i \(-0.271540\pi\)
0.657674 + 0.753303i \(0.271540\pi\)
\(332\) 0.493413 0.0270796
\(333\) 0 0
\(334\) −3.58181 −0.195988
\(335\) 0 0
\(336\) 0 0
\(337\) −4.65211 −0.253416 −0.126708 0.991940i \(-0.540441\pi\)
−0.126708 + 0.991940i \(0.540441\pi\)
\(338\) 16.8011 0.913861
\(339\) 0 0
\(340\) 0 0
\(341\) −4.57452 −0.247724
\(342\) 0 0
\(343\) −18.7513 −1.01248
\(344\) −5.51881 −0.297554
\(345\) 0 0
\(346\) 7.19394 0.386748
\(347\) −5.61801 −0.301590 −0.150795 0.988565i \(-0.548183\pi\)
−0.150795 + 0.988565i \(0.548183\pi\)
\(348\) 0 0
\(349\) −17.7235 −0.948720 −0.474360 0.880331i \(-0.657320\pi\)
−0.474360 + 0.880331i \(0.657320\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.526100 0.0280412
\(353\) −7.40105 −0.393918 −0.196959 0.980412i \(-0.563107\pi\)
−0.196959 + 0.980412i \(0.563107\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −0.869067 −0.0460605
\(357\) 0 0
\(358\) −1.53690 −0.0812279
\(359\) 18.5926 0.981281 0.490640 0.871362i \(-0.336763\pi\)
0.490640 + 0.871362i \(0.336763\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −10.7757 −0.566361
\(363\) 0 0
\(364\) 0.418190 0.0219191
\(365\) 0 0
\(366\) 0 0
\(367\) 24.8895 1.29922 0.649612 0.760266i \(-0.274932\pi\)
0.649612 + 0.760266i \(0.274932\pi\)
\(368\) 11.0679 0.576956
\(369\) 0 0
\(370\) 0 0
\(371\) 3.08840 0.160342
\(372\) 0 0
\(373\) −13.6243 −0.705442 −0.352721 0.935729i \(-0.614744\pi\)
−0.352721 + 0.935729i \(0.614744\pi\)
\(374\) −4.38787 −0.226892
\(375\) 0 0
\(376\) 15.4314 0.795812
\(377\) −12.6556 −0.651797
\(378\) 0 0
\(379\) 3.82909 0.196687 0.0983435 0.995153i \(-0.468646\pi\)
0.0983435 + 0.995153i \(0.468646\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −25.8373 −1.32195
\(383\) 20.3127 1.03793 0.518964 0.854796i \(-0.326318\pi\)
0.518964 + 0.854796i \(0.326318\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −17.9429 −0.913268
\(387\) 0 0
\(388\) −0.688305 −0.0349434
\(389\) 15.2506 0.773236 0.386618 0.922240i \(-0.373643\pi\)
0.386618 + 0.922240i \(0.373643\pi\)
\(390\) 0 0
\(391\) −15.6629 −0.792108
\(392\) −11.2193 −0.566662
\(393\) 0 0
\(394\) 19.0435 0.959397
\(395\) 0 0
\(396\) 0 0
\(397\) 23.7137 1.19016 0.595078 0.803668i \(-0.297121\pi\)
0.595078 + 0.803668i \(0.297121\pi\)
\(398\) 5.64832 0.283125
\(399\) 0 0
\(400\) 0 0
\(401\) −21.3928 −1.06831 −0.534153 0.845388i \(-0.679369\pi\)
−0.534153 + 0.845388i \(0.679369\pi\)
\(402\) 0 0
\(403\) −12.2374 −0.609590
\(404\) −0.875407 −0.0435531
\(405\) 0 0
\(406\) 24.3938 1.21064
\(407\) −5.58181 −0.276680
\(408\) 0 0
\(409\) 19.2506 0.951881 0.475940 0.879477i \(-0.342108\pi\)
0.475940 + 0.879477i \(0.342108\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.22425 −0.158848
\(413\) −24.2882 −1.19514
\(414\) 0 0
\(415\) 0 0
\(416\) 1.40739 0.0690028
\(417\) 0 0
\(418\) 0.712742 0.0348614
\(419\) −33.0821 −1.61616 −0.808082 0.589070i \(-0.799494\pi\)
−0.808082 + 0.589070i \(0.799494\pi\)
\(420\) 0 0
\(421\) −16.5139 −0.804837 −0.402419 0.915456i \(-0.631830\pi\)
−0.402419 + 0.915456i \(0.631830\pi\)
\(422\) 16.1260 0.785002
\(423\) 0 0
\(424\) 4.93207 0.239523
\(425\) 0 0
\(426\) 0 0
\(427\) 16.8872 0.817227
\(428\) 2.41231 0.116603
\(429\) 0 0
\(430\) 0 0
\(431\) −7.19982 −0.346803 −0.173401 0.984851i \(-0.555476\pi\)
−0.173401 + 0.984851i \(0.555476\pi\)
\(432\) 0 0
\(433\) 28.0240 1.34675 0.673373 0.739303i \(-0.264845\pi\)
0.673373 + 0.739303i \(0.264845\pi\)
\(434\) 23.5877 1.13225
\(435\) 0 0
\(436\) −3.42548 −0.164051
\(437\) 2.54420 0.121706
\(438\) 0 0
\(439\) 24.8773 1.18733 0.593665 0.804712i \(-0.297681\pi\)
0.593665 + 0.804712i \(0.297681\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −11.7381 −0.558326
\(443\) 27.1451 1.28970 0.644850 0.764309i \(-0.276920\pi\)
0.644850 + 0.764309i \(0.276920\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −33.4010 −1.58159
\(447\) 0 0
\(448\) 11.8618 0.560416
\(449\) −9.11634 −0.430227 −0.215113 0.976589i \(-0.569012\pi\)
−0.215113 + 0.976589i \(0.569012\pi\)
\(450\) 0 0
\(451\) 2.49341 0.117410
\(452\) 1.80748 0.0850166
\(453\) 0 0
\(454\) 17.8192 0.836298
\(455\) 0 0
\(456\) 0 0
\(457\) 21.3404 0.998262 0.499131 0.866526i \(-0.333653\pi\)
0.499131 + 0.866526i \(0.333653\pi\)
\(458\) 21.1333 0.987494
\(459\) 0 0
\(460\) 0 0
\(461\) −18.2981 −0.852226 −0.426113 0.904670i \(-0.640117\pi\)
−0.426113 + 0.904670i \(0.640117\pi\)
\(462\) 0 0
\(463\) −33.5999 −1.56152 −0.780760 0.624831i \(-0.785168\pi\)
−0.780760 + 0.624831i \(0.785168\pi\)
\(464\) 42.7694 1.98552
\(465\) 0 0
\(466\) −34.7513 −1.60982
\(467\) −22.5198 −1.04209 −0.521045 0.853529i \(-0.674458\pi\)
−0.521045 + 0.853529i \(0.674458\pi\)
\(468\) 0 0
\(469\) −7.66291 −0.353840
\(470\) 0 0
\(471\) 0 0
\(472\) −38.7875 −1.78534
\(473\) −0.992706 −0.0456447
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 11.3018 0.516934
\(479\) 3.46802 0.158458 0.0792289 0.996856i \(-0.474754\pi\)
0.0792289 + 0.996856i \(0.474754\pi\)
\(480\) 0 0
\(481\) −14.9321 −0.680844
\(482\) 10.5891 0.482320
\(483\) 0 0
\(484\) −2.08840 −0.0949271
\(485\) 0 0
\(486\) 0 0
\(487\) 19.5223 0.884641 0.442320 0.896857i \(-0.354155\pi\)
0.442320 + 0.896857i \(0.354155\pi\)
\(488\) 26.9683 1.22080
\(489\) 0 0
\(490\) 0 0
\(491\) 22.2193 1.00274 0.501372 0.865232i \(-0.332829\pi\)
0.501372 + 0.865232i \(0.332829\pi\)
\(492\) 0 0
\(493\) −60.5256 −2.72594
\(494\) 1.90668 0.0857855
\(495\) 0 0
\(496\) 41.3561 1.85695
\(497\) 16.1866 0.726070
\(498\) 0 0
\(499\) −13.5877 −0.608269 −0.304134 0.952629i \(-0.598367\pi\)
−0.304134 + 0.952629i \(0.598367\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −15.7113 −0.701231
\(503\) 3.25457 0.145114 0.0725571 0.997364i \(-0.476884\pi\)
0.0725571 + 0.997364i \(0.476884\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.81336 0.0806136
\(507\) 0 0
\(508\) −1.35026 −0.0599082
\(509\) −40.2555 −1.78429 −0.892147 0.451744i \(-0.850802\pi\)
−0.892147 + 0.451744i \(0.850802\pi\)
\(510\) 0 0
\(511\) −15.5369 −0.687312
\(512\) 18.5188 0.818423
\(513\) 0 0
\(514\) −41.3171 −1.82242
\(515\) 0 0
\(516\) 0 0
\(517\) 2.77575 0.122077
\(518\) 28.7816 1.26459
\(519\) 0 0
\(520\) 0 0
\(521\) −14.4713 −0.634001 −0.317001 0.948425i \(-0.602676\pi\)
−0.317001 + 0.948425i \(0.602676\pi\)
\(522\) 0 0
\(523\) −24.7005 −1.08008 −0.540039 0.841640i \(-0.681591\pi\)
−0.540039 + 0.841640i \(0.681591\pi\)
\(524\) 0.330749 0.0144488
\(525\) 0 0
\(526\) 41.9814 1.83048
\(527\) −58.5256 −2.54942
\(528\) 0 0
\(529\) −16.5271 −0.718568
\(530\) 0 0
\(531\) 0 0
\(532\) −0.324869 −0.0140849
\(533\) 6.67021 0.288919
\(534\) 0 0
\(535\) 0 0
\(536\) −12.2374 −0.528576
\(537\) 0 0
\(538\) 19.6361 0.846573
\(539\) −2.01810 −0.0869257
\(540\) 0 0
\(541\) 13.8496 0.595439 0.297719 0.954653i \(-0.403774\pi\)
0.297719 + 0.954653i \(0.403774\pi\)
\(542\) 38.3634 1.64785
\(543\) 0 0
\(544\) 6.73084 0.288582
\(545\) 0 0
\(546\) 0 0
\(547\) 0.649738 0.0277808 0.0138904 0.999904i \(-0.495578\pi\)
0.0138904 + 0.999904i \(0.495578\pi\)
\(548\) −0.351676 −0.0150229
\(549\) 0 0
\(550\) 0 0
\(551\) 9.83146 0.418834
\(552\) 0 0
\(553\) 11.5369 0.490599
\(554\) 21.1998 0.900694
\(555\) 0 0
\(556\) 0.487533 0.0206760
\(557\) −13.3503 −0.565669 −0.282834 0.959169i \(-0.591275\pi\)
−0.282834 + 0.959169i \(0.591275\pi\)
\(558\) 0 0
\(559\) −2.65562 −0.112321
\(560\) 0 0
\(561\) 0 0
\(562\) 29.3742 1.23908
\(563\) −25.2809 −1.06546 −0.532732 0.846284i \(-0.678835\pi\)
−0.532732 + 0.846284i \(0.678835\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −30.4206 −1.27867
\(567\) 0 0
\(568\) 25.8496 1.08462
\(569\) 46.4323 1.94654 0.973272 0.229655i \(-0.0737599\pi\)
0.973272 + 0.229655i \(0.0737599\pi\)
\(570\) 0 0
\(571\) −24.3127 −1.01745 −0.508726 0.860928i \(-0.669884\pi\)
−0.508726 + 0.860928i \(0.669884\pi\)
\(572\) 0.120128 0.00502282
\(573\) 0 0
\(574\) −12.8568 −0.536634
\(575\) 0 0
\(576\) 0 0
\(577\) −21.7743 −0.906477 −0.453239 0.891389i \(-0.649731\pi\)
−0.453239 + 0.891389i \(0.649731\pi\)
\(578\) −30.9575 −1.28766
\(579\) 0 0
\(580\) 0 0
\(581\) 4.26187 0.176812
\(582\) 0 0
\(583\) 0.887166 0.0367427
\(584\) −24.8119 −1.02673
\(585\) 0 0
\(586\) 19.3199 0.798100
\(587\) −2.56864 −0.106019 −0.0530095 0.998594i \(-0.516881\pi\)
−0.0530095 + 0.998594i \(0.516881\pi\)
\(588\) 0 0
\(589\) 9.50659 0.391712
\(590\) 0 0
\(591\) 0 0
\(592\) 50.4626 2.07400
\(593\) −8.94780 −0.367442 −0.183721 0.982978i \(-0.558814\pi\)
−0.183721 + 0.982978i \(0.558814\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.67276 −0.0685190
\(597\) 0 0
\(598\) 4.85097 0.198371
\(599\) −25.4471 −1.03974 −0.519870 0.854245i \(-0.674020\pi\)
−0.519870 + 0.854245i \(0.674020\pi\)
\(600\) 0 0
\(601\) −26.8726 −1.09616 −0.548078 0.836427i \(-0.684640\pi\)
−0.548078 + 0.836427i \(0.684640\pi\)
\(602\) 5.11871 0.208623
\(603\) 0 0
\(604\) 0.941921 0.0383262
\(605\) 0 0
\(606\) 0 0
\(607\) 11.4499 0.464738 0.232369 0.972628i \(-0.425352\pi\)
0.232369 + 0.972628i \(0.425352\pi\)
\(608\) −1.09332 −0.0443400
\(609\) 0 0
\(610\) 0 0
\(611\) 7.42548 0.300403
\(612\) 0 0
\(613\) 39.2360 1.58473 0.792364 0.610049i \(-0.208850\pi\)
0.792364 + 0.610049i \(0.208850\pi\)
\(614\) 50.1232 2.02281
\(615\) 0 0
\(616\) 2.15633 0.0868808
\(617\) 40.8568 1.64483 0.822417 0.568885i \(-0.192625\pi\)
0.822417 + 0.568885i \(0.192625\pi\)
\(618\) 0 0
\(619\) 18.7612 0.754075 0.377037 0.926198i \(-0.376943\pi\)
0.377037 + 0.926198i \(0.376943\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 35.5609 1.42586
\(623\) −7.50659 −0.300745
\(624\) 0 0
\(625\) 0 0
\(626\) 16.3127 0.651985
\(627\) 0 0
\(628\) 2.82179 0.112602
\(629\) −71.4128 −2.84742
\(630\) 0 0
\(631\) 32.5599 1.29619 0.648095 0.761559i \(-0.275566\pi\)
0.648095 + 0.761559i \(0.275566\pi\)
\(632\) 18.4241 0.732870
\(633\) 0 0
\(634\) 11.3199 0.449572
\(635\) 0 0
\(636\) 0 0
\(637\) −5.39868 −0.213903
\(638\) 7.00729 0.277421
\(639\) 0 0
\(640\) 0 0
\(641\) −25.6712 −1.01395 −0.506975 0.861961i \(-0.669236\pi\)
−0.506975 + 0.861961i \(0.669236\pi\)
\(642\) 0 0
\(643\) 6.22521 0.245498 0.122749 0.992438i \(-0.460829\pi\)
0.122749 + 0.992438i \(0.460829\pi\)
\(644\) −0.826531 −0.0325699
\(645\) 0 0
\(646\) 9.11871 0.358771
\(647\) −37.8653 −1.48864 −0.744319 0.667824i \(-0.767226\pi\)
−0.744319 + 0.667824i \(0.767226\pi\)
\(648\) 0 0
\(649\) −6.97698 −0.273870
\(650\) 0 0
\(651\) 0 0
\(652\) 1.10062 0.0431034
\(653\) −41.5428 −1.62569 −0.812847 0.582477i \(-0.802084\pi\)
−0.812847 + 0.582477i \(0.802084\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −22.5418 −0.880111
\(657\) 0 0
\(658\) −14.3127 −0.557965
\(659\) 39.3719 1.53371 0.766855 0.641820i \(-0.221820\pi\)
0.766855 + 0.641820i \(0.221820\pi\)
\(660\) 0 0
\(661\) −21.5369 −0.837688 −0.418844 0.908058i \(-0.637565\pi\)
−0.418844 + 0.908058i \(0.637565\pi\)
\(662\) −35.4460 −1.37765
\(663\) 0 0
\(664\) 6.80606 0.264126
\(665\) 0 0
\(666\) 0 0
\(667\) 25.0132 0.968514
\(668\) 0.468976 0.0181452
\(669\) 0 0
\(670\) 0 0
\(671\) 4.85097 0.187270
\(672\) 0 0
\(673\) 10.4509 0.402852 0.201426 0.979504i \(-0.435442\pi\)
0.201426 + 0.979504i \(0.435442\pi\)
\(674\) 6.89068 0.265419
\(675\) 0 0
\(676\) −2.19982 −0.0846083
\(677\) −35.5329 −1.36564 −0.682821 0.730586i \(-0.739247\pi\)
−0.682821 + 0.730586i \(0.739247\pi\)
\(678\) 0 0
\(679\) −5.94525 −0.228158
\(680\) 0 0
\(681\) 0 0
\(682\) 6.77575 0.259457
\(683\) −20.5891 −0.787820 −0.393910 0.919149i \(-0.628878\pi\)
−0.393910 + 0.919149i \(0.628878\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 27.7743 1.06043
\(687\) 0 0
\(688\) 8.97461 0.342154
\(689\) 2.37328 0.0904149
\(690\) 0 0
\(691\) −29.0884 −1.10657 −0.553287 0.832990i \(-0.686627\pi\)
−0.553287 + 0.832990i \(0.686627\pi\)
\(692\) −0.941921 −0.0358064
\(693\) 0 0
\(694\) 8.32136 0.315874
\(695\) 0 0
\(696\) 0 0
\(697\) 31.9003 1.20831
\(698\) 26.2520 0.993653
\(699\) 0 0
\(700\) 0 0
\(701\) −7.38646 −0.278983 −0.139491 0.990223i \(-0.544547\pi\)
−0.139491 + 0.990223i \(0.544547\pi\)
\(702\) 0 0
\(703\) 11.5999 0.437499
\(704\) 3.40739 0.128421
\(705\) 0 0
\(706\) 10.9624 0.412575
\(707\) −7.56134 −0.284374
\(708\) 0 0
\(709\) 39.5837 1.48660 0.743299 0.668959i \(-0.233260\pi\)
0.743299 + 0.668959i \(0.233260\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −11.9878 −0.449261
\(713\) 24.1866 0.905797
\(714\) 0 0
\(715\) 0 0
\(716\) 0.201231 0.00752035
\(717\) 0 0
\(718\) −27.5393 −1.02776
\(719\) 31.5940 1.17826 0.589129 0.808039i \(-0.299471\pi\)
0.589129 + 0.808039i \(0.299471\pi\)
\(720\) 0 0
\(721\) −27.8496 −1.03717
\(722\) −1.48119 −0.0551243
\(723\) 0 0
\(724\) 1.41090 0.0524355
\(725\) 0 0
\(726\) 0 0
\(727\) 13.8011 0.511856 0.255928 0.966696i \(-0.417619\pi\)
0.255928 + 0.966696i \(0.417619\pi\)
\(728\) 5.76845 0.213793
\(729\) 0 0
\(730\) 0 0
\(731\) −12.7005 −0.469746
\(732\) 0 0
\(733\) −35.5731 −1.31392 −0.656961 0.753924i \(-0.728158\pi\)
−0.656961 + 0.753924i \(0.728158\pi\)
\(734\) −36.8662 −1.36076
\(735\) 0 0
\(736\) −2.78163 −0.102532
\(737\) −2.20123 −0.0810834
\(738\) 0 0
\(739\) 21.2144 0.780384 0.390192 0.920733i \(-0.372409\pi\)
0.390192 + 0.920733i \(0.372409\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −4.57452 −0.167936
\(743\) −40.1133 −1.47162 −0.735808 0.677191i \(-0.763197\pi\)
−0.735808 + 0.677191i \(0.763197\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 20.1803 0.738853
\(747\) 0 0
\(748\) 0.574515 0.0210064
\(749\) 20.8364 0.761345
\(750\) 0 0
\(751\) 3.87002 0.141219 0.0706096 0.997504i \(-0.477506\pi\)
0.0706096 + 0.997504i \(0.477506\pi\)
\(752\) −25.0943 −0.915094
\(753\) 0 0
\(754\) 18.7454 0.682668
\(755\) 0 0
\(756\) 0 0
\(757\) 15.3963 0.559588 0.279794 0.960060i \(-0.409734\pi\)
0.279794 + 0.960060i \(0.409734\pi\)
\(758\) −5.67162 −0.206003
\(759\) 0 0
\(760\) 0 0
\(761\) 29.6385 1.07439 0.537197 0.843457i \(-0.319483\pi\)
0.537197 + 0.843457i \(0.319483\pi\)
\(762\) 0 0
\(763\) −29.5877 −1.07115
\(764\) 3.38295 0.122391
\(765\) 0 0
\(766\) −30.0870 −1.08709
\(767\) −18.6643 −0.673930
\(768\) 0 0
\(769\) −29.1754 −1.05209 −0.526046 0.850456i \(-0.676326\pi\)
−0.526046 + 0.850456i \(0.676326\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.34931 0.0845534
\(773\) 17.3317 0.623378 0.311689 0.950184i \(-0.399105\pi\)
0.311689 + 0.950184i \(0.399105\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −9.49437 −0.340828
\(777\) 0 0
\(778\) −22.5891 −0.809859
\(779\) −5.18172 −0.185654
\(780\) 0 0
\(781\) 4.64974 0.166381
\(782\) 23.1998 0.829624
\(783\) 0 0
\(784\) 18.2447 0.651597
\(785\) 0 0
\(786\) 0 0
\(787\) 13.3747 0.476757 0.238378 0.971172i \(-0.423384\pi\)
0.238378 + 0.971172i \(0.423384\pi\)
\(788\) −2.49341 −0.0888242
\(789\) 0 0
\(790\) 0 0
\(791\) 15.6121 0.555103
\(792\) 0 0
\(793\) 12.9770 0.460826
\(794\) −35.1246 −1.24653
\(795\) 0 0
\(796\) −0.739549 −0.0262126
\(797\) 4.26774 0.151171 0.0755856 0.997139i \(-0.475917\pi\)
0.0755856 + 0.997139i \(0.475917\pi\)
\(798\) 0 0
\(799\) 35.5125 1.25634
\(800\) 0 0
\(801\) 0 0
\(802\) 31.6869 1.11890
\(803\) −4.46310 −0.157499
\(804\) 0 0
\(805\) 0 0
\(806\) 18.1260 0.638461
\(807\) 0 0
\(808\) −12.0752 −0.424805
\(809\) 11.2243 0.394624 0.197312 0.980341i \(-0.436779\pi\)
0.197312 + 0.980341i \(0.436779\pi\)
\(810\) 0 0
\(811\) −15.1754 −0.532880 −0.266440 0.963852i \(-0.585847\pi\)
−0.266440 + 0.963852i \(0.585847\pi\)
\(812\) −3.19394 −0.112085
\(813\) 0 0
\(814\) 8.26774 0.289784
\(815\) 0 0
\(816\) 0 0
\(817\) 2.06300 0.0721754
\(818\) −28.5139 −0.996964
\(819\) 0 0
\(820\) 0 0
\(821\) 47.1852 1.64678 0.823388 0.567479i \(-0.192081\pi\)
0.823388 + 0.567479i \(0.192081\pi\)
\(822\) 0 0
\(823\) −50.4363 −1.75810 −0.879049 0.476731i \(-0.841822\pi\)
−0.879049 + 0.476731i \(0.841822\pi\)
\(824\) −44.4749 −1.54935
\(825\) 0 0
\(826\) 35.9756 1.25175
\(827\) 8.03032 0.279241 0.139621 0.990205i \(-0.455412\pi\)
0.139621 + 0.990205i \(0.455412\pi\)
\(828\) 0 0
\(829\) 10.4339 0.362385 0.181192 0.983448i \(-0.442004\pi\)
0.181192 + 0.983448i \(0.442004\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 9.11520 0.316013
\(833\) −25.8192 −0.894584
\(834\) 0 0
\(835\) 0 0
\(836\) −0.0933212 −0.00322758
\(837\) 0 0
\(838\) 49.0010 1.69271
\(839\) 20.2130 0.697830 0.348915 0.937154i \(-0.386550\pi\)
0.348915 + 0.937154i \(0.386550\pi\)
\(840\) 0 0
\(841\) 67.6575 2.33302
\(842\) 24.4603 0.842956
\(843\) 0 0
\(844\) −2.11142 −0.0726781
\(845\) 0 0
\(846\) 0 0
\(847\) −18.0386 −0.619812
\(848\) −8.02047 −0.275424
\(849\) 0 0
\(850\) 0 0
\(851\) 29.5125 1.01167
\(852\) 0 0
\(853\) −33.1998 −1.13674 −0.568370 0.822773i \(-0.692426\pi\)
−0.568370 + 0.822773i \(0.692426\pi\)
\(854\) −25.0132 −0.855933
\(855\) 0 0
\(856\) 33.2750 1.13732
\(857\) 20.4836 0.699705 0.349853 0.936805i \(-0.386232\pi\)
0.349853 + 0.936805i \(0.386232\pi\)
\(858\) 0 0
\(859\) 41.1246 1.40315 0.701577 0.712594i \(-0.252480\pi\)
0.701577 + 0.712594i \(0.252480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.6643 0.363228
\(863\) 7.51247 0.255727 0.127864 0.991792i \(-0.459188\pi\)
0.127864 + 0.991792i \(0.459188\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −41.5090 −1.41053
\(867\) 0 0
\(868\) −3.08840 −0.104827
\(869\) 3.31406 0.112422
\(870\) 0 0
\(871\) −5.88858 −0.199527
\(872\) −47.2506 −1.60011
\(873\) 0 0
\(874\) −3.76845 −0.127470
\(875\) 0 0
\(876\) 0 0
\(877\) −27.4542 −0.927063 −0.463531 0.886081i \(-0.653418\pi\)
−0.463531 + 0.886081i \(0.653418\pi\)
\(878\) −36.8481 −1.24356
\(879\) 0 0
\(880\) 0 0
\(881\) 25.3766 0.854960 0.427480 0.904025i \(-0.359401\pi\)
0.427480 + 0.904025i \(0.359401\pi\)
\(882\) 0 0
\(883\) 18.9140 0.636506 0.318253 0.948006i \(-0.396904\pi\)
0.318253 + 0.948006i \(0.396904\pi\)
\(884\) 1.53690 0.0516917
\(885\) 0 0
\(886\) −40.2071 −1.35078
\(887\) 33.6239 1.12898 0.564490 0.825440i \(-0.309073\pi\)
0.564490 + 0.825440i \(0.309073\pi\)
\(888\) 0 0
\(889\) −11.6629 −0.391162
\(890\) 0 0
\(891\) 0 0
\(892\) 4.37328 0.146428
\(893\) −5.76845 −0.193034
\(894\) 0 0
\(895\) 0 0
\(896\) −21.2325 −0.709328
\(897\) 0 0
\(898\) 13.5031 0.450604
\(899\) 93.4636 3.11719
\(900\) 0 0
\(901\) 11.3503 0.378132
\(902\) −3.69323 −0.122971
\(903\) 0 0
\(904\) 24.9321 0.829228
\(905\) 0 0
\(906\) 0 0
\(907\) −22.7269 −0.754633 −0.377317 0.926084i \(-0.623153\pi\)
−0.377317 + 0.926084i \(0.623153\pi\)
\(908\) −2.33312 −0.0774273
\(909\) 0 0
\(910\) 0 0
\(911\) 15.2243 0.504402 0.252201 0.967675i \(-0.418846\pi\)
0.252201 + 0.967675i \(0.418846\pi\)
\(912\) 0 0
\(913\) 1.22425 0.0405169
\(914\) −31.6093 −1.04554
\(915\) 0 0
\(916\) −2.76704 −0.0914255
\(917\) 2.85685 0.0943415
\(918\) 0 0
\(919\) 37.5271 1.23790 0.618952 0.785429i \(-0.287558\pi\)
0.618952 + 0.785429i \(0.287558\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 27.1030 0.892589
\(923\) 12.4387 0.409423
\(924\) 0 0
\(925\) 0 0
\(926\) 49.7680 1.63548
\(927\) 0 0
\(928\) −10.7489 −0.352851
\(929\) −25.8740 −0.848898 −0.424449 0.905452i \(-0.639532\pi\)
−0.424449 + 0.905452i \(0.639532\pi\)
\(930\) 0 0
\(931\) 4.19394 0.137451
\(932\) 4.55008 0.149043
\(933\) 0 0
\(934\) 33.3561 1.09145
\(935\) 0 0
\(936\) 0 0
\(937\) 9.81336 0.320588 0.160294 0.987069i \(-0.448756\pi\)
0.160294 + 0.987069i \(0.448756\pi\)
\(938\) 11.3503 0.370599
\(939\) 0 0
\(940\) 0 0
\(941\) 44.0346 1.43549 0.717743 0.696308i \(-0.245175\pi\)
0.717743 + 0.696308i \(0.245175\pi\)
\(942\) 0 0
\(943\) −13.1833 −0.429308
\(944\) 63.0757 2.05294
\(945\) 0 0
\(946\) 1.47039 0.0478065
\(947\) 24.8832 0.808595 0.404298 0.914627i \(-0.367516\pi\)
0.404298 + 0.914627i \(0.367516\pi\)
\(948\) 0 0
\(949\) −11.9394 −0.387568
\(950\) 0 0
\(951\) 0 0
\(952\) 27.5877 0.894122
\(953\) 28.3938 0.919764 0.459882 0.887980i \(-0.347892\pi\)
0.459882 + 0.887980i \(0.347892\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.47978 −0.0478595
\(957\) 0 0
\(958\) −5.13681 −0.165963
\(959\) −3.03761 −0.0980896
\(960\) 0 0
\(961\) 59.3752 1.91533
\(962\) 22.1173 0.713090
\(963\) 0 0
\(964\) −1.38646 −0.0446548
\(965\) 0 0
\(966\) 0 0
\(967\) 15.3117 0.492391 0.246195 0.969220i \(-0.420819\pi\)
0.246195 + 0.969220i \(0.420819\pi\)
\(968\) −28.8070 −0.925893
\(969\) 0 0
\(970\) 0 0
\(971\) −46.2520 −1.48430 −0.742149 0.670235i \(-0.766193\pi\)
−0.742149 + 0.670235i \(0.766193\pi\)
\(972\) 0 0
\(973\) 4.21108 0.135001
\(974\) −28.9163 −0.926539
\(975\) 0 0
\(976\) −43.8554 −1.40378
\(977\) −2.03032 −0.0649556 −0.0324778 0.999472i \(-0.510340\pi\)
−0.0324778 + 0.999472i \(0.510340\pi\)
\(978\) 0 0
\(979\) −2.15633 −0.0689165
\(980\) 0 0
\(981\) 0 0
\(982\) −32.9111 −1.05024
\(983\) −18.1662 −0.579411 −0.289705 0.957116i \(-0.593557\pi\)
−0.289705 + 0.957116i \(0.593557\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 89.6502 2.85505
\(987\) 0 0
\(988\) −0.249646 −0.00794231
\(989\) 5.24869 0.166899
\(990\) 0 0
\(991\) −34.0263 −1.08088 −0.540441 0.841382i \(-0.681743\pi\)
−0.540441 + 0.841382i \(0.681743\pi\)
\(992\) −10.3938 −0.330002
\(993\) 0 0
\(994\) −23.9756 −0.760459
\(995\) 0 0
\(996\) 0 0
\(997\) −27.7889 −0.880084 −0.440042 0.897977i \(-0.645036\pi\)
−0.440042 + 0.897977i \(0.645036\pi\)
\(998\) 20.1260 0.637078
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bj.1.1 3
3.2 odd 2 4275.2.a.bb.1.3 3
5.4 even 2 855.2.a.h.1.3 3
15.14 odd 2 855.2.a.l.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
855.2.a.h.1.3 3 5.4 even 2
855.2.a.l.1.1 yes 3 15.14 odd 2
4275.2.a.bb.1.3 3 3.2 odd 2
4275.2.a.bj.1.1 3 1.1 even 1 trivial