Properties

Label 4275.2.a.bi.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17009 q^{2} +2.70928 q^{4} -0.829914 q^{7} +1.53919 q^{8} -2.53919 q^{11} -4.24846 q^{13} -1.80098 q^{14} -2.07838 q^{16} +1.36910 q^{17} -1.00000 q^{19} -5.51026 q^{22} +3.36910 q^{23} -9.21953 q^{26} -2.24846 q^{28} +3.80098 q^{29} -0.290725 q^{31} -7.58864 q^{32} +2.97107 q^{34} -7.51026 q^{37} -2.17009 q^{38} -10.1412 q^{41} -5.35350 q^{43} -6.87936 q^{44} +7.31124 q^{46} +8.63090 q^{47} -6.31124 q^{49} -11.5103 q^{52} -1.86603 q^{53} -1.27739 q^{56} +8.24846 q^{58} -10.0989 q^{59} -7.86603 q^{61} -0.630898 q^{62} -12.3112 q^{64} -4.15676 q^{67} +3.70928 q^{68} +2.00000 q^{71} +3.57531 q^{73} -16.2979 q^{74} -2.70928 q^{76} +2.10731 q^{77} -2.34017 q^{79} -22.0072 q^{82} -10.3896 q^{83} -11.6176 q^{86} -3.90829 q^{88} +12.0566 q^{89} +3.52586 q^{91} +9.12783 q^{92} +18.7298 q^{94} +18.6875 q^{97} -13.6959 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + q^{4} - 8 q^{7} + 3 q^{8} - 6 q^{11} - 4 q^{13} + 4 q^{14} - 3 q^{16} + 8 q^{17} - 3 q^{19} + 14 q^{23} - 4 q^{26} + 2 q^{28} + 2 q^{29} - 8 q^{31} - 3 q^{32} - 6 q^{34} - 6 q^{37} - q^{38}+ \cdots - 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009 1.53448 0.767241 0.641358i \(-0.221629\pi\)
0.767241 + 0.641358i \(0.221629\pi\)
\(3\) 0 0
\(4\) 2.70928 1.35464
\(5\) 0 0
\(6\) 0 0
\(7\) −0.829914 −0.313678 −0.156839 0.987624i \(-0.550130\pi\)
−0.156839 + 0.987624i \(0.550130\pi\)
\(8\) 1.53919 0.544185
\(9\) 0 0
\(10\) 0 0
\(11\) −2.53919 −0.765594 −0.382797 0.923832i \(-0.625039\pi\)
−0.382797 + 0.923832i \(0.625039\pi\)
\(12\) 0 0
\(13\) −4.24846 −1.17831 −0.589156 0.808019i \(-0.700540\pi\)
−0.589156 + 0.808019i \(0.700540\pi\)
\(14\) −1.80098 −0.481333
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) 1.36910 0.332056 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −5.51026 −1.17479
\(23\) 3.36910 0.702506 0.351253 0.936281i \(-0.385756\pi\)
0.351253 + 0.936281i \(0.385756\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −9.21953 −1.80810
\(27\) 0 0
\(28\) −2.24846 −0.424920
\(29\) 3.80098 0.705825 0.352913 0.935656i \(-0.385191\pi\)
0.352913 + 0.935656i \(0.385191\pi\)
\(30\) 0 0
\(31\) −0.290725 −0.0522157 −0.0261078 0.999659i \(-0.508311\pi\)
−0.0261078 + 0.999659i \(0.508311\pi\)
\(32\) −7.58864 −1.34149
\(33\) 0 0
\(34\) 2.97107 0.509534
\(35\) 0 0
\(36\) 0 0
\(37\) −7.51026 −1.23468 −0.617340 0.786697i \(-0.711790\pi\)
−0.617340 + 0.786697i \(0.711790\pi\)
\(38\) −2.17009 −0.352035
\(39\) 0 0
\(40\) 0 0
\(41\) −10.1412 −1.58378 −0.791891 0.610662i \(-0.790903\pi\)
−0.791891 + 0.610662i \(0.790903\pi\)
\(42\) 0 0
\(43\) −5.35350 −0.816402 −0.408201 0.912892i \(-0.633844\pi\)
−0.408201 + 0.912892i \(0.633844\pi\)
\(44\) −6.87936 −1.03710
\(45\) 0 0
\(46\) 7.31124 1.07798
\(47\) 8.63090 1.25895 0.629473 0.777022i \(-0.283271\pi\)
0.629473 + 0.777022i \(0.283271\pi\)
\(48\) 0 0
\(49\) −6.31124 −0.901606
\(50\) 0 0
\(51\) 0 0
\(52\) −11.5103 −1.59619
\(53\) −1.86603 −0.256319 −0.128160 0.991754i \(-0.540907\pi\)
−0.128160 + 0.991754i \(0.540907\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.27739 −0.170699
\(57\) 0 0
\(58\) 8.24846 1.08308
\(59\) −10.0989 −1.31476 −0.657382 0.753557i \(-0.728336\pi\)
−0.657382 + 0.753557i \(0.728336\pi\)
\(60\) 0 0
\(61\) −7.86603 −1.00714 −0.503571 0.863954i \(-0.667981\pi\)
−0.503571 + 0.863954i \(0.667981\pi\)
\(62\) −0.630898 −0.0801241
\(63\) 0 0
\(64\) −12.3112 −1.53891
\(65\) 0 0
\(66\) 0 0
\(67\) −4.15676 −0.507829 −0.253914 0.967227i \(-0.581718\pi\)
−0.253914 + 0.967227i \(0.581718\pi\)
\(68\) 3.70928 0.449816
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 3.57531 0.418458 0.209229 0.977867i \(-0.432905\pi\)
0.209229 + 0.977867i \(0.432905\pi\)
\(74\) −16.2979 −1.89459
\(75\) 0 0
\(76\) −2.70928 −0.310775
\(77\) 2.10731 0.240150
\(78\) 0 0
\(79\) −2.34017 −0.263290 −0.131645 0.991297i \(-0.542026\pi\)
−0.131645 + 0.991297i \(0.542026\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −22.0072 −2.43029
\(83\) −10.3896 −1.14041 −0.570205 0.821503i \(-0.693136\pi\)
−0.570205 + 0.821503i \(0.693136\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −11.6176 −1.25275
\(87\) 0 0
\(88\) −3.90829 −0.416625
\(89\) 12.0566 1.27800 0.639000 0.769206i \(-0.279348\pi\)
0.639000 + 0.769206i \(0.279348\pi\)
\(90\) 0 0
\(91\) 3.52586 0.369610
\(92\) 9.12783 0.951642
\(93\) 0 0
\(94\) 18.7298 1.93183
\(95\) 0 0
\(96\) 0 0
\(97\) 18.6875 1.89743 0.948716 0.316130i \(-0.102384\pi\)
0.948716 + 0.316130i \(0.102384\pi\)
\(98\) −13.6959 −1.38350
\(99\) 0 0
\(100\) 0 0
\(101\) −0.581449 −0.0578564 −0.0289282 0.999581i \(-0.509209\pi\)
−0.0289282 + 0.999581i \(0.509209\pi\)
\(102\) 0 0
\(103\) −16.0989 −1.58627 −0.793136 0.609045i \(-0.791553\pi\)
−0.793136 + 0.609045i \(0.791553\pi\)
\(104\) −6.53919 −0.641220
\(105\) 0 0
\(106\) −4.04945 −0.393317
\(107\) −14.6537 −1.41663 −0.708313 0.705899i \(-0.750543\pi\)
−0.708313 + 0.705899i \(0.750543\pi\)
\(108\) 0 0
\(109\) −17.4186 −1.66839 −0.834197 0.551466i \(-0.814069\pi\)
−0.834197 + 0.551466i \(0.814069\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.72487 0.162985
\(113\) 6.94441 0.653275 0.326638 0.945150i \(-0.394084\pi\)
0.326638 + 0.945150i \(0.394084\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 10.2979 0.956137
\(117\) 0 0
\(118\) −21.9155 −2.01748
\(119\) −1.13624 −0.104159
\(120\) 0 0
\(121\) −4.55252 −0.413865
\(122\) −17.0700 −1.54544
\(123\) 0 0
\(124\) −0.787653 −0.0707333
\(125\) 0 0
\(126\) 0 0
\(127\) 22.4124 1.98878 0.994390 0.105778i \(-0.0337332\pi\)
0.994390 + 0.105778i \(0.0337332\pi\)
\(128\) −11.5392 −1.01993
\(129\) 0 0
\(130\) 0 0
\(131\) 7.37629 0.644469 0.322235 0.946660i \(-0.395566\pi\)
0.322235 + 0.946660i \(0.395566\pi\)
\(132\) 0 0
\(133\) 0.829914 0.0719626
\(134\) −9.02052 −0.779254
\(135\) 0 0
\(136\) 2.10731 0.180700
\(137\) 22.1978 1.89649 0.948243 0.317546i \(-0.102859\pi\)
0.948243 + 0.317546i \(0.102859\pi\)
\(138\) 0 0
\(139\) 0.581449 0.0493179 0.0246589 0.999696i \(-0.492150\pi\)
0.0246589 + 0.999696i \(0.492150\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.34017 0.364219
\(143\) 10.7877 0.902109
\(144\) 0 0
\(145\) 0 0
\(146\) 7.75872 0.642117
\(147\) 0 0
\(148\) −20.3474 −1.67254
\(149\) 14.0989 1.15503 0.577513 0.816381i \(-0.304023\pi\)
0.577513 + 0.816381i \(0.304023\pi\)
\(150\) 0 0
\(151\) −19.3112 −1.57153 −0.785763 0.618527i \(-0.787730\pi\)
−0.785763 + 0.618527i \(0.787730\pi\)
\(152\) −1.53919 −0.124845
\(153\) 0 0
\(154\) 4.57304 0.368506
\(155\) 0 0
\(156\) 0 0
\(157\) 4.92162 0.392788 0.196394 0.980525i \(-0.437077\pi\)
0.196394 + 0.980525i \(0.437077\pi\)
\(158\) −5.07838 −0.404014
\(159\) 0 0
\(160\) 0 0
\(161\) −2.79606 −0.220361
\(162\) 0 0
\(163\) −20.3474 −1.59373 −0.796864 0.604159i \(-0.793509\pi\)
−0.796864 + 0.604159i \(0.793509\pi\)
\(164\) −27.4752 −2.14545
\(165\) 0 0
\(166\) −22.5464 −1.74994
\(167\) 2.87217 0.222255 0.111128 0.993806i \(-0.464554\pi\)
0.111128 + 0.993806i \(0.464554\pi\)
\(168\) 0 0
\(169\) 5.04945 0.388419
\(170\) 0 0
\(171\) 0 0
\(172\) −14.5041 −1.10593
\(173\) 4.78765 0.363999 0.181999 0.983299i \(-0.441743\pi\)
0.181999 + 0.983299i \(0.441743\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.27739 0.397799
\(177\) 0 0
\(178\) 26.1639 1.96107
\(179\) 15.5753 1.16415 0.582077 0.813134i \(-0.302240\pi\)
0.582077 + 0.813134i \(0.302240\pi\)
\(180\) 0 0
\(181\) 11.6742 0.867737 0.433868 0.900976i \(-0.357148\pi\)
0.433868 + 0.900976i \(0.357148\pi\)
\(182\) 7.65142 0.567161
\(183\) 0 0
\(184\) 5.18568 0.382294
\(185\) 0 0
\(186\) 0 0
\(187\) −3.47641 −0.254220
\(188\) 23.3835 1.70542
\(189\) 0 0
\(190\) 0 0
\(191\) 22.9516 1.66072 0.830360 0.557228i \(-0.188135\pi\)
0.830360 + 0.557228i \(0.188135\pi\)
\(192\) 0 0
\(193\) 2.98667 0.214985 0.107493 0.994206i \(-0.465718\pi\)
0.107493 + 0.994206i \(0.465718\pi\)
\(194\) 40.5536 2.91158
\(195\) 0 0
\(196\) −17.0989 −1.22135
\(197\) 2.94441 0.209780 0.104890 0.994484i \(-0.466551\pi\)
0.104890 + 0.994484i \(0.466551\pi\)
\(198\) 0 0
\(199\) 16.4657 1.16722 0.583612 0.812032i \(-0.301639\pi\)
0.583612 + 0.812032i \(0.301639\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.26180 −0.0887796
\(203\) −3.15449 −0.221402
\(204\) 0 0
\(205\) 0 0
\(206\) −34.9360 −2.43411
\(207\) 0 0
\(208\) 8.82991 0.612244
\(209\) 2.53919 0.175639
\(210\) 0 0
\(211\) 2.65368 0.182687 0.0913436 0.995819i \(-0.470884\pi\)
0.0913436 + 0.995819i \(0.470884\pi\)
\(212\) −5.05559 −0.347219
\(213\) 0 0
\(214\) −31.7998 −2.17379
\(215\) 0 0
\(216\) 0 0
\(217\) 0.241276 0.0163789
\(218\) −37.7998 −2.56012
\(219\) 0 0
\(220\) 0 0
\(221\) −5.81658 −0.391266
\(222\) 0 0
\(223\) −9.57531 −0.641210 −0.320605 0.947213i \(-0.603886\pi\)
−0.320605 + 0.947213i \(0.603886\pi\)
\(224\) 6.29791 0.420797
\(225\) 0 0
\(226\) 15.0700 1.00244
\(227\) 13.7093 0.909917 0.454958 0.890513i \(-0.349654\pi\)
0.454958 + 0.890513i \(0.349654\pi\)
\(228\) 0 0
\(229\) 0.729794 0.0482262 0.0241131 0.999709i \(-0.492324\pi\)
0.0241131 + 0.999709i \(0.492324\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.85043 0.384100
\(233\) −5.23513 −0.342965 −0.171482 0.985187i \(-0.554856\pi\)
−0.171482 + 0.985187i \(0.554856\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −27.3607 −1.78103
\(237\) 0 0
\(238\) −2.46573 −0.159830
\(239\) −3.27739 −0.211997 −0.105998 0.994366i \(-0.533804\pi\)
−0.105998 + 0.994366i \(0.533804\pi\)
\(240\) 0 0
\(241\) −20.0410 −1.29096 −0.645478 0.763779i \(-0.723342\pi\)
−0.645478 + 0.763779i \(0.723342\pi\)
\(242\) −9.87936 −0.635069
\(243\) 0 0
\(244\) −21.3112 −1.36431
\(245\) 0 0
\(246\) 0 0
\(247\) 4.24846 0.270323
\(248\) −0.447480 −0.0284150
\(249\) 0 0
\(250\) 0 0
\(251\) −6.11450 −0.385944 −0.192972 0.981204i \(-0.561813\pi\)
−0.192972 + 0.981204i \(0.561813\pi\)
\(252\) 0 0
\(253\) −8.55479 −0.537835
\(254\) 48.6369 3.05175
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) 7.22672 0.450791 0.225395 0.974267i \(-0.427633\pi\)
0.225395 + 0.974267i \(0.427633\pi\)
\(258\) 0 0
\(259\) 6.23287 0.387291
\(260\) 0 0
\(261\) 0 0
\(262\) 16.0072 0.988927
\(263\) 14.4741 0.892514 0.446257 0.894905i \(-0.352757\pi\)
0.446257 + 0.894905i \(0.352757\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.80098 0.110425
\(267\) 0 0
\(268\) −11.2618 −0.687924
\(269\) −24.2401 −1.47794 −0.738971 0.673737i \(-0.764688\pi\)
−0.738971 + 0.673737i \(0.764688\pi\)
\(270\) 0 0
\(271\) 20.9939 1.27529 0.637643 0.770332i \(-0.279910\pi\)
0.637643 + 0.770332i \(0.279910\pi\)
\(272\) −2.84551 −0.172535
\(273\) 0 0
\(274\) 48.1711 2.91012
\(275\) 0 0
\(276\) 0 0
\(277\) 6.52359 0.391965 0.195982 0.980607i \(-0.437210\pi\)
0.195982 + 0.980607i \(0.437210\pi\)
\(278\) 1.26180 0.0756774
\(279\) 0 0
\(280\) 0 0
\(281\) −15.6442 −0.933256 −0.466628 0.884454i \(-0.654531\pi\)
−0.466628 + 0.884454i \(0.654531\pi\)
\(282\) 0 0
\(283\) 26.6875 1.58641 0.793205 0.608955i \(-0.208411\pi\)
0.793205 + 0.608955i \(0.208411\pi\)
\(284\) 5.41855 0.321532
\(285\) 0 0
\(286\) 23.4101 1.38427
\(287\) 8.41628 0.496797
\(288\) 0 0
\(289\) −15.1256 −0.889739
\(290\) 0 0
\(291\) 0 0
\(292\) 9.68649 0.566859
\(293\) −18.8599 −1.10181 −0.550903 0.834569i \(-0.685717\pi\)
−0.550903 + 0.834569i \(0.685717\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −11.5597 −0.671894
\(297\) 0 0
\(298\) 30.5958 1.77237
\(299\) −14.3135 −0.827772
\(300\) 0 0
\(301\) 4.44295 0.256087
\(302\) −41.9071 −2.41148
\(303\) 0 0
\(304\) 2.07838 0.119203
\(305\) 0 0
\(306\) 0 0
\(307\) −1.97334 −0.112624 −0.0563122 0.998413i \(-0.517934\pi\)
−0.0563122 + 0.998413i \(0.517934\pi\)
\(308\) 5.70928 0.325316
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0566 0.683669 0.341835 0.939760i \(-0.388952\pi\)
0.341835 + 0.939760i \(0.388952\pi\)
\(312\) 0 0
\(313\) −7.75872 −0.438549 −0.219274 0.975663i \(-0.570369\pi\)
−0.219274 + 0.975663i \(0.570369\pi\)
\(314\) 10.6803 0.602727
\(315\) 0 0
\(316\) −6.34017 −0.356663
\(317\) −33.2001 −1.86470 −0.932351 0.361555i \(-0.882246\pi\)
−0.932351 + 0.361555i \(0.882246\pi\)
\(318\) 0 0
\(319\) −9.65142 −0.540376
\(320\) 0 0
\(321\) 0 0
\(322\) −6.06770 −0.338140
\(323\) −1.36910 −0.0761789
\(324\) 0 0
\(325\) 0 0
\(326\) −44.1555 −2.44555
\(327\) 0 0
\(328\) −15.6092 −0.861871
\(329\) −7.16290 −0.394903
\(330\) 0 0
\(331\) −8.42082 −0.462850 −0.231425 0.972853i \(-0.574339\pi\)
−0.231425 + 0.972853i \(0.574339\pi\)
\(332\) −28.1483 −1.54484
\(333\) 0 0
\(334\) 6.23287 0.341047
\(335\) 0 0
\(336\) 0 0
\(337\) 27.2956 1.48689 0.743444 0.668798i \(-0.233191\pi\)
0.743444 + 0.668798i \(0.233191\pi\)
\(338\) 10.9577 0.596022
\(339\) 0 0
\(340\) 0 0
\(341\) 0.738205 0.0399760
\(342\) 0 0
\(343\) 11.0472 0.596492
\(344\) −8.24005 −0.444274
\(345\) 0 0
\(346\) 10.3896 0.558550
\(347\) −1.49466 −0.0802376 −0.0401188 0.999195i \(-0.512774\pi\)
−0.0401188 + 0.999195i \(0.512774\pi\)
\(348\) 0 0
\(349\) −15.7587 −0.843545 −0.421773 0.906702i \(-0.638592\pi\)
−0.421773 + 0.906702i \(0.638592\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19.2690 1.02704
\(353\) 5.33403 0.283902 0.141951 0.989874i \(-0.454662\pi\)
0.141951 + 0.989874i \(0.454662\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 32.6647 1.73123
\(357\) 0 0
\(358\) 33.7998 1.78637
\(359\) −28.4501 −1.50154 −0.750770 0.660563i \(-0.770317\pi\)
−0.750770 + 0.660563i \(0.770317\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 25.3340 1.33153
\(363\) 0 0
\(364\) 9.55252 0.500688
\(365\) 0 0
\(366\) 0 0
\(367\) −13.3535 −0.697047 −0.348524 0.937300i \(-0.613317\pi\)
−0.348524 + 0.937300i \(0.613317\pi\)
\(368\) −7.00227 −0.365018
\(369\) 0 0
\(370\) 0 0
\(371\) 1.54864 0.0804016
\(372\) 0 0
\(373\) 35.1533 1.82017 0.910084 0.414425i \(-0.136017\pi\)
0.910084 + 0.414425i \(0.136017\pi\)
\(374\) −7.54411 −0.390097
\(375\) 0 0
\(376\) 13.2846 0.685100
\(377\) −16.1483 −0.831682
\(378\) 0 0
\(379\) −31.9916 −1.64330 −0.821649 0.569994i \(-0.806945\pi\)
−0.821649 + 0.569994i \(0.806945\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 49.8069 2.54835
\(383\) −5.94214 −0.303629 −0.151815 0.988409i \(-0.548512\pi\)
−0.151815 + 0.988409i \(0.548512\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.48133 0.329891
\(387\) 0 0
\(388\) 50.6297 2.57033
\(389\) −21.4908 −1.08963 −0.544813 0.838558i \(-0.683399\pi\)
−0.544813 + 0.838558i \(0.683399\pi\)
\(390\) 0 0
\(391\) 4.61265 0.233272
\(392\) −9.71420 −0.490641
\(393\) 0 0
\(394\) 6.38962 0.321904
\(395\) 0 0
\(396\) 0 0
\(397\) −24.7792 −1.24363 −0.621817 0.783162i \(-0.713605\pi\)
−0.621817 + 0.783162i \(0.713605\pi\)
\(398\) 35.7321 1.79109
\(399\) 0 0
\(400\) 0 0
\(401\) −29.2606 −1.46120 −0.730602 0.682804i \(-0.760760\pi\)
−0.730602 + 0.682804i \(0.760760\pi\)
\(402\) 0 0
\(403\) 1.23513 0.0615264
\(404\) −1.57531 −0.0783744
\(405\) 0 0
\(406\) −6.84551 −0.339737
\(407\) 19.0700 0.945263
\(408\) 0 0
\(409\) 3.44521 0.170355 0.0851774 0.996366i \(-0.472854\pi\)
0.0851774 + 0.996366i \(0.472854\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −43.6163 −2.14882
\(413\) 8.38121 0.412412
\(414\) 0 0
\(415\) 0 0
\(416\) 32.2401 1.58070
\(417\) 0 0
\(418\) 5.51026 0.269516
\(419\) −36.4813 −1.78223 −0.891115 0.453778i \(-0.850076\pi\)
−0.891115 + 0.453778i \(0.850076\pi\)
\(420\) 0 0
\(421\) −7.97334 −0.388597 −0.194298 0.980942i \(-0.562243\pi\)
−0.194298 + 0.980942i \(0.562243\pi\)
\(422\) 5.75872 0.280330
\(423\) 0 0
\(424\) −2.87217 −0.139485
\(425\) 0 0
\(426\) 0 0
\(427\) 6.52813 0.315918
\(428\) −39.7009 −1.91901
\(429\) 0 0
\(430\) 0 0
\(431\) 13.7587 0.662734 0.331367 0.943502i \(-0.392490\pi\)
0.331367 + 0.943502i \(0.392490\pi\)
\(432\) 0 0
\(433\) 5.24232 0.251930 0.125965 0.992035i \(-0.459797\pi\)
0.125965 + 0.992035i \(0.459797\pi\)
\(434\) 0.523590 0.0251331
\(435\) 0 0
\(436\) −47.1917 −2.26007
\(437\) −3.36910 −0.161166
\(438\) 0 0
\(439\) 36.5646 1.74513 0.872567 0.488494i \(-0.162454\pi\)
0.872567 + 0.488494i \(0.162454\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.6225 −0.600390
\(443\) 32.9132 1.56375 0.781877 0.623433i \(-0.214263\pi\)
0.781877 + 0.623433i \(0.214263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −20.7792 −0.983926
\(447\) 0 0
\(448\) 10.2173 0.482721
\(449\) −22.7226 −1.07235 −0.536173 0.844108i \(-0.680131\pi\)
−0.536173 + 0.844108i \(0.680131\pi\)
\(450\) 0 0
\(451\) 25.7503 1.21253
\(452\) 18.8143 0.884951
\(453\) 0 0
\(454\) 29.7503 1.39625
\(455\) 0 0
\(456\) 0 0
\(457\) 5.13624 0.240263 0.120132 0.992758i \(-0.461668\pi\)
0.120132 + 0.992758i \(0.461668\pi\)
\(458\) 1.58372 0.0740022
\(459\) 0 0
\(460\) 0 0
\(461\) 34.1978 1.59275 0.796375 0.604803i \(-0.206748\pi\)
0.796375 + 0.604803i \(0.206748\pi\)
\(462\) 0 0
\(463\) −6.56198 −0.304961 −0.152480 0.988306i \(-0.548726\pi\)
−0.152480 + 0.988306i \(0.548726\pi\)
\(464\) −7.89988 −0.366743
\(465\) 0 0
\(466\) −11.3607 −0.526274
\(467\) 21.7548 1.00669 0.503347 0.864084i \(-0.332102\pi\)
0.503347 + 0.864084i \(0.332102\pi\)
\(468\) 0 0
\(469\) 3.44975 0.159295
\(470\) 0 0
\(471\) 0 0
\(472\) −15.5441 −0.715476
\(473\) 13.5936 0.625032
\(474\) 0 0
\(475\) 0 0
\(476\) −3.07838 −0.141097
\(477\) 0 0
\(478\) −7.11223 −0.325306
\(479\) 1.12064 0.0512033 0.0256016 0.999672i \(-0.491850\pi\)
0.0256016 + 0.999672i \(0.491850\pi\)
\(480\) 0 0
\(481\) 31.9071 1.45484
\(482\) −43.4908 −1.98095
\(483\) 0 0
\(484\) −12.3340 −0.560638
\(485\) 0 0
\(486\) 0 0
\(487\) 28.6369 1.29766 0.648830 0.760933i \(-0.275259\pi\)
0.648830 + 0.760933i \(0.275259\pi\)
\(488\) −12.1073 −0.548072
\(489\) 0 0
\(490\) 0 0
\(491\) −26.1867 −1.18179 −0.590895 0.806748i \(-0.701225\pi\)
−0.590895 + 0.806748i \(0.701225\pi\)
\(492\) 0 0
\(493\) 5.20394 0.234374
\(494\) 9.21953 0.414806
\(495\) 0 0
\(496\) 0.604236 0.0271310
\(497\) −1.65983 −0.0744534
\(498\) 0 0
\(499\) −7.05172 −0.315678 −0.157839 0.987465i \(-0.550453\pi\)
−0.157839 + 0.987465i \(0.550453\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13.2690 −0.592224
\(503\) 20.4619 0.912349 0.456175 0.889890i \(-0.349219\pi\)
0.456175 + 0.889890i \(0.349219\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −18.5646 −0.825298
\(507\) 0 0
\(508\) 60.7214 2.69408
\(509\) 1.82765 0.0810090 0.0405045 0.999179i \(-0.487103\pi\)
0.0405045 + 0.999179i \(0.487103\pi\)
\(510\) 0 0
\(511\) −2.96719 −0.131261
\(512\) 22.1701 0.979789
\(513\) 0 0
\(514\) 15.6826 0.691730
\(515\) 0 0
\(516\) 0 0
\(517\) −21.9155 −0.963842
\(518\) 13.5259 0.594292
\(519\) 0 0
\(520\) 0 0
\(521\) −19.1084 −0.837152 −0.418576 0.908182i \(-0.637471\pi\)
−0.418576 + 0.908182i \(0.637471\pi\)
\(522\) 0 0
\(523\) −3.44521 −0.150649 −0.0753243 0.997159i \(-0.523999\pi\)
−0.0753243 + 0.997159i \(0.523999\pi\)
\(524\) 19.9844 0.873023
\(525\) 0 0
\(526\) 31.4101 1.36955
\(527\) −0.398032 −0.0173385
\(528\) 0 0
\(529\) −11.6491 −0.506485
\(530\) 0 0
\(531\) 0 0
\(532\) 2.24846 0.0974833
\(533\) 43.0843 1.86619
\(534\) 0 0
\(535\) 0 0
\(536\) −6.39803 −0.276353
\(537\) 0 0
\(538\) −52.6030 −2.26788
\(539\) 16.0254 0.690265
\(540\) 0 0
\(541\) −2.48255 −0.106733 −0.0533666 0.998575i \(-0.516995\pi\)
−0.0533666 + 0.998575i \(0.516995\pi\)
\(542\) 45.5585 1.95690
\(543\) 0 0
\(544\) −10.3896 −0.445451
\(545\) 0 0
\(546\) 0 0
\(547\) 20.6491 0.882894 0.441447 0.897287i \(-0.354465\pi\)
0.441447 + 0.897287i \(0.354465\pi\)
\(548\) 60.1399 2.56905
\(549\) 0 0
\(550\) 0 0
\(551\) −3.80098 −0.161927
\(552\) 0 0
\(553\) 1.94214 0.0825882
\(554\) 14.1568 0.601463
\(555\) 0 0
\(556\) 1.57531 0.0668079
\(557\) −31.2618 −1.32460 −0.662302 0.749237i \(-0.730421\pi\)
−0.662302 + 0.749237i \(0.730421\pi\)
\(558\) 0 0
\(559\) 22.7442 0.961976
\(560\) 0 0
\(561\) 0 0
\(562\) −33.9493 −1.43207
\(563\) −6.29072 −0.265122 −0.132561 0.991175i \(-0.542320\pi\)
−0.132561 + 0.991175i \(0.542320\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 57.9143 2.43432
\(567\) 0 0
\(568\) 3.07838 0.129166
\(569\) −17.9265 −0.751520 −0.375760 0.926717i \(-0.622618\pi\)
−0.375760 + 0.926717i \(0.622618\pi\)
\(570\) 0 0
\(571\) 38.3402 1.60449 0.802243 0.596997i \(-0.203640\pi\)
0.802243 + 0.596997i \(0.203640\pi\)
\(572\) 29.2267 1.22203
\(573\) 0 0
\(574\) 18.2641 0.762327
\(575\) 0 0
\(576\) 0 0
\(577\) 18.6947 0.778271 0.389136 0.921180i \(-0.372774\pi\)
0.389136 + 0.921180i \(0.372774\pi\)
\(578\) −32.8238 −1.36529
\(579\) 0 0
\(580\) 0 0
\(581\) 8.62249 0.357721
\(582\) 0 0
\(583\) 4.73820 0.196236
\(584\) 5.50307 0.227719
\(585\) 0 0
\(586\) −40.9276 −1.69070
\(587\) 42.0060 1.73377 0.866886 0.498507i \(-0.166118\pi\)
0.866886 + 0.498507i \(0.166118\pi\)
\(588\) 0 0
\(589\) 0.290725 0.0119791
\(590\) 0 0
\(591\) 0 0
\(592\) 15.6092 0.641532
\(593\) 10.2679 0.421654 0.210827 0.977523i \(-0.432384\pi\)
0.210827 + 0.977523i \(0.432384\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 38.1978 1.56464
\(597\) 0 0
\(598\) −31.0616 −1.27020
\(599\) −3.56093 −0.145496 −0.0727478 0.997350i \(-0.523177\pi\)
−0.0727478 + 0.997350i \(0.523177\pi\)
\(600\) 0 0
\(601\) −38.0288 −1.55123 −0.775613 0.631209i \(-0.782559\pi\)
−0.775613 + 0.631209i \(0.782559\pi\)
\(602\) 9.64158 0.392961
\(603\) 0 0
\(604\) −52.3195 −2.12885
\(605\) 0 0
\(606\) 0 0
\(607\) −12.2868 −0.498708 −0.249354 0.968412i \(-0.580218\pi\)
−0.249354 + 0.968412i \(0.580218\pi\)
\(608\) 7.58864 0.307760
\(609\) 0 0
\(610\) 0 0
\(611\) −36.6681 −1.48343
\(612\) 0 0
\(613\) 11.2762 0.455440 0.227720 0.973727i \(-0.426873\pi\)
0.227720 + 0.973727i \(0.426873\pi\)
\(614\) −4.28231 −0.172820
\(615\) 0 0
\(616\) 3.24354 0.130686
\(617\) −19.6248 −0.790063 −0.395031 0.918668i \(-0.629266\pi\)
−0.395031 + 0.918668i \(0.629266\pi\)
\(618\) 0 0
\(619\) −27.2183 −1.09400 −0.546998 0.837134i \(-0.684230\pi\)
−0.546998 + 0.837134i \(0.684230\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 26.1639 1.04908
\(623\) −10.0060 −0.400881
\(624\) 0 0
\(625\) 0 0
\(626\) −16.8371 −0.672946
\(627\) 0 0
\(628\) 13.3340 0.532086
\(629\) −10.2823 −0.409983
\(630\) 0 0
\(631\) −38.9048 −1.54878 −0.774388 0.632711i \(-0.781942\pi\)
−0.774388 + 0.632711i \(0.781942\pi\)
\(632\) −3.60197 −0.143279
\(633\) 0 0
\(634\) −72.0470 −2.86135
\(635\) 0 0
\(636\) 0 0
\(637\) 26.8131 1.06237
\(638\) −20.9444 −0.829197
\(639\) 0 0
\(640\) 0 0
\(641\) −41.9143 −1.65551 −0.827757 0.561087i \(-0.810383\pi\)
−0.827757 + 0.561087i \(0.810383\pi\)
\(642\) 0 0
\(643\) −25.0712 −0.988711 −0.494356 0.869260i \(-0.664596\pi\)
−0.494356 + 0.869260i \(0.664596\pi\)
\(644\) −7.57531 −0.298509
\(645\) 0 0
\(646\) −2.97107 −0.116895
\(647\) −13.7237 −0.539532 −0.269766 0.962926i \(-0.586946\pi\)
−0.269766 + 0.962926i \(0.586946\pi\)
\(648\) 0 0
\(649\) 25.6430 1.00658
\(650\) 0 0
\(651\) 0 0
\(652\) −55.1266 −2.15892
\(653\) −22.3174 −0.873347 −0.436673 0.899620i \(-0.643843\pi\)
−0.436673 + 0.899620i \(0.643843\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 21.0772 0.822925
\(657\) 0 0
\(658\) −15.5441 −0.605972
\(659\) 36.7070 1.42990 0.714951 0.699175i \(-0.246449\pi\)
0.714951 + 0.699175i \(0.246449\pi\)
\(660\) 0 0
\(661\) −25.3340 −0.985380 −0.492690 0.870205i \(-0.663986\pi\)
−0.492690 + 0.870205i \(0.663986\pi\)
\(662\) −18.2739 −0.710235
\(663\) 0 0
\(664\) −15.9916 −0.620594
\(665\) 0 0
\(666\) 0 0
\(667\) 12.8059 0.495847
\(668\) 7.78151 0.301076
\(669\) 0 0
\(670\) 0 0
\(671\) 19.9733 0.771062
\(672\) 0 0
\(673\) 28.6732 1.10527 0.552635 0.833424i \(-0.313623\pi\)
0.552635 + 0.833424i \(0.313623\pi\)
\(674\) 59.2339 2.28160
\(675\) 0 0
\(676\) 13.6803 0.526167
\(677\) 41.4512 1.59310 0.796549 0.604574i \(-0.206657\pi\)
0.796549 + 0.604574i \(0.206657\pi\)
\(678\) 0 0
\(679\) −15.5090 −0.595182
\(680\) 0 0
\(681\) 0 0
\(682\) 1.60197 0.0613425
\(683\) −32.3279 −1.23699 −0.618496 0.785788i \(-0.712258\pi\)
−0.618496 + 0.785788i \(0.712258\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 23.9733 0.915306
\(687\) 0 0
\(688\) 11.1266 0.424198
\(689\) 7.92777 0.302024
\(690\) 0 0
\(691\) 4.13009 0.157116 0.0785581 0.996910i \(-0.474968\pi\)
0.0785581 + 0.996910i \(0.474968\pi\)
\(692\) 12.9711 0.493086
\(693\) 0 0
\(694\) −3.24354 −0.123123
\(695\) 0 0
\(696\) 0 0
\(697\) −13.8843 −0.525905
\(698\) −34.1978 −1.29441
\(699\) 0 0
\(700\) 0 0
\(701\) −40.3545 −1.52417 −0.762085 0.647477i \(-0.775824\pi\)
−0.762085 + 0.647477i \(0.775824\pi\)
\(702\) 0 0
\(703\) 7.51026 0.283255
\(704\) 31.2606 1.17818
\(705\) 0 0
\(706\) 11.5753 0.435642
\(707\) 0.482553 0.0181483
\(708\) 0 0
\(709\) 43.6802 1.64044 0.820222 0.572046i \(-0.193850\pi\)
0.820222 + 0.572046i \(0.193850\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 18.5574 0.695469
\(713\) −0.979481 −0.0366819
\(714\) 0 0
\(715\) 0 0
\(716\) 42.1978 1.57701
\(717\) 0 0
\(718\) −61.7392 −2.30409
\(719\) −11.7431 −0.437945 −0.218972 0.975731i \(-0.570270\pi\)
−0.218972 + 0.975731i \(0.570270\pi\)
\(720\) 0 0
\(721\) 13.3607 0.497578
\(722\) 2.17009 0.0807623
\(723\) 0 0
\(724\) 31.6286 1.17547
\(725\) 0 0
\(726\) 0 0
\(727\) −43.6358 −1.61836 −0.809181 0.587559i \(-0.800089\pi\)
−0.809181 + 0.587559i \(0.800089\pi\)
\(728\) 5.42696 0.201137
\(729\) 0 0
\(730\) 0 0
\(731\) −7.32950 −0.271091
\(732\) 0 0
\(733\) 31.5753 1.16626 0.583130 0.812379i \(-0.301828\pi\)
0.583130 + 0.812379i \(0.301828\pi\)
\(734\) −28.9783 −1.06961
\(735\) 0 0
\(736\) −25.5669 −0.942408
\(737\) 10.5548 0.388791
\(738\) 0 0
\(739\) −3.18956 −0.117330 −0.0586649 0.998278i \(-0.518684\pi\)
−0.0586649 + 0.998278i \(0.518684\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.36069 0.123375
\(743\) 2.11118 0.0774518 0.0387259 0.999250i \(-0.487670\pi\)
0.0387259 + 0.999250i \(0.487670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 76.2856 2.79302
\(747\) 0 0
\(748\) −9.41855 −0.344376
\(749\) 12.1613 0.444364
\(750\) 0 0
\(751\) 11.2579 0.410807 0.205404 0.978677i \(-0.434149\pi\)
0.205404 + 0.978677i \(0.434149\pi\)
\(752\) −17.9383 −0.654141
\(753\) 0 0
\(754\) −35.0433 −1.27620
\(755\) 0 0
\(756\) 0 0
\(757\) 6.86830 0.249633 0.124816 0.992180i \(-0.460166\pi\)
0.124816 + 0.992180i \(0.460166\pi\)
\(758\) −69.4245 −2.52161
\(759\) 0 0
\(760\) 0 0
\(761\) 45.9565 1.66592 0.832961 0.553331i \(-0.186644\pi\)
0.832961 + 0.553331i \(0.186644\pi\)
\(762\) 0 0
\(763\) 14.4559 0.523338
\(764\) 62.1822 2.24967
\(765\) 0 0
\(766\) −12.8950 −0.465914
\(767\) 42.9048 1.54920
\(768\) 0 0
\(769\) −25.8310 −0.931488 −0.465744 0.884919i \(-0.654213\pi\)
−0.465744 + 0.884919i \(0.654213\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.09171 0.291227
\(773\) 15.7093 0.565023 0.282512 0.959264i \(-0.408832\pi\)
0.282512 + 0.959264i \(0.408832\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 28.7636 1.03255
\(777\) 0 0
\(778\) −46.6369 −1.67201
\(779\) 10.1412 0.363345
\(780\) 0 0
\(781\) −5.07838 −0.181719
\(782\) 10.0098 0.357951
\(783\) 0 0
\(784\) 13.1171 0.468470
\(785\) 0 0
\(786\) 0 0
\(787\) −16.9216 −0.603191 −0.301595 0.953436i \(-0.597519\pi\)
−0.301595 + 0.953436i \(0.597519\pi\)
\(788\) 7.97721 0.284176
\(789\) 0 0
\(790\) 0 0
\(791\) −5.76326 −0.204918
\(792\) 0 0
\(793\) 33.4186 1.18673
\(794\) −53.7731 −1.90834
\(795\) 0 0
\(796\) 44.6102 1.58117
\(797\) −48.3728 −1.71345 −0.856726 0.515771i \(-0.827505\pi\)
−0.856726 + 0.515771i \(0.827505\pi\)
\(798\) 0 0
\(799\) 11.8166 0.418041
\(800\) 0 0
\(801\) 0 0
\(802\) −63.4980 −2.24219
\(803\) −9.07838 −0.320369
\(804\) 0 0
\(805\) 0 0
\(806\) 2.68035 0.0944112
\(807\) 0 0
\(808\) −0.894960 −0.0314846
\(809\) −4.73820 −0.166586 −0.0832932 0.996525i \(-0.526544\pi\)
−0.0832932 + 0.996525i \(0.526544\pi\)
\(810\) 0 0
\(811\) −18.5236 −0.650451 −0.325226 0.945636i \(-0.605440\pi\)
−0.325226 + 0.945636i \(0.605440\pi\)
\(812\) −8.54638 −0.299919
\(813\) 0 0
\(814\) 41.3835 1.45049
\(815\) 0 0
\(816\) 0 0
\(817\) 5.35350 0.187295
\(818\) 7.47641 0.261407
\(819\) 0 0
\(820\) 0 0
\(821\) 39.5174 1.37917 0.689584 0.724206i \(-0.257793\pi\)
0.689584 + 0.724206i \(0.257793\pi\)
\(822\) 0 0
\(823\) −30.7310 −1.07122 −0.535608 0.844467i \(-0.679918\pi\)
−0.535608 + 0.844467i \(0.679918\pi\)
\(824\) −24.7792 −0.863226
\(825\) 0 0
\(826\) 18.1880 0.632840
\(827\) −2.70313 −0.0939971 −0.0469986 0.998895i \(-0.514966\pi\)
−0.0469986 + 0.998895i \(0.514966\pi\)
\(828\) 0 0
\(829\) 25.5318 0.886757 0.443378 0.896335i \(-0.353780\pi\)
0.443378 + 0.896335i \(0.353780\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 52.3039 1.81331
\(833\) −8.64074 −0.299384
\(834\) 0 0
\(835\) 0 0
\(836\) 6.87936 0.237928
\(837\) 0 0
\(838\) −79.1676 −2.73480
\(839\) −30.1978 −1.04254 −0.521272 0.853391i \(-0.674542\pi\)
−0.521272 + 0.853391i \(0.674542\pi\)
\(840\) 0 0
\(841\) −14.5525 −0.501811
\(842\) −17.3028 −0.596295
\(843\) 0 0
\(844\) 7.18956 0.247475
\(845\) 0 0
\(846\) 0 0
\(847\) 3.77820 0.129820
\(848\) 3.87832 0.133182
\(849\) 0 0
\(850\) 0 0
\(851\) −25.3028 −0.867370
\(852\) 0 0
\(853\) 24.2823 0.831411 0.415705 0.909499i \(-0.363535\pi\)
0.415705 + 0.909499i \(0.363535\pi\)
\(854\) 14.1666 0.484771
\(855\) 0 0
\(856\) −22.5548 −0.770907
\(857\) −18.4475 −0.630154 −0.315077 0.949066i \(-0.602030\pi\)
−0.315077 + 0.949066i \(0.602030\pi\)
\(858\) 0 0
\(859\) 3.77101 0.128665 0.0643326 0.997929i \(-0.479508\pi\)
0.0643326 + 0.997929i \(0.479508\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 29.8576 1.01695
\(863\) −2.07999 −0.0708035 −0.0354018 0.999373i \(-0.511271\pi\)
−0.0354018 + 0.999373i \(0.511271\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 11.3763 0.386582
\(867\) 0 0
\(868\) 0.653684 0.0221875
\(869\) 5.94214 0.201573
\(870\) 0 0
\(871\) 17.6598 0.598380
\(872\) −26.8104 −0.907916
\(873\) 0 0
\(874\) −7.31124 −0.247307
\(875\) 0 0
\(876\) 0 0
\(877\) −38.1015 −1.28660 −0.643299 0.765615i \(-0.722435\pi\)
−0.643299 + 0.765615i \(0.722435\pi\)
\(878\) 79.3484 2.67788
\(879\) 0 0
\(880\) 0 0
\(881\) 35.0082 1.17946 0.589729 0.807601i \(-0.299235\pi\)
0.589729 + 0.807601i \(0.299235\pi\)
\(882\) 0 0
\(883\) −2.28950 −0.0770479 −0.0385239 0.999258i \(-0.512266\pi\)
−0.0385239 + 0.999258i \(0.512266\pi\)
\(884\) −15.7587 −0.530023
\(885\) 0 0
\(886\) 71.4245 2.39955
\(887\) 23.1506 0.777321 0.388661 0.921381i \(-0.372938\pi\)
0.388661 + 0.921381i \(0.372938\pi\)
\(888\) 0 0
\(889\) −18.6004 −0.623836
\(890\) 0 0
\(891\) 0 0
\(892\) −25.9421 −0.868607
\(893\) −8.63090 −0.288822
\(894\) 0 0
\(895\) 0 0
\(896\) 9.57653 0.319929
\(897\) 0 0
\(898\) −49.3100 −1.64550
\(899\) −1.10504 −0.0368551
\(900\) 0 0
\(901\) −2.55479 −0.0851123
\(902\) 55.8804 1.86061
\(903\) 0 0
\(904\) 10.6888 0.355503
\(905\) 0 0
\(906\) 0 0
\(907\) 13.8166 0.458772 0.229386 0.973336i \(-0.426328\pi\)
0.229386 + 0.973336i \(0.426328\pi\)
\(908\) 37.1422 1.23261
\(909\) 0 0
\(910\) 0 0
\(911\) −13.4063 −0.444169 −0.222085 0.975027i \(-0.571286\pi\)
−0.222085 + 0.975027i \(0.571286\pi\)
\(912\) 0 0
\(913\) 26.3812 0.873091
\(914\) 11.1461 0.368679
\(915\) 0 0
\(916\) 1.97721 0.0653290
\(917\) −6.12168 −0.202156
\(918\) 0 0
\(919\) 40.1133 1.32321 0.661607 0.749850i \(-0.269875\pi\)
0.661607 + 0.749850i \(0.269875\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 74.2122 2.44405
\(923\) −8.49693 −0.279680
\(924\) 0 0
\(925\) 0 0
\(926\) −14.2401 −0.467957
\(927\) 0 0
\(928\) −28.8443 −0.946860
\(929\) 10.1399 0.332680 0.166340 0.986068i \(-0.446805\pi\)
0.166340 + 0.986068i \(0.446805\pi\)
\(930\) 0 0
\(931\) 6.31124 0.206843
\(932\) −14.1834 −0.464593
\(933\) 0 0
\(934\) 47.2099 1.54476
\(935\) 0 0
\(936\) 0 0
\(937\) −9.23060 −0.301551 −0.150775 0.988568i \(-0.548177\pi\)
−0.150775 + 0.988568i \(0.548177\pi\)
\(938\) 7.48625 0.244435
\(939\) 0 0
\(940\) 0 0
\(941\) 16.8527 0.549382 0.274691 0.961533i \(-0.411424\pi\)
0.274691 + 0.961533i \(0.411424\pi\)
\(942\) 0 0
\(943\) −34.1666 −1.11262
\(944\) 20.9893 0.683144
\(945\) 0 0
\(946\) 29.4992 0.959102
\(947\) 25.3958 0.825251 0.412626 0.910901i \(-0.364612\pi\)
0.412626 + 0.910901i \(0.364612\pi\)
\(948\) 0 0
\(949\) −15.1896 −0.493074
\(950\) 0 0
\(951\) 0 0
\(952\) −1.74888 −0.0566816
\(953\) −24.2595 −0.785843 −0.392922 0.919572i \(-0.628536\pi\)
−0.392922 + 0.919572i \(0.628536\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.87936 −0.287179
\(957\) 0 0
\(958\) 2.43188 0.0785705
\(959\) −18.4222 −0.594885
\(960\) 0 0
\(961\) −30.9155 −0.997274
\(962\) 69.2411 2.23242
\(963\) 0 0
\(964\) −54.2967 −1.74878
\(965\) 0 0
\(966\) 0 0
\(967\) −24.7454 −0.795758 −0.397879 0.917438i \(-0.630254\pi\)
−0.397879 + 0.917438i \(0.630254\pi\)
\(968\) −7.00719 −0.225220
\(969\) 0 0
\(970\) 0 0
\(971\) 31.0082 0.995102 0.497551 0.867435i \(-0.334233\pi\)
0.497551 + 0.867435i \(0.334233\pi\)
\(972\) 0 0
\(973\) −0.482553 −0.0154699
\(974\) 62.1445 1.99124
\(975\) 0 0
\(976\) 16.3486 0.523305
\(977\) −22.5152 −0.720324 −0.360162 0.932890i \(-0.617279\pi\)
−0.360162 + 0.932890i \(0.617279\pi\)
\(978\) 0 0
\(979\) −30.6141 −0.978430
\(980\) 0 0
\(981\) 0 0
\(982\) −56.8275 −1.81344
\(983\) 39.3667 1.25560 0.627801 0.778374i \(-0.283955\pi\)
0.627801 + 0.778374i \(0.283955\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 11.2930 0.359642
\(987\) 0 0
\(988\) 11.5103 0.366190
\(989\) −18.0365 −0.573527
\(990\) 0 0
\(991\) −23.4641 −0.745362 −0.372681 0.927959i \(-0.621562\pi\)
−0.372681 + 0.927959i \(0.621562\pi\)
\(992\) 2.20620 0.0700470
\(993\) 0 0
\(994\) −3.60197 −0.114247
\(995\) 0 0
\(996\) 0 0
\(997\) −41.0493 −1.30004 −0.650022 0.759916i \(-0.725240\pi\)
−0.650022 + 0.759916i \(0.725240\pi\)
\(998\) −15.3028 −0.484403
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bi.1.3 3
3.2 odd 2 1425.2.a.s.1.1 3
5.2 odd 4 855.2.c.e.514.6 6
5.3 odd 4 855.2.c.e.514.1 6
5.4 even 2 4275.2.a.bd.1.1 3
15.2 even 4 285.2.c.a.229.1 6
15.8 even 4 285.2.c.a.229.6 yes 6
15.14 odd 2 1425.2.a.x.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.a.229.1 6 15.2 even 4
285.2.c.a.229.6 yes 6 15.8 even 4
855.2.c.e.514.1 6 5.3 odd 4
855.2.c.e.514.6 6 5.2 odd 4
1425.2.a.s.1.1 3 3.2 odd 2
1425.2.a.x.1.3 3 15.14 odd 2
4275.2.a.bd.1.1 3 5.4 even 2
4275.2.a.bi.1.3 3 1.1 even 1 trivial