Properties

Label 4275.2.a.bf.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.36147\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.36147 q^{2} +3.57653 q^{4} -0.784934 q^{7} +3.72294 q^{8} -2.93800 q^{11} -4.00000 q^{13} -1.85360 q^{14} +1.63853 q^{16} -5.15307 q^{17} -1.00000 q^{19} -6.93800 q^{22} -3.78493 q^{23} -9.44588 q^{26} -2.80734 q^{28} +5.00000 q^{29} +1.06200 q^{31} -3.57653 q^{32} -12.1688 q^{34} +0.722938 q^{37} -2.36147 q^{38} -7.93800 q^{41} -4.00000 q^{43} -10.5079 q^{44} -8.93800 q^{46} -3.87601 q^{47} -6.38388 q^{49} -14.3061 q^{52} +6.44588 q^{53} -2.92226 q^{56} +11.8073 q^{58} +4.66094 q^{59} +8.87601 q^{61} +2.50787 q^{62} -11.7229 q^{64} -8.93800 q^{67} -18.4301 q^{68} +2.66094 q^{71} +8.44588 q^{73} +1.70719 q^{74} -3.57653 q^{76} +2.30614 q^{77} +3.35480 q^{79} -18.7453 q^{82} +4.93800 q^{83} -9.44588 q^{86} -10.9380 q^{88} -0.569868 q^{89} +3.13974 q^{91} -13.5369 q^{92} -9.15307 q^{94} -8.59894 q^{97} -15.0753 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{8} + 3 q^{11} - 12 q^{13} - 15 q^{14} + 12 q^{16} - 6 q^{17} - 3 q^{19} - 9 q^{22} - 9 q^{23} + 27 q^{28} + 15 q^{29} + 15 q^{31} - 6 q^{32} + 6 q^{34} - 12 q^{37} - 12 q^{41} - 12 q^{43}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.36147 1.66981 0.834905 0.550394i \(-0.185522\pi\)
0.834905 + 0.550394i \(0.185522\pi\)
\(3\) 0 0
\(4\) 3.57653 1.78827
\(5\) 0 0
\(6\) 0 0
\(7\) −0.784934 −0.296677 −0.148339 0.988937i \(-0.547393\pi\)
−0.148339 + 0.988937i \(0.547393\pi\)
\(8\) 3.72294 1.31626
\(9\) 0 0
\(10\) 0 0
\(11\) −2.93800 −0.885841 −0.442921 0.896561i \(-0.646058\pi\)
−0.442921 + 0.896561i \(0.646058\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −1.85360 −0.495395
\(15\) 0 0
\(16\) 1.63853 0.409633
\(17\) −5.15307 −1.24980 −0.624901 0.780704i \(-0.714861\pi\)
−0.624901 + 0.780704i \(0.714861\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −6.93800 −1.47919
\(23\) −3.78493 −0.789213 −0.394607 0.918850i \(-0.629119\pi\)
−0.394607 + 0.918850i \(0.629119\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −9.44588 −1.85249
\(27\) 0 0
\(28\) −2.80734 −0.530538
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 1.06200 0.190740 0.0953701 0.995442i \(-0.469597\pi\)
0.0953701 + 0.995442i \(0.469597\pi\)
\(32\) −3.57653 −0.632248
\(33\) 0 0
\(34\) −12.1688 −2.08693
\(35\) 0 0
\(36\) 0 0
\(37\) 0.722938 0.118850 0.0594251 0.998233i \(-0.481073\pi\)
0.0594251 + 0.998233i \(0.481073\pi\)
\(38\) −2.36147 −0.383081
\(39\) 0 0
\(40\) 0 0
\(41\) −7.93800 −1.23971 −0.619854 0.784717i \(-0.712808\pi\)
−0.619854 + 0.784717i \(0.712808\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −10.5079 −1.58412
\(45\) 0 0
\(46\) −8.93800 −1.31784
\(47\) −3.87601 −0.565374 −0.282687 0.959212i \(-0.591226\pi\)
−0.282687 + 0.959212i \(0.591226\pi\)
\(48\) 0 0
\(49\) −6.38388 −0.911983
\(50\) 0 0
\(51\) 0 0
\(52\) −14.3061 −1.98390
\(53\) 6.44588 0.885409 0.442705 0.896668i \(-0.354019\pi\)
0.442705 + 0.896668i \(0.354019\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.92226 −0.390503
\(57\) 0 0
\(58\) 11.8073 1.55038
\(59\) 4.66094 0.606803 0.303401 0.952863i \(-0.401878\pi\)
0.303401 + 0.952863i \(0.401878\pi\)
\(60\) 0 0
\(61\) 8.87601 1.13646 0.568228 0.822871i \(-0.307629\pi\)
0.568228 + 0.822871i \(0.307629\pi\)
\(62\) 2.50787 0.318500
\(63\) 0 0
\(64\) −11.7229 −1.46537
\(65\) 0 0
\(66\) 0 0
\(67\) −8.93800 −1.09195 −0.545975 0.837801i \(-0.683841\pi\)
−0.545975 + 0.837801i \(0.683841\pi\)
\(68\) −18.4301 −2.23498
\(69\) 0 0
\(70\) 0 0
\(71\) 2.66094 0.315796 0.157898 0.987455i \(-0.449528\pi\)
0.157898 + 0.987455i \(0.449528\pi\)
\(72\) 0 0
\(73\) 8.44588 0.988515 0.494257 0.869316i \(-0.335440\pi\)
0.494257 + 0.869316i \(0.335440\pi\)
\(74\) 1.70719 0.198457
\(75\) 0 0
\(76\) −3.57653 −0.410257
\(77\) 2.30614 0.262809
\(78\) 0 0
\(79\) 3.35480 0.377445 0.188722 0.982030i \(-0.439565\pi\)
0.188722 + 0.982030i \(0.439565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −18.7453 −2.07008
\(83\) 4.93800 0.542016 0.271008 0.962577i \(-0.412643\pi\)
0.271008 + 0.962577i \(0.412643\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −9.44588 −1.01857
\(87\) 0 0
\(88\) −10.9380 −1.16600
\(89\) −0.569868 −0.0604059 −0.0302029 0.999544i \(-0.509615\pi\)
−0.0302029 + 0.999544i \(0.509615\pi\)
\(90\) 0 0
\(91\) 3.13974 0.329134
\(92\) −13.5369 −1.41132
\(93\) 0 0
\(94\) −9.15307 −0.944067
\(95\) 0 0
\(96\) 0 0
\(97\) −8.59894 −0.873091 −0.436545 0.899682i \(-0.643798\pi\)
−0.436545 + 0.899682i \(0.643798\pi\)
\(98\) −15.0753 −1.52284
\(99\) 0 0
\(100\) 0 0
\(101\) 1.15307 0.114735 0.0573674 0.998353i \(-0.481729\pi\)
0.0573674 + 0.998353i \(0.481729\pi\)
\(102\) 0 0
\(103\) 19.9537 1.96610 0.983051 0.183335i \(-0.0586892\pi\)
0.983051 + 0.183335i \(0.0586892\pi\)
\(104\) −14.8918 −1.46026
\(105\) 0 0
\(106\) 15.2217 1.47847
\(107\) −12.2308 −1.18240 −0.591198 0.806526i \(-0.701345\pi\)
−0.591198 + 0.806526i \(0.701345\pi\)
\(108\) 0 0
\(109\) −2.41680 −0.231487 −0.115744 0.993279i \(-0.536925\pi\)
−0.115744 + 0.993279i \(0.536925\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.28614 −0.121529
\(113\) −20.6900 −1.94635 −0.973177 0.230060i \(-0.926108\pi\)
−0.973177 + 0.230060i \(0.926108\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 17.8827 1.66036
\(117\) 0 0
\(118\) 11.0067 1.01325
\(119\) 4.04482 0.370788
\(120\) 0 0
\(121\) −2.36814 −0.215285
\(122\) 20.9604 1.89767
\(123\) 0 0
\(124\) 3.79827 0.341094
\(125\) 0 0
\(126\) 0 0
\(127\) 13.5369 1.20121 0.600605 0.799546i \(-0.294926\pi\)
0.600605 + 0.799546i \(0.294926\pi\)
\(128\) −20.5303 −1.81464
\(129\) 0 0
\(130\) 0 0
\(131\) 4.50787 0.393855 0.196927 0.980418i \(-0.436904\pi\)
0.196927 + 0.980418i \(0.436904\pi\)
\(132\) 0 0
\(133\) 0.784934 0.0680624
\(134\) −21.1068 −1.82335
\(135\) 0 0
\(136\) −19.1846 −1.64506
\(137\) −16.2928 −1.39199 −0.695994 0.718047i \(-0.745036\pi\)
−0.695994 + 0.718047i \(0.745036\pi\)
\(138\) 0 0
\(139\) −2.78493 −0.236215 −0.118108 0.993001i \(-0.537683\pi\)
−0.118108 + 0.993001i \(0.537683\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.28373 0.527319
\(143\) 11.7520 0.982753
\(144\) 0 0
\(145\) 0 0
\(146\) 19.9447 1.65063
\(147\) 0 0
\(148\) 2.58561 0.212536
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 22.5989 1.83908 0.919538 0.393001i \(-0.128563\pi\)
0.919538 + 0.393001i \(0.128563\pi\)
\(152\) −3.72294 −0.301970
\(153\) 0 0
\(154\) 5.44588 0.438841
\(155\) 0 0
\(156\) 0 0
\(157\) 14.2441 1.13681 0.568403 0.822750i \(-0.307561\pi\)
0.568403 + 0.822750i \(0.307561\pi\)
\(158\) 7.92226 0.630261
\(159\) 0 0
\(160\) 0 0
\(161\) 2.97092 0.234142
\(162\) 0 0
\(163\) 19.9828 1.56518 0.782588 0.622540i \(-0.213899\pi\)
0.782588 + 0.622540i \(0.213899\pi\)
\(164\) −28.3905 −2.21693
\(165\) 0 0
\(166\) 11.6609 0.905065
\(167\) −14.7849 −1.14409 −0.572046 0.820221i \(-0.693850\pi\)
−0.572046 + 0.820221i \(0.693850\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −14.3061 −1.09083
\(173\) 22.7520 1.72980 0.864902 0.501941i \(-0.167381\pi\)
0.864902 + 0.501941i \(0.167381\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.81401 −0.362870
\(177\) 0 0
\(178\) −1.34573 −0.100866
\(179\) −22.1068 −1.65234 −0.826171 0.563420i \(-0.809485\pi\)
−0.826171 + 0.563420i \(0.809485\pi\)
\(180\) 0 0
\(181\) 13.1979 0.980991 0.490496 0.871444i \(-0.336816\pi\)
0.490496 + 0.871444i \(0.336816\pi\)
\(182\) 7.41439 0.549591
\(183\) 0 0
\(184\) −14.0911 −1.03881
\(185\) 0 0
\(186\) 0 0
\(187\) 15.1397 1.10713
\(188\) −13.8627 −1.01104
\(189\) 0 0
\(190\) 0 0
\(191\) −13.6743 −0.989436 −0.494718 0.869054i \(-0.664729\pi\)
−0.494718 + 0.869054i \(0.664729\pi\)
\(192\) 0 0
\(193\) −24.5989 −1.77067 −0.885335 0.464953i \(-0.846071\pi\)
−0.885335 + 0.464953i \(0.846071\pi\)
\(194\) −20.3061 −1.45790
\(195\) 0 0
\(196\) −22.8322 −1.63087
\(197\) −25.6147 −1.82497 −0.912485 0.409109i \(-0.865840\pi\)
−0.912485 + 0.409109i \(0.865840\pi\)
\(198\) 0 0
\(199\) −0.230809 −0.0163616 −0.00818081 0.999967i \(-0.502604\pi\)
−0.00818081 + 0.999967i \(0.502604\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.72294 0.191585
\(203\) −3.92467 −0.275458
\(204\) 0 0
\(205\) 0 0
\(206\) 47.1201 3.28302
\(207\) 0 0
\(208\) −6.55412 −0.454447
\(209\) 2.93800 0.203226
\(210\) 0 0
\(211\) 5.35480 0.368640 0.184320 0.982866i \(-0.440992\pi\)
0.184320 + 0.982866i \(0.440992\pi\)
\(212\) 23.0539 1.58335
\(213\) 0 0
\(214\) −28.8827 −1.97438
\(215\) 0 0
\(216\) 0 0
\(217\) −0.833597 −0.0565883
\(218\) −5.70719 −0.386540
\(219\) 0 0
\(220\) 0 0
\(221\) 20.6123 1.38653
\(222\) 0 0
\(223\) −1.78493 −0.119528 −0.0597640 0.998213i \(-0.519035\pi\)
−0.0597640 + 0.998213i \(0.519035\pi\)
\(224\) 2.80734 0.187574
\(225\) 0 0
\(226\) −48.8588 −3.25004
\(227\) 8.96708 0.595166 0.297583 0.954696i \(-0.403819\pi\)
0.297583 + 0.954696i \(0.403819\pi\)
\(228\) 0 0
\(229\) 26.5660 1.75553 0.877766 0.479089i \(-0.159033\pi\)
0.877766 + 0.479089i \(0.159033\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 18.6147 1.22211
\(233\) 9.56987 0.626943 0.313471 0.949598i \(-0.398508\pi\)
0.313471 + 0.949598i \(0.398508\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 16.6700 1.08513
\(237\) 0 0
\(238\) 9.55172 0.619146
\(239\) −16.9051 −1.09350 −0.546749 0.837296i \(-0.684135\pi\)
−0.546749 + 0.837296i \(0.684135\pi\)
\(240\) 0 0
\(241\) −9.27706 −0.597588 −0.298794 0.954318i \(-0.596584\pi\)
−0.298794 + 0.954318i \(0.596584\pi\)
\(242\) −5.59228 −0.359485
\(243\) 0 0
\(244\) 31.7453 2.03229
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 3.95375 0.251063
\(249\) 0 0
\(250\) 0 0
\(251\) −25.1531 −1.58765 −0.793824 0.608148i \(-0.791913\pi\)
−0.793824 + 0.608148i \(0.791913\pi\)
\(252\) 0 0
\(253\) 11.1201 0.699118
\(254\) 31.9671 2.00579
\(255\) 0 0
\(256\) −25.0357 −1.56473
\(257\) 21.1821 1.32131 0.660653 0.750691i \(-0.270279\pi\)
0.660653 + 0.750691i \(0.270279\pi\)
\(258\) 0 0
\(259\) −0.567458 −0.0352601
\(260\) 0 0
\(261\) 0 0
\(262\) 10.6452 0.657663
\(263\) −3.78493 −0.233389 −0.116695 0.993168i \(-0.537230\pi\)
−0.116695 + 0.993168i \(0.537230\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.85360 0.113651
\(267\) 0 0
\(268\) −31.9671 −1.95270
\(269\) −16.3061 −0.994203 −0.497101 0.867692i \(-0.665602\pi\)
−0.497101 + 0.867692i \(0.665602\pi\)
\(270\) 0 0
\(271\) −2.66094 −0.161641 −0.0808203 0.996729i \(-0.525754\pi\)
−0.0808203 + 0.996729i \(0.525754\pi\)
\(272\) −8.44347 −0.511960
\(273\) 0 0
\(274\) −38.4750 −2.32436
\(275\) 0 0
\(276\) 0 0
\(277\) −21.1821 −1.27271 −0.636356 0.771396i \(-0.719559\pi\)
−0.636356 + 0.771396i \(0.719559\pi\)
\(278\) −6.57653 −0.394434
\(279\) 0 0
\(280\) 0 0
\(281\) 26.3839 1.57393 0.786965 0.616997i \(-0.211651\pi\)
0.786965 + 0.616997i \(0.211651\pi\)
\(282\) 0 0
\(283\) −18.8918 −1.12300 −0.561499 0.827477i \(-0.689775\pi\)
−0.561499 + 0.827477i \(0.689775\pi\)
\(284\) 9.51695 0.564727
\(285\) 0 0
\(286\) 27.7520 1.64101
\(287\) 6.23081 0.367793
\(288\) 0 0
\(289\) 9.55412 0.562007
\(290\) 0 0
\(291\) 0 0
\(292\) 30.2070 1.76773
\(293\) 7.49213 0.437695 0.218847 0.975759i \(-0.429770\pi\)
0.218847 + 0.975759i \(0.429770\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.69145 0.156437
\(297\) 0 0
\(298\) 0 0
\(299\) 15.1397 0.875554
\(300\) 0 0
\(301\) 3.13974 0.180971
\(302\) 53.3667 3.07091
\(303\) 0 0
\(304\) −1.63853 −0.0939762
\(305\) 0 0
\(306\) 0 0
\(307\) −20.8140 −1.18792 −0.593959 0.804495i \(-0.702436\pi\)
−0.593959 + 0.804495i \(0.702436\pi\)
\(308\) 8.24799 0.469973
\(309\) 0 0
\(310\) 0 0
\(311\) −26.8918 −1.52489 −0.762446 0.647052i \(-0.776002\pi\)
−0.762446 + 0.647052i \(0.776002\pi\)
\(312\) 0 0
\(313\) −24.2599 −1.37125 −0.685625 0.727955i \(-0.740471\pi\)
−0.685625 + 0.727955i \(0.740471\pi\)
\(314\) 33.6371 1.89825
\(315\) 0 0
\(316\) 11.9986 0.674972
\(317\) −23.3061 −1.30900 −0.654502 0.756061i \(-0.727121\pi\)
−0.654502 + 0.756061i \(0.727121\pi\)
\(318\) 0 0
\(319\) −14.6900 −0.822483
\(320\) 0 0
\(321\) 0 0
\(322\) 7.01574 0.390972
\(323\) 5.15307 0.286724
\(324\) 0 0
\(325\) 0 0
\(326\) 47.1888 2.61355
\(327\) 0 0
\(328\) −29.5527 −1.63177
\(329\) 3.04241 0.167733
\(330\) 0 0
\(331\) −23.8298 −1.30980 −0.654901 0.755715i \(-0.727290\pi\)
−0.654901 + 0.755715i \(0.727290\pi\)
\(332\) 17.6609 0.969270
\(333\) 0 0
\(334\) −34.9142 −1.91042
\(335\) 0 0
\(336\) 0 0
\(337\) 6.43013 0.350272 0.175136 0.984544i \(-0.443964\pi\)
0.175136 + 0.984544i \(0.443964\pi\)
\(338\) 7.08441 0.385341
\(339\) 0 0
\(340\) 0 0
\(341\) −3.12015 −0.168966
\(342\) 0 0
\(343\) 10.5055 0.567242
\(344\) −14.8918 −0.802909
\(345\) 0 0
\(346\) 53.7282 2.88844
\(347\) 9.27706 0.498019 0.249009 0.968501i \(-0.419895\pi\)
0.249009 + 0.968501i \(0.419895\pi\)
\(348\) 0 0
\(349\) −8.01574 −0.429073 −0.214536 0.976716i \(-0.568824\pi\)
−0.214536 + 0.976716i \(0.568824\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.5079 0.560071
\(353\) −22.3061 −1.18724 −0.593618 0.804747i \(-0.702301\pi\)
−0.593618 + 0.804747i \(0.702301\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.03815 −0.108022
\(357\) 0 0
\(358\) −52.2046 −2.75910
\(359\) 9.40106 0.496169 0.248084 0.968738i \(-0.420199\pi\)
0.248084 + 0.968738i \(0.420199\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 31.1664 1.63807
\(363\) 0 0
\(364\) 11.2294 0.588579
\(365\) 0 0
\(366\) 0 0
\(367\) −7.32188 −0.382199 −0.191100 0.981571i \(-0.561205\pi\)
−0.191100 + 0.981571i \(0.561205\pi\)
\(368\) −6.20173 −0.323288
\(369\) 0 0
\(370\) 0 0
\(371\) −5.05959 −0.262681
\(372\) 0 0
\(373\) −9.02908 −0.467508 −0.233754 0.972296i \(-0.575101\pi\)
−0.233754 + 0.972296i \(0.575101\pi\)
\(374\) 35.7520 1.84869
\(375\) 0 0
\(376\) −14.4301 −0.744177
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) 28.0448 1.44057 0.720283 0.693681i \(-0.244012\pi\)
0.720283 + 0.693681i \(0.244012\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −32.2914 −1.65217
\(383\) −33.6767 −1.72080 −0.860399 0.509621i \(-0.829786\pi\)
−0.860399 + 0.509621i \(0.829786\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −58.0896 −2.95668
\(387\) 0 0
\(388\) −30.7544 −1.56132
\(389\) −0.678118 −0.0343819 −0.0171910 0.999852i \(-0.505472\pi\)
−0.0171910 + 0.999852i \(0.505472\pi\)
\(390\) 0 0
\(391\) 19.5040 0.986361
\(392\) −23.7668 −1.20040
\(393\) 0 0
\(394\) −60.4883 −3.04736
\(395\) 0 0
\(396\) 0 0
\(397\) −10.8140 −0.542740 −0.271370 0.962475i \(-0.587477\pi\)
−0.271370 + 0.962475i \(0.587477\pi\)
\(398\) −0.545048 −0.0273208
\(399\) 0 0
\(400\) 0 0
\(401\) 28.2599 1.41123 0.705616 0.708595i \(-0.250671\pi\)
0.705616 + 0.708595i \(0.250671\pi\)
\(402\) 0 0
\(403\) −4.24799 −0.211607
\(404\) 4.12399 0.205176
\(405\) 0 0
\(406\) −9.26799 −0.459962
\(407\) −2.12399 −0.105282
\(408\) 0 0
\(409\) 29.1846 1.44308 0.721542 0.692371i \(-0.243434\pi\)
0.721542 + 0.692371i \(0.243434\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 71.3653 3.51591
\(413\) −3.65853 −0.180025
\(414\) 0 0
\(415\) 0 0
\(416\) 14.3061 0.701416
\(417\) 0 0
\(418\) 6.93800 0.339349
\(419\) 26.7678 1.30769 0.653845 0.756628i \(-0.273155\pi\)
0.653845 + 0.756628i \(0.273155\pi\)
\(420\) 0 0
\(421\) 29.5040 1.43794 0.718969 0.695042i \(-0.244614\pi\)
0.718969 + 0.695042i \(0.244614\pi\)
\(422\) 12.6452 0.615559
\(423\) 0 0
\(424\) 23.9976 1.16543
\(425\) 0 0
\(426\) 0 0
\(427\) −6.96708 −0.337161
\(428\) −43.7439 −2.11444
\(429\) 0 0
\(430\) 0 0
\(431\) −2.90893 −0.140118 −0.0700590 0.997543i \(-0.522319\pi\)
−0.0700590 + 0.997543i \(0.522319\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) −1.96851 −0.0944917
\(435\) 0 0
\(436\) −8.64376 −0.413961
\(437\) 3.78493 0.181058
\(438\) 0 0
\(439\) 33.4130 1.59471 0.797357 0.603508i \(-0.206231\pi\)
0.797357 + 0.603508i \(0.206231\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 48.6753 2.31525
\(443\) 23.5818 1.12040 0.560202 0.828356i \(-0.310724\pi\)
0.560202 + 0.828356i \(0.310724\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4.21507 −0.199589
\(447\) 0 0
\(448\) 9.20173 0.434741
\(449\) 6.87601 0.324499 0.162249 0.986750i \(-0.448125\pi\)
0.162249 + 0.986750i \(0.448125\pi\)
\(450\) 0 0
\(451\) 23.3219 1.09818
\(452\) −73.9986 −3.48060
\(453\) 0 0
\(454\) 21.1755 0.993814
\(455\) 0 0
\(456\) 0 0
\(457\) −33.2599 −1.55583 −0.777916 0.628368i \(-0.783723\pi\)
−0.777916 + 0.628368i \(0.783723\pi\)
\(458\) 62.7348 2.93141
\(459\) 0 0
\(460\) 0 0
\(461\) −16.2928 −0.758832 −0.379416 0.925226i \(-0.623875\pi\)
−0.379416 + 0.925226i \(0.623875\pi\)
\(462\) 0 0
\(463\) 33.4459 1.55436 0.777181 0.629277i \(-0.216649\pi\)
0.777181 + 0.629277i \(0.216649\pi\)
\(464\) 8.19266 0.380335
\(465\) 0 0
\(466\) 22.5989 1.04688
\(467\) −20.5212 −0.949608 −0.474804 0.880092i \(-0.657481\pi\)
−0.474804 + 0.880092i \(0.657481\pi\)
\(468\) 0 0
\(469\) 7.01574 0.323957
\(470\) 0 0
\(471\) 0 0
\(472\) 17.3524 0.798709
\(473\) 11.7520 0.540358
\(474\) 0 0
\(475\) 0 0
\(476\) 14.4664 0.663068
\(477\) 0 0
\(478\) −39.9208 −1.82594
\(479\) 7.84309 0.358360 0.179180 0.983816i \(-0.442656\pi\)
0.179180 + 0.983816i \(0.442656\pi\)
\(480\) 0 0
\(481\) −2.89175 −0.131852
\(482\) −21.9075 −0.997859
\(483\) 0 0
\(484\) −8.46972 −0.384987
\(485\) 0 0
\(486\) 0 0
\(487\) 7.16640 0.324741 0.162370 0.986730i \(-0.448086\pi\)
0.162370 + 0.986730i \(0.448086\pi\)
\(488\) 33.0448 1.49587
\(489\) 0 0
\(490\) 0 0
\(491\) −16.2928 −0.735284 −0.367642 0.929967i \(-0.619835\pi\)
−0.367642 + 0.929967i \(0.619835\pi\)
\(492\) 0 0
\(493\) −25.7653 −1.16041
\(494\) 9.44588 0.424990
\(495\) 0 0
\(496\) 1.74011 0.0781334
\(497\) −2.08866 −0.0936893
\(498\) 0 0
\(499\) 40.2890 1.80358 0.901791 0.432173i \(-0.142253\pi\)
0.901791 + 0.432173i \(0.142253\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −59.3982 −2.65107
\(503\) 15.1397 0.675047 0.337524 0.941317i \(-0.390411\pi\)
0.337524 + 0.941317i \(0.390411\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 26.2599 1.16739
\(507\) 0 0
\(508\) 48.4154 2.14808
\(509\) −7.55412 −0.334831 −0.167415 0.985886i \(-0.553542\pi\)
−0.167415 + 0.985886i \(0.553542\pi\)
\(510\) 0 0
\(511\) −6.62945 −0.293270
\(512\) −18.0606 −0.798172
\(513\) 0 0
\(514\) 50.0210 2.20633
\(515\) 0 0
\(516\) 0 0
\(517\) 11.3877 0.500831
\(518\) −1.34003 −0.0588778
\(519\) 0 0
\(520\) 0 0
\(521\) 33.4616 1.46598 0.732990 0.680239i \(-0.238124\pi\)
0.732990 + 0.680239i \(0.238124\pi\)
\(522\) 0 0
\(523\) 35.9208 1.57071 0.785354 0.619047i \(-0.212481\pi\)
0.785354 + 0.619047i \(0.212481\pi\)
\(524\) 16.1226 0.704317
\(525\) 0 0
\(526\) −8.93800 −0.389715
\(527\) −5.47254 −0.238388
\(528\) 0 0
\(529\) −8.67427 −0.377142
\(530\) 0 0
\(531\) 0 0
\(532\) 2.80734 0.121714
\(533\) 31.7520 1.37533
\(534\) 0 0
\(535\) 0 0
\(536\) −33.2756 −1.43729
\(537\) 0 0
\(538\) −38.5064 −1.66013
\(539\) 18.7559 0.807872
\(540\) 0 0
\(541\) −43.1516 −1.85523 −0.927617 0.373533i \(-0.878146\pi\)
−0.927617 + 0.373533i \(0.878146\pi\)
\(542\) −6.28373 −0.269909
\(543\) 0 0
\(544\) 18.4301 0.790185
\(545\) 0 0
\(546\) 0 0
\(547\) −23.2308 −0.993278 −0.496639 0.867957i \(-0.665433\pi\)
−0.496639 + 0.867957i \(0.665433\pi\)
\(548\) −58.2718 −2.48925
\(549\) 0 0
\(550\) 0 0
\(551\) −5.00000 −0.213007
\(552\) 0 0
\(553\) −2.63330 −0.111979
\(554\) −50.0210 −2.12519
\(555\) 0 0
\(556\) −9.96041 −0.422416
\(557\) −8.24799 −0.349478 −0.174739 0.984615i \(-0.555908\pi\)
−0.174739 + 0.984615i \(0.555908\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 62.3047 2.62817
\(563\) −25.8273 −1.08849 −0.544246 0.838925i \(-0.683184\pi\)
−0.544246 + 0.838925i \(0.683184\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −44.6123 −1.87519
\(567\) 0 0
\(568\) 9.90652 0.415668
\(569\) 12.1860 0.510863 0.255432 0.966827i \(-0.417782\pi\)
0.255432 + 0.966827i \(0.417782\pi\)
\(570\) 0 0
\(571\) 12.2308 0.511843 0.255922 0.966698i \(-0.417621\pi\)
0.255922 + 0.966698i \(0.417621\pi\)
\(572\) 42.0315 1.75742
\(573\) 0 0
\(574\) 14.7139 0.614145
\(575\) 0 0
\(576\) 0 0
\(577\) −21.9537 −0.913946 −0.456973 0.889480i \(-0.651066\pi\)
−0.456973 + 0.889480i \(0.651066\pi\)
\(578\) 22.5618 0.938446
\(579\) 0 0
\(580\) 0 0
\(581\) −3.87601 −0.160804
\(582\) 0 0
\(583\) −18.9380 −0.784332
\(584\) 31.4435 1.30114
\(585\) 0 0
\(586\) 17.6924 0.730867
\(587\) 22.5527 0.930849 0.465425 0.885088i \(-0.345902\pi\)
0.465425 + 0.885088i \(0.345902\pi\)
\(588\) 0 0
\(589\) −1.06200 −0.0437588
\(590\) 0 0
\(591\) 0 0
\(592\) 1.18456 0.0486849
\(593\) −28.3376 −1.16369 −0.581843 0.813301i \(-0.697668\pi\)
−0.581843 + 0.813301i \(0.697668\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 35.7520 1.46201
\(599\) −2.27947 −0.0931367 −0.0465684 0.998915i \(-0.514829\pi\)
−0.0465684 + 0.998915i \(0.514829\pi\)
\(600\) 0 0
\(601\) −3.56987 −0.145618 −0.0728090 0.997346i \(-0.523196\pi\)
−0.0728090 + 0.997346i \(0.523196\pi\)
\(602\) 7.41439 0.302188
\(603\) 0 0
\(604\) 80.8259 3.28876
\(605\) 0 0
\(606\) 0 0
\(607\) −27.6609 −1.12272 −0.561361 0.827571i \(-0.689722\pi\)
−0.561361 + 0.827571i \(0.689722\pi\)
\(608\) 3.57653 0.145048
\(609\) 0 0
\(610\) 0 0
\(611\) 15.5040 0.627226
\(612\) 0 0
\(613\) −5.50787 −0.222461 −0.111230 0.993795i \(-0.535479\pi\)
−0.111230 + 0.993795i \(0.535479\pi\)
\(614\) −49.1516 −1.98360
\(615\) 0 0
\(616\) 8.58561 0.345924
\(617\) −19.4459 −0.782861 −0.391431 0.920208i \(-0.628020\pi\)
−0.391431 + 0.920208i \(0.628020\pi\)
\(618\) 0 0
\(619\) 16.5369 0.664676 0.332338 0.943160i \(-0.392163\pi\)
0.332338 + 0.943160i \(0.392163\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −63.5040 −2.54628
\(623\) 0.447309 0.0179211
\(624\) 0 0
\(625\) 0 0
\(626\) −57.2890 −2.28973
\(627\) 0 0
\(628\) 50.9447 2.03291
\(629\) −3.72535 −0.148539
\(630\) 0 0
\(631\) 3.41439 0.135925 0.0679623 0.997688i \(-0.478350\pi\)
0.0679623 + 0.997688i \(0.478350\pi\)
\(632\) 12.4897 0.496814
\(633\) 0 0
\(634\) −55.0367 −2.18579
\(635\) 0 0
\(636\) 0 0
\(637\) 25.5355 1.01175
\(638\) −34.6900 −1.37339
\(639\) 0 0
\(640\) 0 0
\(641\) 30.6123 1.20911 0.604556 0.796563i \(-0.293351\pi\)
0.604556 + 0.796563i \(0.293351\pi\)
\(642\) 0 0
\(643\) −10.5369 −0.415537 −0.207768 0.978178i \(-0.566620\pi\)
−0.207768 + 0.978178i \(0.566620\pi\)
\(644\) 10.6256 0.418708
\(645\) 0 0
\(646\) 12.1688 0.478776
\(647\) 23.0935 0.907898 0.453949 0.891028i \(-0.350015\pi\)
0.453949 + 0.891028i \(0.350015\pi\)
\(648\) 0 0
\(649\) −13.6939 −0.537531
\(650\) 0 0
\(651\) 0 0
\(652\) 71.4693 2.79895
\(653\) −0.833597 −0.0326212 −0.0163106 0.999867i \(-0.505192\pi\)
−0.0163106 + 0.999867i \(0.505192\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −13.0067 −0.507825
\(657\) 0 0
\(658\) 7.18456 0.280083
\(659\) 37.1712 1.44799 0.723993 0.689808i \(-0.242305\pi\)
0.723993 + 0.689808i \(0.242305\pi\)
\(660\) 0 0
\(661\) 9.98667 0.388436 0.194218 0.980958i \(-0.437783\pi\)
0.194218 + 0.980958i \(0.437783\pi\)
\(662\) −56.2732 −2.18712
\(663\) 0 0
\(664\) 18.3839 0.713433
\(665\) 0 0
\(666\) 0 0
\(667\) −18.9247 −0.732766
\(668\) −52.8788 −2.04594
\(669\) 0 0
\(670\) 0 0
\(671\) −26.0777 −1.00672
\(672\) 0 0
\(673\) 7.13974 0.275217 0.137608 0.990487i \(-0.456058\pi\)
0.137608 + 0.990487i \(0.456058\pi\)
\(674\) 15.1846 0.584887
\(675\) 0 0
\(676\) 10.7296 0.412677
\(677\) −15.5856 −0.599004 −0.299502 0.954096i \(-0.596820\pi\)
−0.299502 + 0.954096i \(0.596820\pi\)
\(678\) 0 0
\(679\) 6.74960 0.259026
\(680\) 0 0
\(681\) 0 0
\(682\) −7.36814 −0.282140
\(683\) 3.49454 0.133715 0.0668574 0.997763i \(-0.478703\pi\)
0.0668574 + 0.997763i \(0.478703\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 24.8083 0.947186
\(687\) 0 0
\(688\) −6.55412 −0.249874
\(689\) −25.7835 −0.982273
\(690\) 0 0
\(691\) 37.6280 1.43144 0.715719 0.698389i \(-0.246099\pi\)
0.715719 + 0.698389i \(0.246099\pi\)
\(692\) 81.3734 3.09335
\(693\) 0 0
\(694\) 21.9075 0.831597
\(695\) 0 0
\(696\) 0 0
\(697\) 40.9051 1.54939
\(698\) −18.9289 −0.716470
\(699\) 0 0
\(700\) 0 0
\(701\) 7.92083 0.299165 0.149583 0.988749i \(-0.452207\pi\)
0.149583 + 0.988749i \(0.452207\pi\)
\(702\) 0 0
\(703\) −0.722938 −0.0272661
\(704\) 34.4420 1.29808
\(705\) 0 0
\(706\) −52.6753 −1.98246
\(707\) −0.905083 −0.0340392
\(708\) 0 0
\(709\) −28.0739 −1.05434 −0.527169 0.849761i \(-0.676746\pi\)
−0.527169 + 0.849761i \(0.676746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2.12158 −0.0795097
\(713\) −4.01959 −0.150535
\(714\) 0 0
\(715\) 0 0
\(716\) −79.0658 −2.95483
\(717\) 0 0
\(718\) 22.2003 0.828508
\(719\) −20.2017 −0.753397 −0.376699 0.926336i \(-0.622941\pi\)
−0.376699 + 0.926336i \(0.622941\pi\)
\(720\) 0 0
\(721\) −15.6624 −0.583297
\(722\) 2.36147 0.0878848
\(723\) 0 0
\(724\) 47.2027 1.75427
\(725\) 0 0
\(726\) 0 0
\(727\) 17.0644 0.632884 0.316442 0.948612i \(-0.397512\pi\)
0.316442 + 0.948612i \(0.397512\pi\)
\(728\) 11.6890 0.433225
\(729\) 0 0
\(730\) 0 0
\(731\) 20.6123 0.762373
\(732\) 0 0
\(733\) 46.3534 1.71210 0.856050 0.516892i \(-0.172911\pi\)
0.856050 + 0.516892i \(0.172911\pi\)
\(734\) −17.2904 −0.638200
\(735\) 0 0
\(736\) 13.5369 0.498979
\(737\) 26.2599 0.967295
\(738\) 0 0
\(739\) 3.46305 0.127390 0.0636952 0.997969i \(-0.479711\pi\)
0.0636952 + 0.997969i \(0.479711\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −11.9481 −0.438627
\(743\) −21.3972 −0.784988 −0.392494 0.919755i \(-0.628388\pi\)
−0.392494 + 0.919755i \(0.628388\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −21.3219 −0.780650
\(747\) 0 0
\(748\) 54.1478 1.97984
\(749\) 9.60038 0.350790
\(750\) 0 0
\(751\) −38.5198 −1.40561 −0.702803 0.711384i \(-0.748069\pi\)
−0.702803 + 0.711384i \(0.748069\pi\)
\(752\) −6.35096 −0.231596
\(753\) 0 0
\(754\) −47.2294 −1.71999
\(755\) 0 0
\(756\) 0 0
\(757\) −44.8760 −1.63105 −0.815523 0.578725i \(-0.803551\pi\)
−0.815523 + 0.578725i \(0.803551\pi\)
\(758\) 66.2270 2.40547
\(759\) 0 0
\(760\) 0 0
\(761\) −51.2427 −1.85755 −0.928773 0.370648i \(-0.879136\pi\)
−0.928773 + 0.370648i \(0.879136\pi\)
\(762\) 0 0
\(763\) 1.89703 0.0686770
\(764\) −48.9065 −1.76938
\(765\) 0 0
\(766\) −79.5264 −2.87341
\(767\) −18.6438 −0.673187
\(768\) 0 0
\(769\) −31.3061 −1.12893 −0.564464 0.825458i \(-0.690917\pi\)
−0.564464 + 0.825458i \(0.690917\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −87.9790 −3.16643
\(773\) −37.9695 −1.36567 −0.682834 0.730574i \(-0.739253\pi\)
−0.682834 + 0.730574i \(0.739253\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −32.0133 −1.14921
\(777\) 0 0
\(778\) −1.60135 −0.0574113
\(779\) 7.93800 0.284408
\(780\) 0 0
\(781\) −7.81785 −0.279745
\(782\) 46.0582 1.64704
\(783\) 0 0
\(784\) −10.4602 −0.373578
\(785\) 0 0
\(786\) 0 0
\(787\) −29.5369 −1.05288 −0.526439 0.850213i \(-0.676473\pi\)
−0.526439 + 0.850213i \(0.676473\pi\)
\(788\) −91.6118 −3.26354
\(789\) 0 0
\(790\) 0 0
\(791\) 16.2403 0.577439
\(792\) 0 0
\(793\) −35.5040 −1.26079
\(794\) −25.5369 −0.906272
\(795\) 0 0
\(796\) −0.825497 −0.0292590
\(797\) −12.7716 −0.452393 −0.226197 0.974082i \(-0.572629\pi\)
−0.226197 + 0.974082i \(0.572629\pi\)
\(798\) 0 0
\(799\) 19.9733 0.706606
\(800\) 0 0
\(801\) 0 0
\(802\) 66.7348 2.35649
\(803\) −24.8140 −0.875667
\(804\) 0 0
\(805\) 0 0
\(806\) −10.0315 −0.353344
\(807\) 0 0
\(808\) 4.29281 0.151020
\(809\) −5.56987 −0.195826 −0.0979131 0.995195i \(-0.531217\pi\)
−0.0979131 + 0.995195i \(0.531217\pi\)
\(810\) 0 0
\(811\) −1.55028 −0.0544377 −0.0272189 0.999629i \(-0.508665\pi\)
−0.0272189 + 0.999629i \(0.508665\pi\)
\(812\) −14.0367 −0.492592
\(813\) 0 0
\(814\) −5.01574 −0.175802
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 68.9184 2.40968
\(819\) 0 0
\(820\) 0 0
\(821\) 49.7968 1.73792 0.868961 0.494881i \(-0.164788\pi\)
0.868961 + 0.494881i \(0.164788\pi\)
\(822\) 0 0
\(823\) −6.78493 −0.236508 −0.118254 0.992983i \(-0.537730\pi\)
−0.118254 + 0.992983i \(0.537730\pi\)
\(824\) 74.2866 2.58789
\(825\) 0 0
\(826\) −8.63951 −0.300607
\(827\) −26.8918 −0.935118 −0.467559 0.883962i \(-0.654866\pi\)
−0.467559 + 0.883962i \(0.654866\pi\)
\(828\) 0 0
\(829\) 33.4774 1.16272 0.581358 0.813648i \(-0.302521\pi\)
0.581358 + 0.813648i \(0.302521\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 46.8918 1.62568
\(833\) 32.8966 1.13980
\(834\) 0 0
\(835\) 0 0
\(836\) 10.5079 0.363422
\(837\) 0 0
\(838\) 63.2112 2.18360
\(839\) −26.1335 −0.902228 −0.451114 0.892466i \(-0.648973\pi\)
−0.451114 + 0.892466i \(0.648973\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 69.6728 2.40108
\(843\) 0 0
\(844\) 19.1516 0.659226
\(845\) 0 0
\(846\) 0 0
\(847\) 1.85883 0.0638702
\(848\) 10.5618 0.362693
\(849\) 0 0
\(850\) 0 0
\(851\) −2.73627 −0.0937982
\(852\) 0 0
\(853\) −4.77160 −0.163376 −0.0816882 0.996658i \(-0.526031\pi\)
−0.0816882 + 0.996658i \(0.526031\pi\)
\(854\) −16.4525 −0.562994
\(855\) 0 0
\(856\) −45.5345 −1.55634
\(857\) 26.9537 0.920722 0.460361 0.887732i \(-0.347720\pi\)
0.460361 + 0.887732i \(0.347720\pi\)
\(858\) 0 0
\(859\) −41.7034 −1.42290 −0.711450 0.702737i \(-0.751961\pi\)
−0.711450 + 0.702737i \(0.751961\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6.86934 −0.233971
\(863\) 33.1492 1.12841 0.564206 0.825634i \(-0.309182\pi\)
0.564206 + 0.825634i \(0.309182\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.1688 0.481476
\(867\) 0 0
\(868\) −2.98139 −0.101195
\(869\) −9.85642 −0.334356
\(870\) 0 0
\(871\) 35.7520 1.21141
\(872\) −8.99759 −0.304697
\(873\) 0 0
\(874\) 8.93800 0.302332
\(875\) 0 0
\(876\) 0 0
\(877\) −31.0739 −1.04929 −0.524645 0.851321i \(-0.675802\pi\)
−0.524645 + 0.851321i \(0.675802\pi\)
\(878\) 78.9036 2.66287
\(879\) 0 0
\(880\) 0 0
\(881\) 5.44588 0.183476 0.0917381 0.995783i \(-0.470758\pi\)
0.0917381 + 0.995783i \(0.470758\pi\)
\(882\) 0 0
\(883\) −23.1492 −0.779033 −0.389517 0.921019i \(-0.627358\pi\)
−0.389517 + 0.921019i \(0.627358\pi\)
\(884\) 73.7205 2.47949
\(885\) 0 0
\(886\) 55.6876 1.87086
\(887\) 44.3643 1.48961 0.744804 0.667284i \(-0.232543\pi\)
0.744804 + 0.667284i \(0.232543\pi\)
\(888\) 0 0
\(889\) −10.6256 −0.356372
\(890\) 0 0
\(891\) 0 0
\(892\) −6.38388 −0.213748
\(893\) 3.87601 0.129706
\(894\) 0 0
\(895\) 0 0
\(896\) 16.1149 0.538362
\(897\) 0 0
\(898\) 16.2375 0.541852
\(899\) 5.30998 0.177098
\(900\) 0 0
\(901\) −33.2160 −1.10659
\(902\) 55.0739 1.83376
\(903\) 0 0
\(904\) −77.0276 −2.56190
\(905\) 0 0
\(906\) 0 0
\(907\) 0.319472 0.0106079 0.00530395 0.999986i \(-0.498312\pi\)
0.00530395 + 0.999986i \(0.498312\pi\)
\(908\) 32.0711 1.06432
\(909\) 0 0
\(910\) 0 0
\(911\) −14.0487 −0.465453 −0.232726 0.972542i \(-0.574765\pi\)
−0.232726 + 0.972542i \(0.574765\pi\)
\(912\) 0 0
\(913\) −14.5079 −0.480140
\(914\) −78.5422 −2.59794
\(915\) 0 0
\(916\) 95.0143 3.13936
\(917\) −3.53838 −0.116848
\(918\) 0 0
\(919\) −25.8007 −0.851086 −0.425543 0.904938i \(-0.639917\pi\)
−0.425543 + 0.904938i \(0.639917\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −38.4750 −1.26711
\(923\) −10.6438 −0.350344
\(924\) 0 0
\(925\) 0 0
\(926\) 78.9814 2.59549
\(927\) 0 0
\(928\) −17.8827 −0.587028
\(929\) 9.86267 0.323584 0.161792 0.986825i \(-0.448273\pi\)
0.161792 + 0.986825i \(0.448273\pi\)
\(930\) 0 0
\(931\) 6.38388 0.209223
\(932\) 34.2270 1.12114
\(933\) 0 0
\(934\) −48.4602 −1.58567
\(935\) 0 0
\(936\) 0 0
\(937\) 30.4921 0.996134 0.498067 0.867138i \(-0.334043\pi\)
0.498067 + 0.867138i \(0.334043\pi\)
\(938\) 16.5675 0.540947
\(939\) 0 0
\(940\) 0 0
\(941\) −2.20173 −0.0717744 −0.0358872 0.999356i \(-0.511426\pi\)
−0.0358872 + 0.999356i \(0.511426\pi\)
\(942\) 0 0
\(943\) 30.0448 0.978394
\(944\) 7.63710 0.248566
\(945\) 0 0
\(946\) 27.7520 0.902296
\(947\) 11.7520 0.381889 0.190945 0.981601i \(-0.438845\pi\)
0.190945 + 0.981601i \(0.438845\pi\)
\(948\) 0 0
\(949\) −33.7835 −1.09666
\(950\) 0 0
\(951\) 0 0
\(952\) 15.0586 0.488052
\(953\) −21.7363 −0.704107 −0.352053 0.935980i \(-0.614516\pi\)
−0.352053 + 0.935980i \(0.614516\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −60.4616 −1.95547
\(957\) 0 0
\(958\) 18.5212 0.598393
\(959\) 12.7888 0.412971
\(960\) 0 0
\(961\) −29.8722 −0.963618
\(962\) −6.82878 −0.220169
\(963\) 0 0
\(964\) −33.1797 −1.06865
\(965\) 0 0
\(966\) 0 0
\(967\) 15.2466 0.490296 0.245148 0.969486i \(-0.421163\pi\)
0.245148 + 0.969486i \(0.421163\pi\)
\(968\) −8.81642 −0.283370
\(969\) 0 0
\(970\) 0 0
\(971\) −38.5951 −1.23858 −0.619288 0.785164i \(-0.712579\pi\)
−0.619288 + 0.785164i \(0.712579\pi\)
\(972\) 0 0
\(973\) 2.18599 0.0700796
\(974\) 16.9232 0.542255
\(975\) 0 0
\(976\) 14.5436 0.465530
\(977\) 3.10825 0.0994417 0.0497209 0.998763i \(-0.484167\pi\)
0.0497209 + 0.998763i \(0.484167\pi\)
\(978\) 0 0
\(979\) 1.67427 0.0535100
\(980\) 0 0
\(981\) 0 0
\(982\) −38.4750 −1.22779
\(983\) 14.4616 0.461254 0.230627 0.973042i \(-0.425922\pi\)
0.230627 + 0.973042i \(0.425922\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −60.8441 −1.93767
\(987\) 0 0
\(988\) 14.3061 0.455139
\(989\) 15.1397 0.481416
\(990\) 0 0
\(991\) −23.8298 −0.756977 −0.378489 0.925606i \(-0.623556\pi\)
−0.378489 + 0.925606i \(0.623556\pi\)
\(992\) −3.79827 −0.120595
\(993\) 0 0
\(994\) −4.93231 −0.156443
\(995\) 0 0
\(996\) 0 0
\(997\) 1.79827 0.0569517 0.0284758 0.999594i \(-0.490935\pi\)
0.0284758 + 0.999594i \(0.490935\pi\)
\(998\) 95.1411 3.01164
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bf.1.3 3
3.2 odd 2 1425.2.a.t.1.1 3
5.4 even 2 4275.2.a.bg.1.1 3
15.2 even 4 1425.2.c.o.799.2 6
15.8 even 4 1425.2.c.o.799.5 6
15.14 odd 2 1425.2.a.w.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.t.1.1 3 3.2 odd 2
1425.2.a.w.1.3 yes 3 15.14 odd 2
1425.2.c.o.799.2 6 15.2 even 4
1425.2.c.o.799.5 6 15.8 even 4
4275.2.a.bf.1.3 3 1.1 even 1 trivial
4275.2.a.bg.1.1 3 5.4 even 2