Properties

Label 4275.2.a.bf.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.167449\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.167449 q^{2} -1.97196 q^{4} -4.13941 q^{7} -0.665102 q^{8} +4.80451 q^{11} -4.00000 q^{13} -0.693141 q^{14} +3.83255 q^{16} +5.94392 q^{17} -1.00000 q^{19} +0.804512 q^{22} -7.13941 q^{23} -0.669797 q^{26} +8.16275 q^{28} +5.00000 q^{29} +8.80451 q^{31} +1.97196 q^{32} +0.995305 q^{34} -3.66510 q^{37} -0.167449 q^{38} -0.195488 q^{41} -4.00000 q^{43} -9.47431 q^{44} -1.19549 q^{46} +11.6090 q^{47} +10.1347 q^{49} +7.88784 q^{52} -2.33020 q^{53} +2.75313 q^{56} +0.837246 q^{58} -7.46961 q^{59} -6.60902 q^{61} +1.47431 q^{62} -7.33490 q^{64} -1.19549 q^{67} -11.7212 q^{68} -9.46961 q^{71} -0.330203 q^{73} -0.613718 q^{74} +1.97196 q^{76} -19.8878 q^{77} +13.4182 q^{79} -0.0327344 q^{82} -2.80451 q^{83} -0.669797 q^{86} -3.19549 q^{88} -7.27882 q^{89} +16.5576 q^{91} +14.0786 q^{92} +1.94392 q^{94} +11.2741 q^{97} +1.69705 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{8} + 3 q^{11} - 12 q^{13} - 15 q^{14} + 12 q^{16} - 6 q^{17} - 3 q^{19} - 9 q^{22} - 9 q^{23} + 27 q^{28} + 15 q^{29} + 15 q^{31} - 6 q^{32} + 6 q^{34} - 12 q^{37} - 12 q^{41} - 12 q^{43}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.167449 0.118404 0.0592022 0.998246i \(-0.481144\pi\)
0.0592022 + 0.998246i \(0.481144\pi\)
\(3\) 0 0
\(4\) −1.97196 −0.985980
\(5\) 0 0
\(6\) 0 0
\(7\) −4.13941 −1.56455 −0.782275 0.622933i \(-0.785941\pi\)
−0.782275 + 0.622933i \(0.785941\pi\)
\(8\) −0.665102 −0.235149
\(9\) 0 0
\(10\) 0 0
\(11\) 4.80451 1.44861 0.724307 0.689477i \(-0.242160\pi\)
0.724307 + 0.689477i \(0.242160\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −0.693141 −0.185250
\(15\) 0 0
\(16\) 3.83255 0.958138
\(17\) 5.94392 1.44161 0.720806 0.693136i \(-0.243772\pi\)
0.720806 + 0.693136i \(0.243772\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0.804512 0.171522
\(23\) −7.13941 −1.48867 −0.744335 0.667806i \(-0.767233\pi\)
−0.744335 + 0.667806i \(0.767233\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.669797 −0.131358
\(27\) 0 0
\(28\) 8.16275 1.54262
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 8.80451 1.58134 0.790668 0.612245i \(-0.209733\pi\)
0.790668 + 0.612245i \(0.209733\pi\)
\(32\) 1.97196 0.348597
\(33\) 0 0
\(34\) 0.995305 0.170693
\(35\) 0 0
\(36\) 0 0
\(37\) −3.66510 −0.602539 −0.301269 0.953539i \(-0.597410\pi\)
−0.301269 + 0.953539i \(0.597410\pi\)
\(38\) −0.167449 −0.0271638
\(39\) 0 0
\(40\) 0 0
\(41\) −0.195488 −0.0305302 −0.0152651 0.999883i \(-0.504859\pi\)
−0.0152651 + 0.999883i \(0.504859\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −9.47431 −1.42831
\(45\) 0 0
\(46\) −1.19549 −0.176265
\(47\) 11.6090 1.69335 0.846675 0.532110i \(-0.178601\pi\)
0.846675 + 0.532110i \(0.178601\pi\)
\(48\) 0 0
\(49\) 10.1347 1.44782
\(50\) 0 0
\(51\) 0 0
\(52\) 7.88784 1.09385
\(53\) −2.33020 −0.320078 −0.160039 0.987111i \(-0.551162\pi\)
−0.160039 + 0.987111i \(0.551162\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.75313 0.367902
\(57\) 0 0
\(58\) 0.837246 0.109936
\(59\) −7.46961 −0.972461 −0.486230 0.873831i \(-0.661628\pi\)
−0.486230 + 0.873831i \(0.661628\pi\)
\(60\) 0 0
\(61\) −6.60902 −0.846199 −0.423099 0.906083i \(-0.639058\pi\)
−0.423099 + 0.906083i \(0.639058\pi\)
\(62\) 1.47431 0.187237
\(63\) 0 0
\(64\) −7.33490 −0.916862
\(65\) 0 0
\(66\) 0 0
\(67\) −1.19549 −0.146052 −0.0730261 0.997330i \(-0.523266\pi\)
−0.0730261 + 0.997330i \(0.523266\pi\)
\(68\) −11.7212 −1.42140
\(69\) 0 0
\(70\) 0 0
\(71\) −9.46961 −1.12384 −0.561918 0.827193i \(-0.689936\pi\)
−0.561918 + 0.827193i \(0.689936\pi\)
\(72\) 0 0
\(73\) −0.330203 −0.0386474 −0.0193237 0.999813i \(-0.506151\pi\)
−0.0193237 + 0.999813i \(0.506151\pi\)
\(74\) −0.613718 −0.0713433
\(75\) 0 0
\(76\) 1.97196 0.226199
\(77\) −19.8878 −2.26643
\(78\) 0 0
\(79\) 13.4182 1.50967 0.754834 0.655915i \(-0.227717\pi\)
0.754834 + 0.655915i \(0.227717\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.0327344 −0.00361491
\(83\) −2.80451 −0.307835 −0.153918 0.988084i \(-0.549189\pi\)
−0.153918 + 0.988084i \(0.549189\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.669797 −0.0722260
\(87\) 0 0
\(88\) −3.19549 −0.340640
\(89\) −7.27882 −0.771553 −0.385777 0.922592i \(-0.626066\pi\)
−0.385777 + 0.922592i \(0.626066\pi\)
\(90\) 0 0
\(91\) 16.5576 1.73571
\(92\) 14.0786 1.46780
\(93\) 0 0
\(94\) 1.94392 0.200500
\(95\) 0 0
\(96\) 0 0
\(97\) 11.2741 1.14471 0.572357 0.820005i \(-0.306029\pi\)
0.572357 + 0.820005i \(0.306029\pi\)
\(98\) 1.69705 0.171428
\(99\) 0 0
\(100\) 0 0
\(101\) −9.94392 −0.989457 −0.494729 0.869048i \(-0.664733\pi\)
−0.494729 + 0.869048i \(0.664733\pi\)
\(102\) 0 0
\(103\) 10.1441 0.999528 0.499764 0.866162i \(-0.333420\pi\)
0.499764 + 0.866162i \(0.333420\pi\)
\(104\) 2.66041 0.260874
\(105\) 0 0
\(106\) −0.390191 −0.0378987
\(107\) −6.80921 −0.658271 −0.329135 0.944283i \(-0.606757\pi\)
−0.329135 + 0.944283i \(0.606757\pi\)
\(108\) 0 0
\(109\) −20.2227 −1.93699 −0.968494 0.249038i \(-0.919886\pi\)
−0.968494 + 0.249038i \(0.919886\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −15.8645 −1.49905
\(113\) 18.0226 1.69542 0.847710 0.530460i \(-0.177981\pi\)
0.847710 + 0.530460i \(0.177981\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.85980 −0.915460
\(117\) 0 0
\(118\) −1.25078 −0.115144
\(119\) −24.6043 −2.25548
\(120\) 0 0
\(121\) 12.0833 1.09848
\(122\) −1.10668 −0.100194
\(123\) 0 0
\(124\) −17.3622 −1.55917
\(125\) 0 0
\(126\) 0 0
\(127\) −14.0786 −1.24928 −0.624638 0.780914i \(-0.714754\pi\)
−0.624638 + 0.780914i \(0.714754\pi\)
\(128\) −5.17214 −0.457157
\(129\) 0 0
\(130\) 0 0
\(131\) 3.47431 0.303552 0.151776 0.988415i \(-0.451501\pi\)
0.151776 + 0.988415i \(0.451501\pi\)
\(132\) 0 0
\(133\) 4.13941 0.358932
\(134\) −0.200184 −0.0172932
\(135\) 0 0
\(136\) −3.95331 −0.338994
\(137\) −18.6137 −1.59028 −0.795139 0.606428i \(-0.792602\pi\)
−0.795139 + 0.606428i \(0.792602\pi\)
\(138\) 0 0
\(139\) −6.13941 −0.520738 −0.260369 0.965509i \(-0.583844\pi\)
−0.260369 + 0.965509i \(0.583844\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.58568 −0.133067
\(143\) −19.2180 −1.60709
\(144\) 0 0
\(145\) 0 0
\(146\) −0.0552923 −0.00457602
\(147\) 0 0
\(148\) 7.22744 0.594092
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 2.72588 0.221829 0.110914 0.993830i \(-0.464622\pi\)
0.110914 + 0.993830i \(0.464622\pi\)
\(152\) 0.665102 0.0539469
\(153\) 0 0
\(154\) −3.33020 −0.268355
\(155\) 0 0
\(156\) 0 0
\(157\) −15.6924 −1.25239 −0.626193 0.779668i \(-0.715388\pi\)
−0.626193 + 0.779668i \(0.715388\pi\)
\(158\) 2.24687 0.178752
\(159\) 0 0
\(160\) 0 0
\(161\) 29.5529 2.32910
\(162\) 0 0
\(163\) −16.4088 −1.28524 −0.642620 0.766185i \(-0.722152\pi\)
−0.642620 + 0.766185i \(0.722152\pi\)
\(164\) 0.385496 0.0301021
\(165\) 0 0
\(166\) −0.469613 −0.0364491
\(167\) −18.1394 −1.40367 −0.701835 0.712340i \(-0.747636\pi\)
−0.701835 + 0.712340i \(0.747636\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) 7.88784 0.601442
\(173\) −8.21805 −0.624806 −0.312403 0.949950i \(-0.601134\pi\)
−0.312403 + 0.949950i \(0.601134\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 18.4135 1.38797
\(177\) 0 0
\(178\) −1.21883 −0.0913554
\(179\) −1.20018 −0.0897059 −0.0448530 0.998994i \(-0.514282\pi\)
−0.0448530 + 0.998994i \(0.514282\pi\)
\(180\) 0 0
\(181\) −26.5482 −1.97332 −0.986658 0.162807i \(-0.947945\pi\)
−0.986658 + 0.162807i \(0.947945\pi\)
\(182\) 2.77256 0.205516
\(183\) 0 0
\(184\) 4.74843 0.350059
\(185\) 0 0
\(186\) 0 0
\(187\) 28.5576 2.08834
\(188\) −22.8925 −1.66961
\(189\) 0 0
\(190\) 0 0
\(191\) 22.9712 1.66214 0.831068 0.556171i \(-0.187730\pi\)
0.831068 + 0.556171i \(0.187730\pi\)
\(192\) 0 0
\(193\) −4.72588 −0.340176 −0.170088 0.985429i \(-0.554405\pi\)
−0.170088 + 0.985429i \(0.554405\pi\)
\(194\) 1.88784 0.135539
\(195\) 0 0
\(196\) −19.9853 −1.42752
\(197\) −3.67449 −0.261797 −0.130898 0.991396i \(-0.541786\pi\)
−0.130898 + 0.991396i \(0.541786\pi\)
\(198\) 0 0
\(199\) 5.19079 0.367966 0.183983 0.982929i \(-0.441101\pi\)
0.183983 + 0.982929i \(0.441101\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1.66510 −0.117156
\(203\) −20.6970 −1.45265
\(204\) 0 0
\(205\) 0 0
\(206\) 1.69862 0.118349
\(207\) 0 0
\(208\) −15.3302 −1.06296
\(209\) −4.80451 −0.332335
\(210\) 0 0
\(211\) 15.4182 1.06143 0.530717 0.847549i \(-0.321923\pi\)
0.530717 + 0.847549i \(0.321923\pi\)
\(212\) 4.59507 0.315591
\(213\) 0 0
\(214\) −1.14020 −0.0779422
\(215\) 0 0
\(216\) 0 0
\(217\) −36.4455 −2.47408
\(218\) −3.38628 −0.229348
\(219\) 0 0
\(220\) 0 0
\(221\) −23.7757 −1.59933
\(222\) 0 0
\(223\) −5.13941 −0.344160 −0.172080 0.985083i \(-0.555049\pi\)
−0.172080 + 0.985083i \(0.555049\pi\)
\(224\) −8.16275 −0.545397
\(225\) 0 0
\(226\) 3.01786 0.200745
\(227\) −25.3575 −1.68303 −0.841517 0.540231i \(-0.818337\pi\)
−0.841517 + 0.540231i \(0.818337\pi\)
\(228\) 0 0
\(229\) −27.6316 −1.82595 −0.912973 0.408020i \(-0.866219\pi\)
−0.912973 + 0.408020i \(0.866219\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.32551 −0.218330
\(233\) 16.2788 1.06646 0.533230 0.845970i \(-0.320978\pi\)
0.533230 + 0.845970i \(0.320978\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 14.7298 0.958827
\(237\) 0 0
\(238\) −4.11997 −0.267058
\(239\) 25.1620 1.62759 0.813796 0.581150i \(-0.197397\pi\)
0.813796 + 0.581150i \(0.197397\pi\)
\(240\) 0 0
\(241\) −13.6651 −0.880247 −0.440123 0.897937i \(-0.645065\pi\)
−0.440123 + 0.897937i \(0.645065\pi\)
\(242\) 2.02334 0.130065
\(243\) 0 0
\(244\) 13.0327 0.834335
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) −5.85589 −0.371850
\(249\) 0 0
\(250\) 0 0
\(251\) −14.0561 −0.887212 −0.443606 0.896222i \(-0.646301\pi\)
−0.443606 + 0.896222i \(0.646301\pi\)
\(252\) 0 0
\(253\) −34.3014 −2.15651
\(254\) −2.35746 −0.147920
\(255\) 0 0
\(256\) 13.8037 0.862733
\(257\) −16.4969 −1.02905 −0.514523 0.857477i \(-0.672031\pi\)
−0.514523 + 0.857477i \(0.672031\pi\)
\(258\) 0 0
\(259\) 15.1714 0.942702
\(260\) 0 0
\(261\) 0 0
\(262\) 0.581770 0.0359419
\(263\) −7.13941 −0.440235 −0.220117 0.975473i \(-0.570644\pi\)
−0.220117 + 0.975473i \(0.570644\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.693141 0.0424992
\(267\) 0 0
\(268\) 2.35746 0.144005
\(269\) 5.88784 0.358988 0.179494 0.983759i \(-0.442554\pi\)
0.179494 + 0.983759i \(0.442554\pi\)
\(270\) 0 0
\(271\) 9.46961 0.575238 0.287619 0.957745i \(-0.407136\pi\)
0.287619 + 0.957745i \(0.407136\pi\)
\(272\) 22.7804 1.38126
\(273\) 0 0
\(274\) −3.11685 −0.188296
\(275\) 0 0
\(276\) 0 0
\(277\) 16.4969 0.991201 0.495600 0.868551i \(-0.334948\pi\)
0.495600 + 0.868551i \(0.334948\pi\)
\(278\) −1.02804 −0.0616577
\(279\) 0 0
\(280\) 0 0
\(281\) 9.86529 0.588514 0.294257 0.955726i \(-0.404928\pi\)
0.294257 + 0.955726i \(0.404928\pi\)
\(282\) 0 0
\(283\) −1.33959 −0.0796306 −0.0398153 0.999207i \(-0.512677\pi\)
−0.0398153 + 0.999207i \(0.512677\pi\)
\(284\) 18.6737 1.10808
\(285\) 0 0
\(286\) −3.21805 −0.190287
\(287\) 0.809207 0.0477660
\(288\) 0 0
\(289\) 18.3302 1.07825
\(290\) 0 0
\(291\) 0 0
\(292\) 0.651148 0.0381055
\(293\) 8.52569 0.498076 0.249038 0.968494i \(-0.419886\pi\)
0.249038 + 0.968494i \(0.419886\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.43767 0.141686
\(297\) 0 0
\(298\) 0 0
\(299\) 28.5576 1.65153
\(300\) 0 0
\(301\) 16.5576 0.954366
\(302\) 0.456446 0.0262655
\(303\) 0 0
\(304\) −3.83255 −0.219812
\(305\) 0 0
\(306\) 0 0
\(307\) 2.41353 0.137748 0.0688739 0.997625i \(-0.478059\pi\)
0.0688739 + 0.997625i \(0.478059\pi\)
\(308\) 39.2180 2.23466
\(309\) 0 0
\(310\) 0 0
\(311\) −9.33959 −0.529600 −0.264800 0.964303i \(-0.585306\pi\)
−0.264800 + 0.964303i \(0.585306\pi\)
\(312\) 0 0
\(313\) 7.74374 0.437702 0.218851 0.975758i \(-0.429769\pi\)
0.218851 + 0.975758i \(0.429769\pi\)
\(314\) −2.62767 −0.148288
\(315\) 0 0
\(316\) −26.4602 −1.48850
\(317\) −1.11216 −0.0624650 −0.0312325 0.999512i \(-0.509943\pi\)
−0.0312325 + 0.999512i \(0.509943\pi\)
\(318\) 0 0
\(319\) 24.0226 1.34501
\(320\) 0 0
\(321\) 0 0
\(322\) 4.94862 0.275776
\(323\) −5.94392 −0.330729
\(324\) 0 0
\(325\) 0 0
\(326\) −2.74765 −0.152178
\(327\) 0 0
\(328\) 0.130020 0.00717914
\(329\) −48.0545 −2.64933
\(330\) 0 0
\(331\) 1.46492 0.0805192 0.0402596 0.999189i \(-0.487182\pi\)
0.0402596 + 0.999189i \(0.487182\pi\)
\(332\) 5.53039 0.303519
\(333\) 0 0
\(334\) −3.03743 −0.166201
\(335\) 0 0
\(336\) 0 0
\(337\) −0.278820 −0.0151883 −0.00759414 0.999971i \(-0.502417\pi\)
−0.00759414 + 0.999971i \(0.502417\pi\)
\(338\) 0.502348 0.0273241
\(339\) 0 0
\(340\) 0 0
\(341\) 42.3014 2.29075
\(342\) 0 0
\(343\) −12.9759 −0.700631
\(344\) 2.66041 0.143440
\(345\) 0 0
\(346\) −1.37611 −0.0739799
\(347\) 13.6651 0.733581 0.366791 0.930304i \(-0.380457\pi\)
0.366791 + 0.930304i \(0.380457\pi\)
\(348\) 0 0
\(349\) −5.94862 −0.318422 −0.159211 0.987245i \(-0.550895\pi\)
−0.159211 + 0.987245i \(0.550895\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 9.47431 0.504982
\(353\) −0.112157 −0.00596951 −0.00298476 0.999996i \(-0.500950\pi\)
−0.00298476 + 0.999996i \(0.500950\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 14.3535 0.760736
\(357\) 0 0
\(358\) −0.200970 −0.0106216
\(359\) 29.2741 1.54503 0.772515 0.634997i \(-0.218999\pi\)
0.772515 + 0.634997i \(0.218999\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −4.44548 −0.233649
\(363\) 0 0
\(364\) −32.6510 −1.71138
\(365\) 0 0
\(366\) 0 0
\(367\) 16.9392 0.884220 0.442110 0.896961i \(-0.354230\pi\)
0.442110 + 0.896961i \(0.354230\pi\)
\(368\) −27.3622 −1.42635
\(369\) 0 0
\(370\) 0 0
\(371\) 9.64567 0.500778
\(372\) 0 0
\(373\) 17.5529 0.908857 0.454429 0.890783i \(-0.349844\pi\)
0.454429 + 0.890783i \(0.349844\pi\)
\(374\) 4.78195 0.247269
\(375\) 0 0
\(376\) −7.72118 −0.398189
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −0.604328 −0.0310422 −0.0155211 0.999880i \(-0.504941\pi\)
−0.0155211 + 0.999880i \(0.504941\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.84650 0.196804
\(383\) −19.4790 −0.995331 −0.497665 0.867369i \(-0.665809\pi\)
−0.497665 + 0.867369i \(0.665809\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.791344 −0.0402783
\(387\) 0 0
\(388\) −22.2321 −1.12867
\(389\) −24.9392 −1.26447 −0.632234 0.774777i \(-0.717862\pi\)
−0.632234 + 0.774777i \(0.717862\pi\)
\(390\) 0 0
\(391\) −42.4361 −2.14609
\(392\) −6.74062 −0.340452
\(393\) 0 0
\(394\) −0.615291 −0.0309979
\(395\) 0 0
\(396\) 0 0
\(397\) 12.4135 0.623017 0.311509 0.950243i \(-0.399166\pi\)
0.311509 + 0.950243i \(0.399166\pi\)
\(398\) 0.869194 0.0435688
\(399\) 0 0
\(400\) 0 0
\(401\) −3.74374 −0.186953 −0.0934767 0.995621i \(-0.529798\pi\)
−0.0934767 + 0.995621i \(0.529798\pi\)
\(402\) 0 0
\(403\) −35.2180 −1.75434
\(404\) 19.6090 0.975585
\(405\) 0 0
\(406\) −3.46570 −0.172000
\(407\) −17.6090 −0.872847
\(408\) 0 0
\(409\) 13.9533 0.689947 0.344973 0.938612i \(-0.387888\pi\)
0.344973 + 0.938612i \(0.387888\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −20.0038 −0.985515
\(413\) 30.9198 1.52146
\(414\) 0 0
\(415\) 0 0
\(416\) −7.88784 −0.386733
\(417\) 0 0
\(418\) −0.804512 −0.0393499
\(419\) −6.26943 −0.306282 −0.153141 0.988204i \(-0.548939\pi\)
−0.153141 + 0.988204i \(0.548939\pi\)
\(420\) 0 0
\(421\) −32.4361 −1.58084 −0.790419 0.612566i \(-0.790137\pi\)
−0.790419 + 0.612566i \(0.790137\pi\)
\(422\) 2.58177 0.125679
\(423\) 0 0
\(424\) 1.54982 0.0752660
\(425\) 0 0
\(426\) 0 0
\(427\) 27.3575 1.32392
\(428\) 13.4275 0.649042
\(429\) 0 0
\(430\) 0 0
\(431\) −21.7484 −1.04759 −0.523793 0.851846i \(-0.675483\pi\)
−0.523793 + 0.851846i \(0.675483\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) −6.10277 −0.292942
\(435\) 0 0
\(436\) 39.8785 1.90983
\(437\) 7.13941 0.341524
\(438\) 0 0
\(439\) −9.68766 −0.462367 −0.231183 0.972910i \(-0.574260\pi\)
−0.231183 + 0.972910i \(0.574260\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −3.98122 −0.189367
\(443\) −32.6830 −1.55281 −0.776407 0.630232i \(-0.782960\pi\)
−0.776407 + 0.630232i \(0.782960\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.860590 −0.0407501
\(447\) 0 0
\(448\) 30.3622 1.43448
\(449\) −8.60902 −0.406285 −0.203142 0.979149i \(-0.565115\pi\)
−0.203142 + 0.979149i \(0.565115\pi\)
\(450\) 0 0
\(451\) −0.939226 −0.0442264
\(452\) −35.5398 −1.67165
\(453\) 0 0
\(454\) −4.24609 −0.199279
\(455\) 0 0
\(456\) 0 0
\(457\) −1.25626 −0.0587655 −0.0293827 0.999568i \(-0.509354\pi\)
−0.0293827 + 0.999568i \(0.509354\pi\)
\(458\) −4.62689 −0.216200
\(459\) 0 0
\(460\) 0 0
\(461\) −18.6137 −0.866927 −0.433464 0.901171i \(-0.642709\pi\)
−0.433464 + 0.901171i \(0.642709\pi\)
\(462\) 0 0
\(463\) 24.6698 1.14650 0.573251 0.819380i \(-0.305682\pi\)
0.573251 + 0.819380i \(0.305682\pi\)
\(464\) 19.1628 0.889609
\(465\) 0 0
\(466\) 2.72588 0.126274
\(467\) 5.02725 0.232634 0.116317 0.993212i \(-0.462891\pi\)
0.116317 + 0.993212i \(0.462891\pi\)
\(468\) 0 0
\(469\) 4.94862 0.228506
\(470\) 0 0
\(471\) 0 0
\(472\) 4.96805 0.228673
\(473\) −19.2180 −0.883647
\(474\) 0 0
\(475\) 0 0
\(476\) 48.5188 2.22385
\(477\) 0 0
\(478\) 4.21335 0.192714
\(479\) −41.9665 −1.91750 −0.958749 0.284255i \(-0.908254\pi\)
−0.958749 + 0.284255i \(0.908254\pi\)
\(480\) 0 0
\(481\) 14.6604 0.668457
\(482\) −2.28821 −0.104225
\(483\) 0 0
\(484\) −23.8279 −1.08308
\(485\) 0 0
\(486\) 0 0
\(487\) −28.4455 −1.28899 −0.644494 0.764609i \(-0.722932\pi\)
−0.644494 + 0.764609i \(0.722932\pi\)
\(488\) 4.39567 0.198983
\(489\) 0 0
\(490\) 0 0
\(491\) −18.6137 −0.840025 −0.420013 0.907518i \(-0.637974\pi\)
−0.420013 + 0.907518i \(0.637974\pi\)
\(492\) 0 0
\(493\) 29.7196 1.33850
\(494\) 0.669797 0.0301356
\(495\) 0 0
\(496\) 33.7437 1.51514
\(497\) 39.1986 1.75830
\(498\) 0 0
\(499\) −18.2967 −0.819072 −0.409536 0.912294i \(-0.634309\pi\)
−0.409536 + 0.912294i \(0.634309\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.35368 −0.105050
\(503\) 28.5576 1.27332 0.636661 0.771144i \(-0.280315\pi\)
0.636661 + 0.771144i \(0.280315\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5.74374 −0.255340
\(507\) 0 0
\(508\) 27.7625 1.23176
\(509\) −16.3302 −0.723824 −0.361912 0.932212i \(-0.617876\pi\)
−0.361912 + 0.932212i \(0.617876\pi\)
\(510\) 0 0
\(511\) 1.36685 0.0604657
\(512\) 12.6557 0.559309
\(513\) 0 0
\(514\) −2.76239 −0.121844
\(515\) 0 0
\(516\) 0 0
\(517\) 55.7757 2.45301
\(518\) 2.54043 0.111620
\(519\) 0 0
\(520\) 0 0
\(521\) 22.6184 0.990931 0.495465 0.868628i \(-0.334998\pi\)
0.495465 + 0.868628i \(0.334998\pi\)
\(522\) 0 0
\(523\) −8.21335 −0.359145 −0.179572 0.983745i \(-0.557471\pi\)
−0.179572 + 0.983745i \(0.557471\pi\)
\(524\) −6.85120 −0.299296
\(525\) 0 0
\(526\) −1.19549 −0.0521258
\(527\) 52.3333 2.27968
\(528\) 0 0
\(529\) 27.9712 1.21614
\(530\) 0 0
\(531\) 0 0
\(532\) −8.16275 −0.353900
\(533\) 0.781954 0.0338702
\(534\) 0 0
\(535\) 0 0
\(536\) 0.795121 0.0343440
\(537\) 0 0
\(538\) 0.985915 0.0425058
\(539\) 48.6924 2.09733
\(540\) 0 0
\(541\) 6.40414 0.275336 0.137668 0.990478i \(-0.456039\pi\)
0.137668 + 0.990478i \(0.456039\pi\)
\(542\) 1.58568 0.0681107
\(543\) 0 0
\(544\) 11.7212 0.502541
\(545\) 0 0
\(546\) 0 0
\(547\) −17.8092 −0.761467 −0.380733 0.924685i \(-0.624328\pi\)
−0.380733 + 0.924685i \(0.624328\pi\)
\(548\) 36.7055 1.56798
\(549\) 0 0
\(550\) 0 0
\(551\) −5.00000 −0.213007
\(552\) 0 0
\(553\) −55.5436 −2.36195
\(554\) 2.76239 0.117363
\(555\) 0 0
\(556\) 12.1067 0.513437
\(557\) −39.2180 −1.66172 −0.830861 0.556480i \(-0.812152\pi\)
−0.830861 + 0.556480i \(0.812152\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 1.65193 0.0696826
\(563\) 21.9151 0.923611 0.461806 0.886981i \(-0.347202\pi\)
0.461806 + 0.886981i \(0.347202\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.224314 −0.00942861
\(567\) 0 0
\(568\) 6.29826 0.264269
\(569\) 35.4135 1.48461 0.742306 0.670061i \(-0.233732\pi\)
0.742306 + 0.670061i \(0.233732\pi\)
\(570\) 0 0
\(571\) 6.80921 0.284956 0.142478 0.989798i \(-0.454493\pi\)
0.142478 + 0.989798i \(0.454493\pi\)
\(572\) 37.8972 1.58456
\(573\) 0 0
\(574\) 0.135501 0.00565570
\(575\) 0 0
\(576\) 0 0
\(577\) −12.1441 −0.505566 −0.252783 0.967523i \(-0.581346\pi\)
−0.252783 + 0.967523i \(0.581346\pi\)
\(578\) 3.06938 0.127669
\(579\) 0 0
\(580\) 0 0
\(581\) 11.6090 0.481623
\(582\) 0 0
\(583\) −11.1955 −0.463670
\(584\) 0.219619 0.00908789
\(585\) 0 0
\(586\) 1.42762 0.0589744
\(587\) −7.13002 −0.294287 −0.147144 0.989115i \(-0.547008\pi\)
−0.147144 + 0.989115i \(0.547008\pi\)
\(588\) 0 0
\(589\) −8.80451 −0.362784
\(590\) 0 0
\(591\) 0 0
\(592\) −14.0467 −0.577315
\(593\) −2.00939 −0.0825158 −0.0412579 0.999149i \(-0.513137\pi\)
−0.0412579 + 0.999149i \(0.513137\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 4.78195 0.195549
\(599\) −29.1153 −1.18962 −0.594809 0.803867i \(-0.702772\pi\)
−0.594809 + 0.803867i \(0.702772\pi\)
\(600\) 0 0
\(601\) −10.2788 −0.419282 −0.209641 0.977778i \(-0.567229\pi\)
−0.209641 + 0.977778i \(0.567229\pi\)
\(602\) 2.77256 0.113001
\(603\) 0 0
\(604\) −5.37532 −0.218719
\(605\) 0 0
\(606\) 0 0
\(607\) −15.5304 −0.630359 −0.315179 0.949032i \(-0.602065\pi\)
−0.315179 + 0.949032i \(0.602065\pi\)
\(608\) −1.97196 −0.0799736
\(609\) 0 0
\(610\) 0 0
\(611\) −46.4361 −1.87860
\(612\) 0 0
\(613\) −4.47431 −0.180716 −0.0903578 0.995909i \(-0.528801\pi\)
−0.0903578 + 0.995909i \(0.528801\pi\)
\(614\) 0.404144 0.0163099
\(615\) 0 0
\(616\) 13.2274 0.532949
\(617\) −10.6698 −0.429550 −0.214775 0.976664i \(-0.568902\pi\)
−0.214775 + 0.976664i \(0.568902\pi\)
\(618\) 0 0
\(619\) −11.0786 −0.445288 −0.222644 0.974900i \(-0.571469\pi\)
−0.222644 + 0.974900i \(0.571469\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.56391 −0.0627070
\(623\) 30.1300 1.20713
\(624\) 0 0
\(625\) 0 0
\(626\) 1.29668 0.0518259
\(627\) 0 0
\(628\) 30.9447 1.23483
\(629\) −21.7851 −0.868628
\(630\) 0 0
\(631\) −1.22744 −0.0488635 −0.0244317 0.999702i \(-0.507778\pi\)
−0.0244317 + 0.999702i \(0.507778\pi\)
\(632\) −8.92449 −0.354997
\(633\) 0 0
\(634\) −0.186230 −0.00739613
\(635\) 0 0
\(636\) 0 0
\(637\) −40.5389 −1.60621
\(638\) 4.02256 0.159255
\(639\) 0 0
\(640\) 0 0
\(641\) −13.7757 −0.544107 −0.272053 0.962282i \(-0.587703\pi\)
−0.272053 + 0.962282i \(0.587703\pi\)
\(642\) 0 0
\(643\) 17.0786 0.673516 0.336758 0.941591i \(-0.390670\pi\)
0.336758 + 0.941591i \(0.390670\pi\)
\(644\) −58.2772 −2.29645
\(645\) 0 0
\(646\) −0.995305 −0.0391597
\(647\) 26.7017 1.04975 0.524877 0.851178i \(-0.324111\pi\)
0.524877 + 0.851178i \(0.324111\pi\)
\(648\) 0 0
\(649\) −35.8878 −1.40872
\(650\) 0 0
\(651\) 0 0
\(652\) 32.3576 1.26722
\(653\) −36.4455 −1.42622 −0.713111 0.701051i \(-0.752714\pi\)
−0.713111 + 0.701051i \(0.752714\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.749219 −0.0292521
\(657\) 0 0
\(658\) −8.04669 −0.313693
\(659\) 46.4549 1.80962 0.904812 0.425810i \(-0.140011\pi\)
0.904812 + 0.425810i \(0.140011\pi\)
\(660\) 0 0
\(661\) 34.5016 1.34196 0.670978 0.741478i \(-0.265875\pi\)
0.670978 + 0.741478i \(0.265875\pi\)
\(662\) 0.245299 0.00953383
\(663\) 0 0
\(664\) 1.86529 0.0723871
\(665\) 0 0
\(666\) 0 0
\(667\) −35.6970 −1.38220
\(668\) 35.7702 1.38399
\(669\) 0 0
\(670\) 0 0
\(671\) −31.7531 −1.22582
\(672\) 0 0
\(673\) 20.5576 0.792439 0.396219 0.918156i \(-0.370322\pi\)
0.396219 + 0.918156i \(0.370322\pi\)
\(674\) −0.0466882 −0.00179836
\(675\) 0 0
\(676\) −5.91588 −0.227534
\(677\) −20.2274 −0.777404 −0.388702 0.921364i \(-0.627076\pi\)
−0.388702 + 0.921364i \(0.627076\pi\)
\(678\) 0 0
\(679\) −46.6682 −1.79096
\(680\) 0 0
\(681\) 0 0
\(682\) 7.08333 0.271235
\(683\) 26.9759 1.03220 0.516101 0.856527i \(-0.327383\pi\)
0.516101 + 0.856527i \(0.327383\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.17280 −0.0829578
\(687\) 0 0
\(688\) −15.3302 −0.584459
\(689\) 9.32081 0.355095
\(690\) 0 0
\(691\) −8.82707 −0.335798 −0.167899 0.985804i \(-0.553698\pi\)
−0.167899 + 0.985804i \(0.553698\pi\)
\(692\) 16.2057 0.616047
\(693\) 0 0
\(694\) 2.28821 0.0868593
\(695\) 0 0
\(696\) 0 0
\(697\) −1.16197 −0.0440127
\(698\) −0.996091 −0.0377026
\(699\) 0 0
\(700\) 0 0
\(701\) −36.2134 −1.36776 −0.683880 0.729595i \(-0.739709\pi\)
−0.683880 + 0.729595i \(0.739709\pi\)
\(702\) 0 0
\(703\) 3.66510 0.138232
\(704\) −35.2406 −1.32818
\(705\) 0 0
\(706\) −0.0187806 −0.000706817 0
\(707\) 41.1620 1.54806
\(708\) 0 0
\(709\) 27.1573 1.01991 0.509956 0.860200i \(-0.329662\pi\)
0.509956 + 0.860200i \(0.329662\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.84115 0.181430
\(713\) −62.8590 −2.35409
\(714\) 0 0
\(715\) 0 0
\(716\) 2.36671 0.0884483
\(717\) 0 0
\(718\) 4.90193 0.182938
\(719\) −41.3622 −1.54255 −0.771274 0.636503i \(-0.780380\pi\)
−0.771274 + 0.636503i \(0.780380\pi\)
\(720\) 0 0
\(721\) −41.9906 −1.56381
\(722\) 0.167449 0.00623181
\(723\) 0 0
\(724\) 52.3521 1.94565
\(725\) 0 0
\(726\) 0 0
\(727\) 47.2547 1.75258 0.876290 0.481785i \(-0.160011\pi\)
0.876290 + 0.481785i \(0.160011\pi\)
\(728\) −11.0125 −0.408151
\(729\) 0 0
\(730\) 0 0
\(731\) −23.7757 −0.879376
\(732\) 0 0
\(733\) 17.9580 0.663294 0.331647 0.943404i \(-0.392396\pi\)
0.331647 + 0.943404i \(0.392396\pi\)
\(734\) 2.83646 0.104696
\(735\) 0 0
\(736\) −14.0786 −0.518945
\(737\) −5.74374 −0.211573
\(738\) 0 0
\(739\) 31.0786 1.14325 0.571623 0.820516i \(-0.306314\pi\)
0.571623 + 0.820516i \(0.306314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.61516 0.0592944
\(743\) 19.6363 0.720385 0.360193 0.932878i \(-0.382711\pi\)
0.360193 + 0.932878i \(0.382711\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.93923 0.107613
\(747\) 0 0
\(748\) −56.3145 −2.05906
\(749\) 28.1861 1.02990
\(750\) 0 0
\(751\) 25.4875 0.930051 0.465026 0.885297i \(-0.346045\pi\)
0.465026 + 0.885297i \(0.346045\pi\)
\(752\) 44.4922 1.62246
\(753\) 0 0
\(754\) −3.34898 −0.121963
\(755\) 0 0
\(756\) 0 0
\(757\) −29.3910 −1.06823 −0.534117 0.845411i \(-0.679356\pi\)
−0.534117 + 0.845411i \(0.679356\pi\)
\(758\) −0.101194 −0.00367554
\(759\) 0 0
\(760\) 0 0
\(761\) 17.1526 0.621780 0.310890 0.950446i \(-0.399373\pi\)
0.310890 + 0.950446i \(0.399373\pi\)
\(762\) 0 0
\(763\) 83.7102 3.03051
\(764\) −45.2983 −1.63883
\(765\) 0 0
\(766\) −3.26174 −0.117852
\(767\) 29.8785 1.07885
\(768\) 0 0
\(769\) −9.11216 −0.328593 −0.164296 0.986411i \(-0.552535\pi\)
−0.164296 + 0.986411i \(0.552535\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9.31924 0.335407
\(773\) −26.0927 −0.938490 −0.469245 0.883068i \(-0.655474\pi\)
−0.469245 + 0.883068i \(0.655474\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −7.49844 −0.269178
\(777\) 0 0
\(778\) −4.17605 −0.149719
\(779\) 0.195488 0.00700410
\(780\) 0 0
\(781\) −45.4969 −1.62801
\(782\) −7.10589 −0.254106
\(783\) 0 0
\(784\) 38.8418 1.38721
\(785\) 0 0
\(786\) 0 0
\(787\) −1.92136 −0.0684892 −0.0342446 0.999413i \(-0.510903\pi\)
−0.0342446 + 0.999413i \(0.510903\pi\)
\(788\) 7.24595 0.258126
\(789\) 0 0
\(790\) 0 0
\(791\) −74.6028 −2.65257
\(792\) 0 0
\(793\) 26.4361 0.938773
\(794\) 2.07864 0.0737680
\(795\) 0 0
\(796\) −10.2360 −0.362807
\(797\) −40.6410 −1.43958 −0.719789 0.694193i \(-0.755761\pi\)
−0.719789 + 0.694193i \(0.755761\pi\)
\(798\) 0 0
\(799\) 69.0031 2.44115
\(800\) 0 0
\(801\) 0 0
\(802\) −0.626886 −0.0221361
\(803\) −1.58647 −0.0559851
\(804\) 0 0
\(805\) 0 0
\(806\) −5.89723 −0.207721
\(807\) 0 0
\(808\) 6.61372 0.232670
\(809\) −12.2788 −0.431700 −0.215850 0.976426i \(-0.569252\pi\)
−0.215850 + 0.976426i \(0.569252\pi\)
\(810\) 0 0
\(811\) 50.5802 1.77611 0.888055 0.459736i \(-0.152056\pi\)
0.888055 + 0.459736i \(0.152056\pi\)
\(812\) 40.8138 1.43228
\(813\) 0 0
\(814\) −2.94862 −0.103349
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 2.33647 0.0816928
\(819\) 0 0
\(820\) 0 0
\(821\) −9.82237 −0.342803 −0.171402 0.985201i \(-0.554830\pi\)
−0.171402 + 0.985201i \(0.554830\pi\)
\(822\) 0 0
\(823\) −10.1394 −0.353438 −0.176719 0.984261i \(-0.556548\pi\)
−0.176719 + 0.984261i \(0.556548\pi\)
\(824\) −6.74686 −0.235038
\(825\) 0 0
\(826\) 5.17749 0.180148
\(827\) −9.33959 −0.324769 −0.162385 0.986728i \(-0.551919\pi\)
−0.162385 + 0.986728i \(0.551919\pi\)
\(828\) 0 0
\(829\) 20.5670 0.714322 0.357161 0.934043i \(-0.383745\pi\)
0.357161 + 0.934043i \(0.383745\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 29.3396 1.01717
\(833\) 60.2399 2.08719
\(834\) 0 0
\(835\) 0 0
\(836\) 9.47431 0.327676
\(837\) 0 0
\(838\) −1.04981 −0.0362651
\(839\) 43.8029 1.51225 0.756123 0.654430i \(-0.227091\pi\)
0.756123 + 0.654430i \(0.227091\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −5.43140 −0.187178
\(843\) 0 0
\(844\) −30.4041 −1.04655
\(845\) 0 0
\(846\) 0 0
\(847\) −50.0179 −1.71863
\(848\) −8.93062 −0.306679
\(849\) 0 0
\(850\) 0 0
\(851\) 26.1667 0.896982
\(852\) 0 0
\(853\) −32.6410 −1.11761 −0.558803 0.829301i \(-0.688739\pi\)
−0.558803 + 0.829301i \(0.688739\pi\)
\(854\) 4.58098 0.156758
\(855\) 0 0
\(856\) 4.52881 0.154792
\(857\) 17.1441 0.585631 0.292816 0.956169i \(-0.405408\pi\)
0.292816 + 0.956169i \(0.405408\pi\)
\(858\) 0 0
\(859\) 21.5241 0.734393 0.367197 0.930143i \(-0.380318\pi\)
0.367197 + 0.930143i \(0.380318\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −3.64176 −0.124039
\(863\) −38.8543 −1.32262 −0.661308 0.750114i \(-0.729998\pi\)
−0.661308 + 0.750114i \(0.729998\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.00470 0.0341409
\(867\) 0 0
\(868\) 71.8691 2.43939
\(869\) 64.4680 2.18693
\(870\) 0 0
\(871\) 4.78195 0.162030
\(872\) 13.4502 0.455481
\(873\) 0 0
\(874\) 1.19549 0.0404380
\(875\) 0 0
\(876\) 0 0
\(877\) 24.1573 0.815733 0.407867 0.913042i \(-0.366273\pi\)
0.407867 + 0.913042i \(0.366273\pi\)
\(878\) −1.62219 −0.0547463
\(879\) 0 0
\(880\) 0 0
\(881\) −3.33020 −0.112197 −0.0560987 0.998425i \(-0.517866\pi\)
−0.0560987 + 0.998425i \(0.517866\pi\)
\(882\) 0 0
\(883\) 48.8543 1.64408 0.822039 0.569431i \(-0.192836\pi\)
0.822039 + 0.569431i \(0.192836\pi\)
\(884\) 46.8847 1.57690
\(885\) 0 0
\(886\) −5.47274 −0.183860
\(887\) −30.9937 −1.04067 −0.520334 0.853963i \(-0.674192\pi\)
−0.520334 + 0.853963i \(0.674192\pi\)
\(888\) 0 0
\(889\) 58.2772 1.95456
\(890\) 0 0
\(891\) 0 0
\(892\) 10.1347 0.339335
\(893\) −11.6090 −0.388481
\(894\) 0 0
\(895\) 0 0
\(896\) 21.4096 0.715245
\(897\) 0 0
\(898\) −1.44157 −0.0481059
\(899\) 44.0226 1.46823
\(900\) 0 0
\(901\) −13.8505 −0.461429
\(902\) −0.157273 −0.00523661
\(903\) 0 0
\(904\) −11.9868 −0.398676
\(905\) 0 0
\(906\) 0 0
\(907\) −46.3894 −1.54033 −0.770167 0.637842i \(-0.779827\pi\)
−0.770167 + 0.637842i \(0.779827\pi\)
\(908\) 50.0039 1.65944
\(909\) 0 0
\(910\) 0 0
\(911\) −46.3061 −1.53419 −0.767094 0.641534i \(-0.778298\pi\)
−0.767094 + 0.641534i \(0.778298\pi\)
\(912\) 0 0
\(913\) −13.4743 −0.445935
\(914\) −0.210360 −0.00695809
\(915\) 0 0
\(916\) 54.4884 1.80035
\(917\) −14.3816 −0.474922
\(918\) 0 0
\(919\) −27.0880 −0.893552 −0.446776 0.894646i \(-0.647428\pi\)
−0.446776 + 0.894646i \(0.647428\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −3.11685 −0.102648
\(923\) 37.8785 1.24678
\(924\) 0 0
\(925\) 0 0
\(926\) 4.13094 0.135751
\(927\) 0 0
\(928\) 9.85980 0.323664
\(929\) 18.8925 0.619844 0.309922 0.950762i \(-0.399697\pi\)
0.309922 + 0.950762i \(0.399697\pi\)
\(930\) 0 0
\(931\) −10.1347 −0.332152
\(932\) −32.1012 −1.05151
\(933\) 0 0
\(934\) 0.841809 0.0275448
\(935\) 0 0
\(936\) 0 0
\(937\) 31.5257 1.02990 0.514950 0.857220i \(-0.327811\pi\)
0.514950 + 0.857220i \(0.327811\pi\)
\(938\) 0.828642 0.0270561
\(939\) 0 0
\(940\) 0 0
\(941\) −23.3622 −0.761584 −0.380792 0.924661i \(-0.624349\pi\)
−0.380792 + 0.924661i \(0.624349\pi\)
\(942\) 0 0
\(943\) 1.39567 0.0454493
\(944\) −28.6277 −0.931751
\(945\) 0 0
\(946\) −3.21805 −0.104628
\(947\) −19.2180 −0.624503 −0.312251 0.950000i \(-0.601083\pi\)
−0.312251 + 0.950000i \(0.601083\pi\)
\(948\) 0 0
\(949\) 1.32081 0.0428754
\(950\) 0 0
\(951\) 0 0
\(952\) 16.3644 0.530373
\(953\) 7.16666 0.232151 0.116075 0.993240i \(-0.462969\pi\)
0.116075 + 0.993240i \(0.462969\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −49.6184 −1.60477
\(957\) 0 0
\(958\) −7.02725 −0.227040
\(959\) 77.0498 2.48807
\(960\) 0 0
\(961\) 46.5194 1.50063
\(962\) 2.45487 0.0791483
\(963\) 0 0
\(964\) 26.9470 0.867906
\(965\) 0 0
\(966\) 0 0
\(967\) 7.75782 0.249475 0.124737 0.992190i \(-0.460191\pi\)
0.124737 + 0.992190i \(0.460191\pi\)
\(968\) −8.03664 −0.258307
\(969\) 0 0
\(970\) 0 0
\(971\) 42.1845 1.35377 0.676883 0.736091i \(-0.263330\pi\)
0.676883 + 0.736091i \(0.263330\pi\)
\(972\) 0 0
\(973\) 25.4135 0.814721
\(974\) −4.76317 −0.152622
\(975\) 0 0
\(976\) −25.3294 −0.810775
\(977\) 20.6604 0.660985 0.330492 0.943809i \(-0.392785\pi\)
0.330492 + 0.943809i \(0.392785\pi\)
\(978\) 0 0
\(979\) −34.9712 −1.11768
\(980\) 0 0
\(981\) 0 0
\(982\) −3.11685 −0.0994627
\(983\) 3.61841 0.115409 0.0577047 0.998334i \(-0.481622\pi\)
0.0577047 + 0.998334i \(0.481622\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 4.97652 0.158485
\(987\) 0 0
\(988\) −7.88784 −0.250946
\(989\) 28.5576 0.908080
\(990\) 0 0
\(991\) 1.46492 0.0465347 0.0232673 0.999729i \(-0.492593\pi\)
0.0232673 + 0.999729i \(0.492593\pi\)
\(992\) 17.3622 0.551249
\(993\) 0 0
\(994\) 6.56378 0.208190
\(995\) 0 0
\(996\) 0 0
\(997\) −19.3622 −0.613205 −0.306603 0.951838i \(-0.599192\pi\)
−0.306603 + 0.951838i \(0.599192\pi\)
\(998\) −3.06376 −0.0969818
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bf.1.2 3
3.2 odd 2 1425.2.a.t.1.2 3
5.4 even 2 4275.2.a.bg.1.2 3
15.2 even 4 1425.2.c.o.799.3 6
15.8 even 4 1425.2.c.o.799.4 6
15.14 odd 2 1425.2.a.w.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.t.1.2 3 3.2 odd 2
1425.2.a.w.1.2 yes 3 15.14 odd 2
1425.2.c.o.799.3 6 15.2 even 4
1425.2.c.o.799.4 6 15.8 even 4
4275.2.a.bf.1.2 3 1.1 even 1 trivial
4275.2.a.bg.1.2 3 5.4 even 2