Properties

Label 4275.2.a.bf.1.1
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.837.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.52892\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52892 q^{2} +4.39543 q^{4} +4.92434 q^{7} -6.05784 q^{8} +1.13349 q^{11} -4.00000 q^{13} -12.4533 q^{14} +6.52892 q^{16} -6.79085 q^{17} -1.00000 q^{19} -2.86651 q^{22} +1.92434 q^{23} +10.1157 q^{26} +21.6446 q^{28} +5.00000 q^{29} +5.13349 q^{31} -4.39543 q^{32} +17.1735 q^{34} -9.05784 q^{37} +2.52892 q^{38} -3.86651 q^{41} -4.00000 q^{43} +4.98218 q^{44} -4.86651 q^{46} +4.26698 q^{47} +17.2492 q^{49} -17.5817 q^{52} -13.1157 q^{53} -29.8309 q^{56} -12.6446 q^{58} -9.19133 q^{59} +0.733016 q^{61} -12.9822 q^{62} -1.94216 q^{64} -4.86651 q^{67} -29.8487 q^{68} -11.1913 q^{71} -11.1157 q^{73} +22.9065 q^{74} -4.39543 q^{76} +5.58170 q^{77} -13.7730 q^{79} +9.77808 q^{82} +0.866508 q^{83} +10.1157 q^{86} -6.86651 q^{88} +10.8487 q^{89} -19.6974 q^{91} +8.45831 q^{92} -10.7909 q^{94} +9.32482 q^{97} -43.6217 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 3 q^{8} + 3 q^{11} - 12 q^{13} - 15 q^{14} + 12 q^{16} - 6 q^{17} - 3 q^{19} - 9 q^{22} - 9 q^{23} + 27 q^{28} + 15 q^{29} + 15 q^{31} - 6 q^{32} + 6 q^{34} - 12 q^{37} - 12 q^{41} - 12 q^{43}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52892 −1.78822 −0.894108 0.447852i \(-0.852189\pi\)
−0.894108 + 0.447852i \(0.852189\pi\)
\(3\) 0 0
\(4\) 4.39543 2.19771
\(5\) 0 0
\(6\) 0 0
\(7\) 4.92434 1.86123 0.930614 0.366003i \(-0.119274\pi\)
0.930614 + 0.366003i \(0.119274\pi\)
\(8\) −6.05784 −2.14177
\(9\) 0 0
\(10\) 0 0
\(11\) 1.13349 0.341761 0.170880 0.985292i \(-0.445339\pi\)
0.170880 + 0.985292i \(0.445339\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −12.4533 −3.32827
\(15\) 0 0
\(16\) 6.52892 1.63223
\(17\) −6.79085 −1.64702 −0.823512 0.567299i \(-0.807988\pi\)
−0.823512 + 0.567299i \(0.807988\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −2.86651 −0.611142
\(23\) 1.92434 0.401253 0.200627 0.979668i \(-0.435702\pi\)
0.200627 + 0.979668i \(0.435702\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 10.1157 1.98385
\(27\) 0 0
\(28\) 21.6446 4.09044
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 5.13349 0.922002 0.461001 0.887400i \(-0.347490\pi\)
0.461001 + 0.887400i \(0.347490\pi\)
\(32\) −4.39543 −0.777009
\(33\) 0 0
\(34\) 17.1735 2.94523
\(35\) 0 0
\(36\) 0 0
\(37\) −9.05784 −1.48910 −0.744550 0.667567i \(-0.767336\pi\)
−0.744550 + 0.667567i \(0.767336\pi\)
\(38\) 2.52892 0.410245
\(39\) 0 0
\(40\) 0 0
\(41\) −3.86651 −0.603847 −0.301924 0.953332i \(-0.597629\pi\)
−0.301924 + 0.953332i \(0.597629\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 4.98218 0.751092
\(45\) 0 0
\(46\) −4.86651 −0.717527
\(47\) 4.26698 0.622404 0.311202 0.950344i \(-0.399268\pi\)
0.311202 + 0.950344i \(0.399268\pi\)
\(48\) 0 0
\(49\) 17.2492 2.46417
\(50\) 0 0
\(51\) 0 0
\(52\) −17.5817 −2.43814
\(53\) −13.1157 −1.80158 −0.900788 0.434259i \(-0.857010\pi\)
−0.900788 + 0.434259i \(0.857010\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −29.8309 −3.98632
\(57\) 0 0
\(58\) −12.6446 −1.66032
\(59\) −9.19133 −1.19661 −0.598304 0.801269i \(-0.704159\pi\)
−0.598304 + 0.801269i \(0.704159\pi\)
\(60\) 0 0
\(61\) 0.733016 0.0938531 0.0469266 0.998898i \(-0.485057\pi\)
0.0469266 + 0.998898i \(0.485057\pi\)
\(62\) −12.9822 −1.64874
\(63\) 0 0
\(64\) −1.94216 −0.242771
\(65\) 0 0
\(66\) 0 0
\(67\) −4.86651 −0.594539 −0.297269 0.954794i \(-0.596076\pi\)
−0.297269 + 0.954794i \(0.596076\pi\)
\(68\) −29.8487 −3.61969
\(69\) 0 0
\(70\) 0 0
\(71\) −11.1913 −1.32817 −0.664083 0.747659i \(-0.731178\pi\)
−0.664083 + 0.747659i \(0.731178\pi\)
\(72\) 0 0
\(73\) −11.1157 −1.30099 −0.650495 0.759510i \(-0.725439\pi\)
−0.650495 + 0.759510i \(0.725439\pi\)
\(74\) 22.9065 2.66283
\(75\) 0 0
\(76\) −4.39543 −0.504190
\(77\) 5.58170 0.636094
\(78\) 0 0
\(79\) −13.7730 −1.54959 −0.774794 0.632214i \(-0.782146\pi\)
−0.774794 + 0.632214i \(0.782146\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.77808 1.07981
\(83\) 0.866508 0.0951116 0.0475558 0.998869i \(-0.484857\pi\)
0.0475558 + 0.998869i \(0.484857\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10.1157 1.09080
\(87\) 0 0
\(88\) −6.86651 −0.731972
\(89\) 10.8487 1.14996 0.574979 0.818168i \(-0.305010\pi\)
0.574979 + 0.818168i \(0.305010\pi\)
\(90\) 0 0
\(91\) −19.6974 −2.06485
\(92\) 8.45831 0.881840
\(93\) 0 0
\(94\) −10.7909 −1.11299
\(95\) 0 0
\(96\) 0 0
\(97\) 9.32482 0.946792 0.473396 0.880850i \(-0.343028\pi\)
0.473396 + 0.880850i \(0.343028\pi\)
\(98\) −43.6217 −4.40646
\(99\) 0 0
\(100\) 0 0
\(101\) 2.79085 0.277700 0.138850 0.990313i \(-0.455659\pi\)
0.138850 + 0.990313i \(0.455659\pi\)
\(102\) 0 0
\(103\) −15.0979 −1.48764 −0.743818 0.668382i \(-0.766987\pi\)
−0.743818 + 0.668382i \(0.766987\pi\)
\(104\) 24.2313 2.37608
\(105\) 0 0
\(106\) 33.1685 3.22161
\(107\) 13.0400 1.26063 0.630313 0.776341i \(-0.282927\pi\)
0.630313 + 0.776341i \(0.282927\pi\)
\(108\) 0 0
\(109\) 10.6395 1.01908 0.509542 0.860446i \(-0.329815\pi\)
0.509542 + 0.860446i \(0.329815\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 32.1506 3.03795
\(113\) −0.332540 −0.0312828 −0.0156414 0.999878i \(-0.504979\pi\)
−0.0156414 + 0.999878i \(0.504979\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 21.9771 2.04053
\(117\) 0 0
\(118\) 23.2441 2.13979
\(119\) −33.4405 −3.06548
\(120\) 0 0
\(121\) −9.71520 −0.883200
\(122\) −1.85374 −0.167830
\(123\) 0 0
\(124\) 22.5639 2.02630
\(125\) 0 0
\(126\) 0 0
\(127\) −8.45831 −0.750554 −0.375277 0.926913i \(-0.622452\pi\)
−0.375277 + 0.926913i \(0.622452\pi\)
\(128\) 13.7024 1.21113
\(129\) 0 0
\(130\) 0 0
\(131\) −10.9822 −0.959518 −0.479759 0.877400i \(-0.659276\pi\)
−0.479759 + 0.877400i \(0.659276\pi\)
\(132\) 0 0
\(133\) −4.92434 −0.426995
\(134\) 12.3070 1.06316
\(135\) 0 0
\(136\) 41.1379 3.52754
\(137\) 4.90652 0.419193 0.209596 0.977788i \(-0.432785\pi\)
0.209596 + 0.977788i \(0.432785\pi\)
\(138\) 0 0
\(139\) 2.92434 0.248040 0.124020 0.992280i \(-0.460421\pi\)
0.124020 + 0.992280i \(0.460421\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 28.3019 2.37505
\(143\) −4.53397 −0.379149
\(144\) 0 0
\(145\) 0 0
\(146\) 28.1106 2.32645
\(147\) 0 0
\(148\) −39.8130 −3.27261
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 4.67518 0.380461 0.190230 0.981739i \(-0.439077\pi\)
0.190230 + 0.981739i \(0.439077\pi\)
\(152\) 6.05784 0.491355
\(153\) 0 0
\(154\) −14.1157 −1.13747
\(155\) 0 0
\(156\) 0 0
\(157\) 13.4482 1.07328 0.536642 0.843810i \(-0.319693\pi\)
0.536642 + 0.843810i \(0.319693\pi\)
\(158\) 34.8309 2.77100
\(159\) 0 0
\(160\) 0 0
\(161\) 9.47613 0.746824
\(162\) 0 0
\(163\) −21.5740 −1.68980 −0.844902 0.534920i \(-0.820342\pi\)
−0.844902 + 0.534920i \(0.820342\pi\)
\(164\) −16.9950 −1.32708
\(165\) 0 0
\(166\) −2.19133 −0.170080
\(167\) −9.07566 −0.702295 −0.351148 0.936320i \(-0.614208\pi\)
−0.351148 + 0.936320i \(0.614208\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 0 0
\(172\) −17.5817 −1.34059
\(173\) 6.46603 0.491603 0.245802 0.969320i \(-0.420949\pi\)
0.245802 + 0.969320i \(0.420949\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.40048 0.557832
\(177\) 0 0
\(178\) −27.4354 −2.05637
\(179\) 11.3070 0.845125 0.422562 0.906334i \(-0.361131\pi\)
0.422562 + 0.906334i \(0.361131\pi\)
\(180\) 0 0
\(181\) −22.6496 −1.68353 −0.841767 0.539841i \(-0.818484\pi\)
−0.841767 + 0.539841i \(0.818484\pi\)
\(182\) 49.8130 3.69239
\(183\) 0 0
\(184\) −11.6574 −0.859392
\(185\) 0 0
\(186\) 0 0
\(187\) −7.69738 −0.562888
\(188\) 18.7552 1.36786
\(189\) 0 0
\(190\) 0 0
\(191\) −24.2969 −1.75806 −0.879031 0.476765i \(-0.841809\pi\)
−0.879031 + 0.476765i \(0.841809\pi\)
\(192\) 0 0
\(193\) −6.67518 −0.480490 −0.240245 0.970712i \(-0.577228\pi\)
−0.240245 + 0.970712i \(0.577228\pi\)
\(194\) −23.5817 −1.69307
\(195\) 0 0
\(196\) 75.8174 5.41553
\(197\) 23.2892 1.65929 0.829643 0.558295i \(-0.188544\pi\)
0.829643 + 0.558295i \(0.188544\pi\)
\(198\) 0 0
\(199\) 25.0400 1.77504 0.887520 0.460770i \(-0.152427\pi\)
0.887520 + 0.460770i \(0.152427\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.05784 −0.496588
\(203\) 24.6217 1.72811
\(204\) 0 0
\(205\) 0 0
\(206\) 38.1812 2.66021
\(207\) 0 0
\(208\) −26.1157 −1.81080
\(209\) −1.13349 −0.0784053
\(210\) 0 0
\(211\) −11.7730 −0.810489 −0.405244 0.914208i \(-0.632814\pi\)
−0.405244 + 0.914208i \(0.632814\pi\)
\(212\) −57.6490 −3.95935
\(213\) 0 0
\(214\) −32.9771 −2.25427
\(215\) 0 0
\(216\) 0 0
\(217\) 25.2791 1.71606
\(218\) −26.9065 −1.82234
\(219\) 0 0
\(220\) 0 0
\(221\) 27.1634 1.82721
\(222\) 0 0
\(223\) 3.92434 0.262794 0.131397 0.991330i \(-0.458054\pi\)
0.131397 + 0.991330i \(0.458054\pi\)
\(224\) −21.6446 −1.44619
\(225\) 0 0
\(226\) 0.840967 0.0559403
\(227\) −1.60962 −0.106834 −0.0534172 0.998572i \(-0.517011\pi\)
−0.0534172 + 0.998572i \(0.517011\pi\)
\(228\) 0 0
\(229\) −1.93444 −0.127832 −0.0639158 0.997955i \(-0.520359\pi\)
−0.0639158 + 0.997955i \(0.520359\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −30.2892 −1.98858
\(233\) −1.84869 −0.121112 −0.0605558 0.998165i \(-0.519287\pi\)
−0.0605558 + 0.998165i \(0.519287\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −40.3998 −2.62980
\(237\) 0 0
\(238\) 84.5683 5.48175
\(239\) −2.25688 −0.145986 −0.0729929 0.997332i \(-0.523255\pi\)
−0.0729929 + 0.997332i \(0.523255\pi\)
\(240\) 0 0
\(241\) −19.0578 −1.22762 −0.613812 0.789453i \(-0.710365\pi\)
−0.613812 + 0.789453i \(0.710365\pi\)
\(242\) 24.5689 1.57935
\(243\) 0 0
\(244\) 3.22192 0.206262
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) −31.0979 −1.97472
\(249\) 0 0
\(250\) 0 0
\(251\) −26.7909 −1.69102 −0.845512 0.533957i \(-0.820705\pi\)
−0.845512 + 0.533957i \(0.820705\pi\)
\(252\) 0 0
\(253\) 2.18123 0.137133
\(254\) 21.3904 1.34215
\(255\) 0 0
\(256\) −30.7680 −1.92300
\(257\) 16.3147 1.01768 0.508842 0.860860i \(-0.330074\pi\)
0.508842 + 0.860860i \(0.330074\pi\)
\(258\) 0 0
\(259\) −44.6039 −2.77155
\(260\) 0 0
\(261\) 0 0
\(262\) 27.7730 1.71582
\(263\) 1.92434 0.118660 0.0593301 0.998238i \(-0.481104\pi\)
0.0593301 + 0.998238i \(0.481104\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.4533 0.763558
\(267\) 0 0
\(268\) −21.3904 −1.30663
\(269\) −19.5817 −1.19392 −0.596959 0.802272i \(-0.703624\pi\)
−0.596959 + 0.802272i \(0.703624\pi\)
\(270\) 0 0
\(271\) 11.1913 0.679825 0.339912 0.940457i \(-0.389603\pi\)
0.339912 + 0.940457i \(0.389603\pi\)
\(272\) −44.3369 −2.68832
\(273\) 0 0
\(274\) −12.4082 −0.749607
\(275\) 0 0
\(276\) 0 0
\(277\) −16.3147 −0.980257 −0.490128 0.871650i \(-0.663050\pi\)
−0.490128 + 0.871650i \(0.663050\pi\)
\(278\) −7.39543 −0.443548
\(279\) 0 0
\(280\) 0 0
\(281\) 2.75084 0.164101 0.0820506 0.996628i \(-0.473853\pi\)
0.0820506 + 0.996628i \(0.473853\pi\)
\(282\) 0 0
\(283\) 20.2313 1.20263 0.601314 0.799013i \(-0.294644\pi\)
0.601314 + 0.799013i \(0.294644\pi\)
\(284\) −49.1907 −2.91893
\(285\) 0 0
\(286\) 11.4660 0.678001
\(287\) −19.0400 −1.12390
\(288\) 0 0
\(289\) 29.1157 1.71269
\(290\) 0 0
\(291\) 0 0
\(292\) −48.8581 −2.85920
\(293\) 22.9822 1.34263 0.671317 0.741171i \(-0.265729\pi\)
0.671317 + 0.741171i \(0.265729\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 54.8709 3.18931
\(297\) 0 0
\(298\) 0 0
\(299\) −7.69738 −0.445151
\(300\) 0 0
\(301\) −19.6974 −1.13534
\(302\) −11.8231 −0.680346
\(303\) 0 0
\(304\) −6.52892 −0.374459
\(305\) 0 0
\(306\) 0 0
\(307\) −8.59952 −0.490801 −0.245400 0.969422i \(-0.578919\pi\)
−0.245400 + 0.969422i \(0.578919\pi\)
\(308\) 24.5340 1.39795
\(309\) 0 0
\(310\) 0 0
\(311\) 12.2313 0.693576 0.346788 0.937944i \(-0.387272\pi\)
0.346788 + 0.937944i \(0.387272\pi\)
\(312\) 0 0
\(313\) 7.51615 0.424838 0.212419 0.977179i \(-0.431866\pi\)
0.212419 + 0.977179i \(0.431866\pi\)
\(314\) −34.0094 −1.91926
\(315\) 0 0
\(316\) −60.5383 −3.40555
\(317\) −26.5817 −1.49298 −0.746489 0.665398i \(-0.768262\pi\)
−0.746489 + 0.665398i \(0.768262\pi\)
\(318\) 0 0
\(319\) 5.66746 0.317317
\(320\) 0 0
\(321\) 0 0
\(322\) −23.9644 −1.33548
\(323\) 6.79085 0.377853
\(324\) 0 0
\(325\) 0 0
\(326\) 54.5588 3.02173
\(327\) 0 0
\(328\) 23.4227 1.29330
\(329\) 21.0121 1.15843
\(330\) 0 0
\(331\) 19.3648 1.06439 0.532194 0.846623i \(-0.321368\pi\)
0.532194 + 0.846623i \(0.321368\pi\)
\(332\) 3.80867 0.209028
\(333\) 0 0
\(334\) 22.9516 1.25586
\(335\) 0 0
\(336\) 0 0
\(337\) 17.8487 0.972280 0.486140 0.873881i \(-0.338405\pi\)
0.486140 + 0.873881i \(0.338405\pi\)
\(338\) −7.58675 −0.412665
\(339\) 0 0
\(340\) 0 0
\(341\) 5.81877 0.315104
\(342\) 0 0
\(343\) 50.4704 2.72515
\(344\) 24.2313 1.30647
\(345\) 0 0
\(346\) −16.3521 −0.879092
\(347\) 19.0578 1.02308 0.511539 0.859260i \(-0.329076\pi\)
0.511539 + 0.859260i \(0.329076\pi\)
\(348\) 0 0
\(349\) 22.9644 1.22925 0.614627 0.788818i \(-0.289307\pi\)
0.614627 + 0.788818i \(0.289307\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.98218 −0.265551
\(353\) −25.5817 −1.36158 −0.680788 0.732480i \(-0.738363\pi\)
−0.680788 + 0.732480i \(0.738363\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 47.6846 2.52728
\(357\) 0 0
\(358\) −28.5945 −1.51126
\(359\) 27.3248 1.44215 0.721074 0.692858i \(-0.243649\pi\)
0.721074 + 0.692858i \(0.243649\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 57.2791 3.01052
\(363\) 0 0
\(364\) −86.5784 −4.53794
\(365\) 0 0
\(366\) 0 0
\(367\) 20.3827 1.06397 0.531983 0.846755i \(-0.321447\pi\)
0.531983 + 0.846755i \(0.321447\pi\)
\(368\) 12.5639 0.654938
\(369\) 0 0
\(370\) 0 0
\(371\) −64.5861 −3.35314
\(372\) 0 0
\(373\) −2.52387 −0.130681 −0.0653405 0.997863i \(-0.520813\pi\)
−0.0653405 + 0.997863i \(0.520813\pi\)
\(374\) 19.4660 1.00656
\(375\) 0 0
\(376\) −25.8487 −1.33304
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) −9.44049 −0.484925 −0.242463 0.970161i \(-0.577955\pi\)
−0.242463 + 0.970161i \(0.577955\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 61.4449 3.14379
\(383\) 11.1557 0.570029 0.285015 0.958523i \(-0.408002\pi\)
0.285015 + 0.958523i \(0.408002\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.8810 0.859219
\(387\) 0 0
\(388\) 40.9866 2.08078
\(389\) −28.3827 −1.43906 −0.719529 0.694463i \(-0.755642\pi\)
−0.719529 + 0.694463i \(0.755642\pi\)
\(390\) 0 0
\(391\) −13.0679 −0.660874
\(392\) −104.493 −5.27767
\(393\) 0 0
\(394\) −58.8964 −2.96716
\(395\) 0 0
\(396\) 0 0
\(397\) 1.40048 0.0702879 0.0351439 0.999382i \(-0.488811\pi\)
0.0351439 + 0.999382i \(0.488811\pi\)
\(398\) −63.3241 −3.17415
\(399\) 0 0
\(400\) 0 0
\(401\) −3.51615 −0.175588 −0.0877940 0.996139i \(-0.527982\pi\)
−0.0877940 + 0.996139i \(0.527982\pi\)
\(402\) 0 0
\(403\) −20.5340 −1.02287
\(404\) 12.2670 0.610305
\(405\) 0 0
\(406\) −62.2663 −3.09023
\(407\) −10.2670 −0.508915
\(408\) 0 0
\(409\) −31.1379 −1.53967 −0.769834 0.638244i \(-0.779661\pi\)
−0.769834 + 0.638244i \(0.779661\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −66.3615 −3.26940
\(413\) −45.2613 −2.22716
\(414\) 0 0
\(415\) 0 0
\(416\) 17.5817 0.862014
\(417\) 0 0
\(418\) 2.86651 0.140205
\(419\) −20.4983 −1.00141 −0.500704 0.865618i \(-0.666926\pi\)
−0.500704 + 0.865618i \(0.666926\pi\)
\(420\) 0 0
\(421\) −3.06794 −0.149522 −0.0747610 0.997201i \(-0.523819\pi\)
−0.0747610 + 0.997201i \(0.523819\pi\)
\(422\) 29.7730 1.44933
\(423\) 0 0
\(424\) 79.4526 3.85856
\(425\) 0 0
\(426\) 0 0
\(427\) 3.60962 0.174682
\(428\) 57.3164 2.77049
\(429\) 0 0
\(430\) 0 0
\(431\) −5.34264 −0.257346 −0.128673 0.991687i \(-0.541072\pi\)
−0.128673 + 0.991687i \(0.541072\pi\)
\(432\) 0 0
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) −63.9287 −3.06868
\(435\) 0 0
\(436\) 46.7653 2.23965
\(437\) −1.92434 −0.0920539
\(438\) 0 0
\(439\) 3.27470 0.156293 0.0781466 0.996942i \(-0.475100\pi\)
0.0781466 + 0.996942i \(0.475100\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −68.6940 −3.26744
\(443\) −35.8988 −1.70560 −0.852802 0.522235i \(-0.825098\pi\)
−0.852802 + 0.522235i \(0.825098\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −9.92434 −0.469931
\(447\) 0 0
\(448\) −9.56388 −0.451851
\(449\) −1.26698 −0.0597927 −0.0298963 0.999553i \(-0.509518\pi\)
−0.0298963 + 0.999553i \(0.509518\pi\)
\(450\) 0 0
\(451\) −4.38266 −0.206371
\(452\) −1.46166 −0.0687505
\(453\) 0 0
\(454\) 4.07061 0.191043
\(455\) 0 0
\(456\) 0 0
\(457\) −1.48385 −0.0694117 −0.0347058 0.999398i \(-0.511049\pi\)
−0.0347058 + 0.999398i \(0.511049\pi\)
\(458\) 4.89205 0.228590
\(459\) 0 0
\(460\) 0 0
\(461\) 4.90652 0.228520 0.114260 0.993451i \(-0.463550\pi\)
0.114260 + 0.993451i \(0.463550\pi\)
\(462\) 0 0
\(463\) 13.8843 0.645259 0.322630 0.946525i \(-0.395433\pi\)
0.322630 + 0.946525i \(0.395433\pi\)
\(464\) 32.6446 1.51549
\(465\) 0 0
\(466\) 4.67518 0.216574
\(467\) −29.5060 −1.36538 −0.682689 0.730709i \(-0.739189\pi\)
−0.682689 + 0.730709i \(0.739189\pi\)
\(468\) 0 0
\(469\) −23.9644 −1.10657
\(470\) 0 0
\(471\) 0 0
\(472\) 55.6796 2.56286
\(473\) −4.53397 −0.208472
\(474\) 0 0
\(475\) 0 0
\(476\) −146.985 −6.73706
\(477\) 0 0
\(478\) 5.70748 0.261054
\(479\) −10.8766 −0.496965 −0.248482 0.968636i \(-0.579932\pi\)
−0.248482 + 0.968636i \(0.579932\pi\)
\(480\) 0 0
\(481\) 36.2313 1.65201
\(482\) 48.1957 2.19525
\(483\) 0 0
\(484\) −42.7024 −1.94102
\(485\) 0 0
\(486\) 0 0
\(487\) 33.2791 1.50802 0.754010 0.656863i \(-0.228117\pi\)
0.754010 + 0.656863i \(0.228117\pi\)
\(488\) −4.44049 −0.201012
\(489\) 0 0
\(490\) 0 0
\(491\) 4.90652 0.221428 0.110714 0.993852i \(-0.464686\pi\)
0.110714 + 0.993852i \(0.464686\pi\)
\(492\) 0 0
\(493\) −33.9543 −1.52922
\(494\) −10.1157 −0.455126
\(495\) 0 0
\(496\) 33.5161 1.50492
\(497\) −55.1099 −2.47202
\(498\) 0 0
\(499\) 2.00772 0.0898779 0.0449390 0.998990i \(-0.485691\pi\)
0.0449390 + 0.998990i \(0.485691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 67.7519 3.02391
\(503\) −7.69738 −0.343209 −0.171605 0.985166i \(-0.554895\pi\)
−0.171605 + 0.985166i \(0.554895\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5.51615 −0.245223
\(507\) 0 0
\(508\) −37.1779 −1.64950
\(509\) −27.1157 −1.20188 −0.600941 0.799294i \(-0.705207\pi\)
−0.600941 + 0.799294i \(0.705207\pi\)
\(510\) 0 0
\(511\) −54.7374 −2.42144
\(512\) 50.4049 2.22760
\(513\) 0 0
\(514\) −41.2586 −1.81984
\(515\) 0 0
\(516\) 0 0
\(517\) 4.83659 0.212713
\(518\) 112.800 4.95613
\(519\) 0 0
\(520\) 0 0
\(521\) −17.0800 −0.748290 −0.374145 0.927370i \(-0.622064\pi\)
−0.374145 + 0.927370i \(0.622064\pi\)
\(522\) 0 0
\(523\) −9.70748 −0.424478 −0.212239 0.977218i \(-0.568076\pi\)
−0.212239 + 0.977218i \(0.568076\pi\)
\(524\) −48.2714 −2.10874
\(525\) 0 0
\(526\) −4.86651 −0.212190
\(527\) −34.8608 −1.51856
\(528\) 0 0
\(529\) −19.2969 −0.838996
\(530\) 0 0
\(531\) 0 0
\(532\) −21.6446 −0.938412
\(533\) 15.4660 0.669908
\(534\) 0 0
\(535\) 0 0
\(536\) 29.4805 1.27336
\(537\) 0 0
\(538\) 49.5205 2.13498
\(539\) 19.5518 0.842155
\(540\) 0 0
\(541\) 27.7475 1.19296 0.596479 0.802629i \(-0.296566\pi\)
0.596479 + 0.802629i \(0.296566\pi\)
\(542\) −28.3019 −1.21567
\(543\) 0 0
\(544\) 29.8487 1.27975
\(545\) 0 0
\(546\) 0 0
\(547\) 2.04002 0.0872248 0.0436124 0.999049i \(-0.486113\pi\)
0.0436124 + 0.999049i \(0.486113\pi\)
\(548\) 21.5663 0.921265
\(549\) 0 0
\(550\) 0 0
\(551\) −5.00000 −0.213007
\(552\) 0 0
\(553\) −67.8231 −2.88413
\(554\) 41.2586 1.75291
\(555\) 0 0
\(556\) 12.8537 0.545120
\(557\) −24.5340 −1.03954 −0.519769 0.854307i \(-0.673982\pi\)
−0.519769 + 0.854307i \(0.673982\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) −6.95664 −0.293448
\(563\) −38.0878 −1.60521 −0.802604 0.596513i \(-0.796553\pi\)
−0.802604 + 0.596513i \(0.796553\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −51.1634 −2.15056
\(567\) 0 0
\(568\) 67.7952 2.84462
\(569\) 24.4005 1.02292 0.511461 0.859307i \(-0.329105\pi\)
0.511461 + 0.859307i \(0.329105\pi\)
\(570\) 0 0
\(571\) −13.0400 −0.545708 −0.272854 0.962055i \(-0.587968\pi\)
−0.272854 + 0.962055i \(0.587968\pi\)
\(572\) −19.9287 −0.833262
\(573\) 0 0
\(574\) 48.1506 2.00977
\(575\) 0 0
\(576\) 0 0
\(577\) 13.0979 0.545271 0.272635 0.962117i \(-0.412105\pi\)
0.272635 + 0.962117i \(0.412105\pi\)
\(578\) −73.6311 −3.06265
\(579\) 0 0
\(580\) 0 0
\(581\) 4.26698 0.177024
\(582\) 0 0
\(583\) −14.8665 −0.615708
\(584\) 67.3369 2.78642
\(585\) 0 0
\(586\) −58.1200 −2.40092
\(587\) −30.4227 −1.25568 −0.627839 0.778343i \(-0.716060\pi\)
−0.627839 + 0.778343i \(0.716060\pi\)
\(588\) 0 0
\(589\) −5.13349 −0.211522
\(590\) 0 0
\(591\) 0 0
\(592\) −59.1379 −2.43055
\(593\) 30.3470 1.24620 0.623101 0.782141i \(-0.285872\pi\)
0.623101 + 0.782141i \(0.285872\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 19.4660 0.796025
\(599\) 43.3948 1.77306 0.886531 0.462670i \(-0.153108\pi\)
0.886531 + 0.462670i \(0.153108\pi\)
\(600\) 0 0
\(601\) 7.84869 0.320155 0.160077 0.987104i \(-0.448826\pi\)
0.160077 + 0.987104i \(0.448826\pi\)
\(602\) 49.8130 2.03023
\(603\) 0 0
\(604\) 20.5494 0.836144
\(605\) 0 0
\(606\) 0 0
\(607\) −13.8087 −0.560477 −0.280238 0.959930i \(-0.590414\pi\)
−0.280238 + 0.959930i \(0.590414\pi\)
\(608\) 4.39543 0.178258
\(609\) 0 0
\(610\) 0 0
\(611\) −17.0679 −0.690495
\(612\) 0 0
\(613\) 9.98218 0.403176 0.201588 0.979470i \(-0.435390\pi\)
0.201588 + 0.979470i \(0.435390\pi\)
\(614\) 21.7475 0.877657
\(615\) 0 0
\(616\) −33.8130 −1.36237
\(617\) 0.115672 0.00465677 0.00232839 0.999997i \(-0.499259\pi\)
0.00232839 + 0.999997i \(0.499259\pi\)
\(618\) 0 0
\(619\) −5.45831 −0.219388 −0.109694 0.993965i \(-0.534987\pi\)
−0.109694 + 0.993965i \(0.534987\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −30.9321 −1.24026
\(623\) 53.4227 2.14033
\(624\) 0 0
\(625\) 0 0
\(626\) −19.0077 −0.759701
\(627\) 0 0
\(628\) 59.1106 2.35877
\(629\) 61.5104 2.45258
\(630\) 0 0
\(631\) 45.8130 1.82379 0.911894 0.410425i \(-0.134620\pi\)
0.911894 + 0.410425i \(0.134620\pi\)
\(632\) 83.4348 3.31886
\(633\) 0 0
\(634\) 67.2229 2.66976
\(635\) 0 0
\(636\) 0 0
\(637\) −68.9967 −2.73375
\(638\) −14.3325 −0.567431
\(639\) 0 0
\(640\) 0 0
\(641\) 37.1634 1.46787 0.733933 0.679222i \(-0.237683\pi\)
0.733933 + 0.679222i \(0.237683\pi\)
\(642\) 0 0
\(643\) 11.4583 0.451872 0.225936 0.974142i \(-0.427456\pi\)
0.225936 + 0.974142i \(0.427456\pi\)
\(644\) 41.6516 1.64130
\(645\) 0 0
\(646\) −17.1735 −0.675683
\(647\) −34.7952 −1.36794 −0.683971 0.729509i \(-0.739748\pi\)
−0.683971 + 0.729509i \(0.739748\pi\)
\(648\) 0 0
\(649\) −10.4183 −0.408954
\(650\) 0 0
\(651\) 0 0
\(652\) −94.8268 −3.71371
\(653\) 25.2791 0.989247 0.494623 0.869107i \(-0.335306\pi\)
0.494623 + 0.869107i \(0.335306\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −25.2441 −0.985617
\(657\) 0 0
\(658\) −53.1379 −2.07153
\(659\) −47.6261 −1.85525 −0.927625 0.373514i \(-0.878153\pi\)
−0.927625 + 0.373514i \(0.878153\pi\)
\(660\) 0 0
\(661\) −14.4882 −0.563527 −0.281763 0.959484i \(-0.590919\pi\)
−0.281763 + 0.959484i \(0.590919\pi\)
\(662\) −48.9721 −1.90335
\(663\) 0 0
\(664\) −5.24916 −0.203707
\(665\) 0 0
\(666\) 0 0
\(667\) 9.62172 0.372554
\(668\) −39.8914 −1.54344
\(669\) 0 0
\(670\) 0 0
\(671\) 0.830868 0.0320753
\(672\) 0 0
\(673\) −15.6974 −0.605089 −0.302545 0.953135i \(-0.597836\pi\)
−0.302545 + 0.953135i \(0.597836\pi\)
\(674\) −45.1379 −1.73865
\(675\) 0 0
\(676\) 13.1863 0.507165
\(677\) 26.8130 1.03051 0.515255 0.857037i \(-0.327697\pi\)
0.515255 + 0.857037i \(0.327697\pi\)
\(678\) 0 0
\(679\) 45.9186 1.76219
\(680\) 0 0
\(681\) 0 0
\(682\) −14.7152 −0.563474
\(683\) −36.4704 −1.39550 −0.697751 0.716341i \(-0.745816\pi\)
−0.697751 + 0.716341i \(0.745816\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −127.636 −4.87315
\(687\) 0 0
\(688\) −26.1157 −0.995651
\(689\) 52.4627 1.99867
\(690\) 0 0
\(691\) 13.1990 0.502115 0.251058 0.967972i \(-0.419222\pi\)
0.251058 + 0.967972i \(0.419222\pi\)
\(692\) 28.4210 1.08040
\(693\) 0 0
\(694\) −48.1957 −1.82948
\(695\) 0 0
\(696\) 0 0
\(697\) 26.2569 0.994550
\(698\) −58.0750 −2.19817
\(699\) 0 0
\(700\) 0 0
\(701\) −37.7075 −1.42419 −0.712096 0.702082i \(-0.752254\pi\)
−0.712096 + 0.702082i \(0.752254\pi\)
\(702\) 0 0
\(703\) 9.05784 0.341623
\(704\) −2.20143 −0.0829694
\(705\) 0 0
\(706\) 64.6940 2.43479
\(707\) 13.7431 0.516863
\(708\) 0 0
\(709\) 15.9166 0.597761 0.298881 0.954290i \(-0.403387\pi\)
0.298881 + 0.954290i \(0.403387\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −65.7196 −2.46295
\(713\) 9.87860 0.369957
\(714\) 0 0
\(715\) 0 0
\(716\) 49.6991 1.85734
\(717\) 0 0
\(718\) −69.1022 −2.57887
\(719\) −1.43612 −0.0535581 −0.0267790 0.999641i \(-0.508525\pi\)
−0.0267790 + 0.999641i \(0.508525\pi\)
\(720\) 0 0
\(721\) −74.3470 −2.76883
\(722\) −2.52892 −0.0941166
\(723\) 0 0
\(724\) −99.5548 −3.69993
\(725\) 0 0
\(726\) 0 0
\(727\) −34.3191 −1.27282 −0.636412 0.771349i \(-0.719582\pi\)
−0.636412 + 0.771349i \(0.719582\pi\)
\(728\) 119.323 4.42242
\(729\) 0 0
\(730\) 0 0
\(731\) 27.1634 1.00467
\(732\) 0 0
\(733\) −43.3114 −1.59974 −0.799871 0.600172i \(-0.795099\pi\)
−0.799871 + 0.600172i \(0.795099\pi\)
\(734\) −51.5461 −1.90260
\(735\) 0 0
\(736\) −8.45831 −0.311778
\(737\) −5.51615 −0.203190
\(738\) 0 0
\(739\) 25.4583 0.936499 0.468250 0.883596i \(-0.344885\pi\)
0.468250 + 0.883596i \(0.344885\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 163.333 5.99614
\(743\) −22.2391 −0.815872 −0.407936 0.913010i \(-0.633751\pi\)
−0.407936 + 0.913010i \(0.633751\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 6.38266 0.233686
\(747\) 0 0
\(748\) −33.8332 −1.23707
\(749\) 64.2135 2.34631
\(750\) 0 0
\(751\) 25.0323 0.913441 0.456721 0.889610i \(-0.349024\pi\)
0.456721 + 0.889610i \(0.349024\pi\)
\(752\) 27.8588 1.01591
\(753\) 0 0
\(754\) 50.5784 1.84196
\(755\) 0 0
\(756\) 0 0
\(757\) −36.7330 −1.33508 −0.667542 0.744572i \(-0.732654\pi\)
−0.667542 + 0.744572i \(0.732654\pi\)
\(758\) 23.8742 0.867151
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0901 0.800767 0.400383 0.916348i \(-0.368877\pi\)
0.400383 + 0.916348i \(0.368877\pi\)
\(762\) 0 0
\(763\) 52.3928 1.89675
\(764\) −106.795 −3.86372
\(765\) 0 0
\(766\) −28.2118 −1.01933
\(767\) 36.7653 1.32752
\(768\) 0 0
\(769\) −34.5817 −1.24705 −0.623524 0.781804i \(-0.714300\pi\)
−0.623524 + 0.781804i \(0.714300\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −29.3403 −1.05598
\(773\) 28.0622 1.00933 0.504664 0.863316i \(-0.331616\pi\)
0.504664 + 0.863316i \(0.331616\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −56.4882 −2.02781
\(777\) 0 0
\(778\) 71.7774 2.57334
\(779\) 3.86651 0.138532
\(780\) 0 0
\(781\) −12.6853 −0.453915
\(782\) 33.0477 1.18178
\(783\) 0 0
\(784\) 112.618 4.02208
\(785\) 0 0
\(786\) 0 0
\(787\) −7.54169 −0.268832 −0.134416 0.990925i \(-0.542916\pi\)
−0.134416 + 0.990925i \(0.542916\pi\)
\(788\) 102.366 3.64663
\(789\) 0 0
\(790\) 0 0
\(791\) −1.63754 −0.0582243
\(792\) 0 0
\(793\) −2.93206 −0.104121
\(794\) −3.54169 −0.125690
\(795\) 0 0
\(796\) 110.062 3.90103
\(797\) 17.4126 0.616785 0.308392 0.951259i \(-0.400209\pi\)
0.308392 + 0.951259i \(0.400209\pi\)
\(798\) 0 0
\(799\) −28.9765 −1.02511
\(800\) 0 0
\(801\) 0 0
\(802\) 8.89205 0.313989
\(803\) −12.5995 −0.444628
\(804\) 0 0
\(805\) 0 0
\(806\) 51.9287 1.82911
\(807\) 0 0
\(808\) −16.9065 −0.594769
\(809\) 5.84869 0.205629 0.102814 0.994701i \(-0.467215\pi\)
0.102814 + 0.994701i \(0.467215\pi\)
\(810\) 0 0
\(811\) −4.02992 −0.141510 −0.0707548 0.997494i \(-0.522541\pi\)
−0.0707548 + 0.997494i \(0.522541\pi\)
\(812\) 108.223 3.79788
\(813\) 0 0
\(814\) 25.9644 0.910050
\(815\) 0 0
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 78.7451 2.75326
\(819\) 0 0
\(820\) 0 0
\(821\) −3.97446 −0.138710 −0.0693548 0.997592i \(-0.522094\pi\)
−0.0693548 + 0.997592i \(0.522094\pi\)
\(822\) 0 0
\(823\) −1.07566 −0.0374950 −0.0187475 0.999824i \(-0.505968\pi\)
−0.0187475 + 0.999824i \(0.505968\pi\)
\(824\) 91.4603 3.18617
\(825\) 0 0
\(826\) 114.462 3.98264
\(827\) 12.2313 0.425325 0.212663 0.977126i \(-0.431786\pi\)
0.212663 + 0.977126i \(0.431786\pi\)
\(828\) 0 0
\(829\) −48.0444 −1.66865 −0.834325 0.551272i \(-0.814143\pi\)
−0.834325 + 0.551272i \(0.814143\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7.76866 0.269330
\(833\) −117.137 −4.05854
\(834\) 0 0
\(835\) 0 0
\(836\) −4.98218 −0.172312
\(837\) 0 0
\(838\) 51.8386 1.79073
\(839\) −41.6695 −1.43859 −0.719295 0.694705i \(-0.755535\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 7.75856 0.267378
\(843\) 0 0
\(844\) −51.7475 −1.78122
\(845\) 0 0
\(846\) 0 0
\(847\) −47.8410 −1.64384
\(848\) −85.6311 −2.94059
\(849\) 0 0
\(850\) 0 0
\(851\) −17.4304 −0.597506
\(852\) 0 0
\(853\) 25.4126 0.870110 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(854\) −9.12844 −0.312369
\(855\) 0 0
\(856\) −78.9943 −2.69997
\(857\) −8.09785 −0.276617 −0.138309 0.990389i \(-0.544167\pi\)
−0.138309 + 0.990389i \(0.544167\pi\)
\(858\) 0 0
\(859\) −45.8208 −1.56338 −0.781692 0.623664i \(-0.785643\pi\)
−0.781692 + 0.623664i \(0.785643\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13.5111 0.460190
\(863\) 17.7051 0.602688 0.301344 0.953515i \(-0.402565\pi\)
0.301344 + 0.953515i \(0.402565\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −15.1735 −0.515617
\(867\) 0 0
\(868\) 111.112 3.77140
\(869\) −15.6116 −0.529588
\(870\) 0 0
\(871\) 19.4660 0.659581
\(872\) −64.4526 −2.18264
\(873\) 0 0
\(874\) 4.86651 0.164612
\(875\) 0 0
\(876\) 0 0
\(877\) 12.9166 0.436163 0.218082 0.975931i \(-0.430020\pi\)
0.218082 + 0.975931i \(0.430020\pi\)
\(878\) −8.28146 −0.279486
\(879\) 0 0
\(880\) 0 0
\(881\) −14.1157 −0.475569 −0.237785 0.971318i \(-0.576421\pi\)
−0.237785 + 0.971318i \(0.576421\pi\)
\(882\) 0 0
\(883\) −7.70510 −0.259297 −0.129649 0.991560i \(-0.541385\pi\)
−0.129649 + 0.991560i \(0.541385\pi\)
\(884\) 119.395 4.01568
\(885\) 0 0
\(886\) 90.7851 3.04999
\(887\) 34.6294 1.16274 0.581371 0.813638i \(-0.302516\pi\)
0.581371 + 0.813638i \(0.302516\pi\)
\(888\) 0 0
\(889\) −41.6516 −1.39695
\(890\) 0 0
\(891\) 0 0
\(892\) 17.2492 0.577545
\(893\) −4.26698 −0.142789
\(894\) 0 0
\(895\) 0 0
\(896\) 67.4755 2.25420
\(897\) 0 0
\(898\) 3.20410 0.106922
\(899\) 25.6675 0.856058
\(900\) 0 0
\(901\) 89.0666 2.96724
\(902\) 11.0834 0.369036
\(903\) 0 0
\(904\) 2.01448 0.0670004
\(905\) 0 0
\(906\) 0 0
\(907\) 28.0699 0.932047 0.466023 0.884772i \(-0.345686\pi\)
0.466023 + 0.884772i \(0.345686\pi\)
\(908\) −7.07498 −0.234792
\(909\) 0 0
\(910\) 0 0
\(911\) 6.35474 0.210542 0.105271 0.994444i \(-0.466429\pi\)
0.105271 + 0.994444i \(0.466429\pi\)
\(912\) 0 0
\(913\) 0.982180 0.0325054
\(914\) 3.75254 0.124123
\(915\) 0 0
\(916\) −8.50270 −0.280937
\(917\) −54.0800 −1.78588
\(918\) 0 0
\(919\) 10.8887 0.359185 0.179593 0.983741i \(-0.442522\pi\)
0.179593 + 0.983741i \(0.442522\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −12.4082 −0.408642
\(923\) 44.7653 1.47347
\(924\) 0 0
\(925\) 0 0
\(926\) −35.1123 −1.15386
\(927\) 0 0
\(928\) −21.9771 −0.721435
\(929\) −22.7552 −0.746574 −0.373287 0.927716i \(-0.621769\pi\)
−0.373287 + 0.927716i \(0.621769\pi\)
\(930\) 0 0
\(931\) −17.2492 −0.565319
\(932\) −8.12577 −0.266168
\(933\) 0 0
\(934\) 74.6184 2.44159
\(935\) 0 0
\(936\) 0 0
\(937\) 45.9822 1.50217 0.751086 0.660204i \(-0.229530\pi\)
0.751086 + 0.660204i \(0.229530\pi\)
\(938\) 60.6039 1.97879
\(939\) 0 0
\(940\) 0 0
\(941\) 16.5639 0.539967 0.269984 0.962865i \(-0.412982\pi\)
0.269984 + 0.962865i \(0.412982\pi\)
\(942\) 0 0
\(943\) −7.44049 −0.242296
\(944\) −60.0094 −1.95314
\(945\) 0 0
\(946\) 11.4660 0.372793
\(947\) −4.53397 −0.147334 −0.0736671 0.997283i \(-0.523470\pi\)
−0.0736671 + 0.997283i \(0.523470\pi\)
\(948\) 0 0
\(949\) 44.4627 1.44332
\(950\) 0 0
\(951\) 0 0
\(952\) 202.577 6.56556
\(953\) −36.4304 −1.18010 −0.590048 0.807368i \(-0.700891\pi\)
−0.590048 + 0.807368i \(0.700891\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9.91997 −0.320835
\(957\) 0 0
\(958\) 27.5060 0.888680
\(959\) 24.1614 0.780213
\(960\) 0 0
\(961\) −4.64726 −0.149912
\(962\) −91.6261 −2.95414
\(963\) 0 0
\(964\) −83.7673 −2.69796
\(965\) 0 0
\(966\) 0 0
\(967\) −41.0044 −1.31861 −0.659306 0.751875i \(-0.729150\pi\)
−0.659306 + 0.751875i \(0.729150\pi\)
\(968\) 58.8531 1.89161
\(969\) 0 0
\(970\) 0 0
\(971\) −3.58942 −0.115190 −0.0575951 0.998340i \(-0.518343\pi\)
−0.0575951 + 0.998340i \(0.518343\pi\)
\(972\) 0 0
\(973\) 14.4005 0.461658
\(974\) −84.1601 −2.69666
\(975\) 0 0
\(976\) 4.78580 0.153190
\(977\) 42.2313 1.35110 0.675550 0.737314i \(-0.263906\pi\)
0.675550 + 0.737314i \(0.263906\pi\)
\(978\) 0 0
\(979\) 12.2969 0.393011
\(980\) 0 0
\(981\) 0 0
\(982\) −12.4082 −0.395961
\(983\) −36.0800 −1.15077 −0.575387 0.817881i \(-0.695149\pi\)
−0.575387 + 0.817881i \(0.695149\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 85.8675 2.73458
\(987\) 0 0
\(988\) 17.5817 0.559349
\(989\) −7.69738 −0.244762
\(990\) 0 0
\(991\) 19.3648 0.615144 0.307572 0.951525i \(-0.400483\pi\)
0.307572 + 0.951525i \(0.400483\pi\)
\(992\) −22.5639 −0.716404
\(993\) 0 0
\(994\) 139.369 4.42050
\(995\) 0 0
\(996\) 0 0
\(997\) 20.5639 0.651265 0.325632 0.945496i \(-0.394423\pi\)
0.325632 + 0.945496i \(0.394423\pi\)
\(998\) −5.07736 −0.160721
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bf.1.1 3
3.2 odd 2 1425.2.a.t.1.3 3
5.4 even 2 4275.2.a.bg.1.3 3
15.2 even 4 1425.2.c.o.799.6 6
15.8 even 4 1425.2.c.o.799.1 6
15.14 odd 2 1425.2.a.w.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.t.1.3 3 3.2 odd 2
1425.2.a.w.1.1 yes 3 15.14 odd 2
1425.2.c.o.799.1 6 15.8 even 4
1425.2.c.o.799.6 6 15.2 even 4
4275.2.a.bf.1.1 3 1.1 even 1 trivial
4275.2.a.bg.1.3 3 5.4 even 2