Properties

Label 4275.2.a.be.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.14510\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.14510 q^{2} +2.60147 q^{4} -2.74657 q^{7} +1.29021 q^{8} +3.74657 q^{11} -6.29021 q^{13} -5.89167 q^{14} -2.43531 q^{16} +1.00000 q^{19} +8.03677 q^{22} +0.543637 q^{23} -13.4931 q^{26} -7.14510 q^{28} -3.00000 q^{29} +1.45636 q^{31} -7.80440 q^{32} -5.20293 q^{37} +2.14510 q^{38} +12.5299 q^{41} -8.00000 q^{43} +9.74657 q^{44} +1.16616 q^{46} -11.7833 q^{47} +0.543637 q^{49} -16.3638 q^{52} -5.58041 q^{53} -3.54364 q^{56} -6.43531 q^{58} -5.25343 q^{59} -8.49314 q^{61} +3.12405 q^{62} -11.8706 q^{64} +2.83384 q^{67} -7.83384 q^{71} -7.58041 q^{73} -11.1608 q^{74} +2.60147 q^{76} -10.2902 q^{77} -7.52991 q^{79} +26.8779 q^{82} -2.25343 q^{83} -17.1608 q^{86} +4.83384 q^{88} -4.49314 q^{89} +17.2765 q^{91} +1.41425 q^{92} -25.2765 q^{94} +16.8706 q^{97} +1.16616 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 9 q^{8} + 3 q^{11} - 6 q^{13} - 3 q^{14} + 12 q^{16} + 3 q^{19} + 3 q^{22} - 3 q^{23} - 24 q^{26} - 15 q^{28} - 9 q^{29} + 9 q^{31} - 18 q^{32} - 12 q^{37} - 24 q^{43} + 21 q^{44} + 21 q^{46}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.14510 1.51682 0.758408 0.651780i \(-0.225977\pi\)
0.758408 + 0.651780i \(0.225977\pi\)
\(3\) 0 0
\(4\) 2.60147 1.30073
\(5\) 0 0
\(6\) 0 0
\(7\) −2.74657 −1.03811 −0.519053 0.854742i \(-0.673715\pi\)
−0.519053 + 0.854742i \(0.673715\pi\)
\(8\) 1.29021 0.456156
\(9\) 0 0
\(10\) 0 0
\(11\) 3.74657 1.12963 0.564816 0.825217i \(-0.308947\pi\)
0.564816 + 0.825217i \(0.308947\pi\)
\(12\) 0 0
\(13\) −6.29021 −1.74459 −0.872295 0.488981i \(-0.837369\pi\)
−0.872295 + 0.488981i \(0.837369\pi\)
\(14\) −5.89167 −1.57462
\(15\) 0 0
\(16\) −2.43531 −0.608827
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 8.03677 1.71345
\(23\) 0.543637 0.113356 0.0566781 0.998393i \(-0.481949\pi\)
0.0566781 + 0.998393i \(0.481949\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −13.4931 −2.64622
\(27\) 0 0
\(28\) −7.14510 −1.35030
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 1.45636 0.261570 0.130785 0.991411i \(-0.458250\pi\)
0.130785 + 0.991411i \(0.458250\pi\)
\(32\) −7.80440 −1.37964
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.20293 −0.855357 −0.427678 0.903931i \(-0.640668\pi\)
−0.427678 + 0.903931i \(0.640668\pi\)
\(38\) 2.14510 0.347982
\(39\) 0 0
\(40\) 0 0
\(41\) 12.5299 1.95684 0.978422 0.206618i \(-0.0662459\pi\)
0.978422 + 0.206618i \(0.0662459\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 9.74657 1.46935
\(45\) 0 0
\(46\) 1.16616 0.171941
\(47\) −11.7833 −1.71878 −0.859389 0.511323i \(-0.829156\pi\)
−0.859389 + 0.511323i \(0.829156\pi\)
\(48\) 0 0
\(49\) 0.543637 0.0776624
\(50\) 0 0
\(51\) 0 0
\(52\) −16.3638 −2.26924
\(53\) −5.58041 −0.766528 −0.383264 0.923639i \(-0.625200\pi\)
−0.383264 + 0.923639i \(0.625200\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.54364 −0.473538
\(57\) 0 0
\(58\) −6.43531 −0.844997
\(59\) −5.25343 −0.683939 −0.341969 0.939711i \(-0.611094\pi\)
−0.341969 + 0.939711i \(0.611094\pi\)
\(60\) 0 0
\(61\) −8.49314 −1.08743 −0.543717 0.839268i \(-0.682984\pi\)
−0.543717 + 0.839268i \(0.682984\pi\)
\(62\) 3.12405 0.396754
\(63\) 0 0
\(64\) −11.8706 −1.48383
\(65\) 0 0
\(66\) 0 0
\(67\) 2.83384 0.346209 0.173104 0.984903i \(-0.444620\pi\)
0.173104 + 0.984903i \(0.444620\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.83384 −0.929706 −0.464853 0.885388i \(-0.653893\pi\)
−0.464853 + 0.885388i \(0.653893\pi\)
\(72\) 0 0
\(73\) −7.58041 −0.887220 −0.443610 0.896220i \(-0.646302\pi\)
−0.443610 + 0.896220i \(0.646302\pi\)
\(74\) −11.1608 −1.29742
\(75\) 0 0
\(76\) 2.60147 0.298409
\(77\) −10.2902 −1.17268
\(78\) 0 0
\(79\) −7.52991 −0.847181 −0.423591 0.905854i \(-0.639230\pi\)
−0.423591 + 0.905854i \(0.639230\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 26.8779 2.96817
\(83\) −2.25343 −0.247346 −0.123673 0.992323i \(-0.539467\pi\)
−0.123673 + 0.992323i \(0.539467\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −17.1608 −1.85050
\(87\) 0 0
\(88\) 4.83384 0.515289
\(89\) −4.49314 −0.476272 −0.238136 0.971232i \(-0.576536\pi\)
−0.238136 + 0.971232i \(0.576536\pi\)
\(90\) 0 0
\(91\) 17.2765 1.81107
\(92\) 1.41425 0.147446
\(93\) 0 0
\(94\) −25.2765 −2.60707
\(95\) 0 0
\(96\) 0 0
\(97\) 16.8706 1.71295 0.856476 0.516187i \(-0.172649\pi\)
0.856476 + 0.516187i \(0.172649\pi\)
\(98\) 1.16616 0.117800
\(99\) 0 0
\(100\) 0 0
\(101\) 13.2765 1.32106 0.660529 0.750800i \(-0.270332\pi\)
0.660529 + 0.750800i \(0.270332\pi\)
\(102\) 0 0
\(103\) 0.253432 0.0249714 0.0124857 0.999922i \(-0.496026\pi\)
0.0124857 + 0.999922i \(0.496026\pi\)
\(104\) −8.11566 −0.795806
\(105\) 0 0
\(106\) −11.9706 −1.16268
\(107\) 2.23970 0.216520 0.108260 0.994123i \(-0.465472\pi\)
0.108260 + 0.994123i \(0.465472\pi\)
\(108\) 0 0
\(109\) −1.20293 −0.115220 −0.0576100 0.998339i \(-0.518348\pi\)
−0.0576100 + 0.998339i \(0.518348\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.68874 0.632027
\(113\) −12.5436 −1.18001 −0.590003 0.807401i \(-0.700873\pi\)
−0.590003 + 0.807401i \(0.700873\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −7.80440 −0.724620
\(117\) 0 0
\(118\) −11.2692 −1.03741
\(119\) 0 0
\(120\) 0 0
\(121\) 3.03677 0.276070
\(122\) −18.2186 −1.64944
\(123\) 0 0
\(124\) 3.78868 0.340233
\(125\) 0 0
\(126\) 0 0
\(127\) 12.4426 1.10411 0.552053 0.833809i \(-0.313845\pi\)
0.552053 + 0.833809i \(0.313845\pi\)
\(128\) −9.85490 −0.871058
\(129\) 0 0
\(130\) 0 0
\(131\) −18.9495 −1.65563 −0.827813 0.561005i \(-0.810415\pi\)
−0.827813 + 0.561005i \(0.810415\pi\)
\(132\) 0 0
\(133\) −2.74657 −0.238158
\(134\) 6.07888 0.525136
\(135\) 0 0
\(136\) 0 0
\(137\) 21.3921 1.82765 0.913827 0.406104i \(-0.133113\pi\)
0.913827 + 0.406104i \(0.133113\pi\)
\(138\) 0 0
\(139\) 20.3133 1.72295 0.861474 0.507802i \(-0.169542\pi\)
0.861474 + 0.507802i \(0.169542\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −16.8044 −1.41019
\(143\) −23.5667 −1.97075
\(144\) 0 0
\(145\) 0 0
\(146\) −16.2608 −1.34575
\(147\) 0 0
\(148\) −13.5352 −1.11259
\(149\) −4.69607 −0.384717 −0.192358 0.981325i \(-0.561614\pi\)
−0.192358 + 0.981325i \(0.561614\pi\)
\(150\) 0 0
\(151\) 1.59414 0.129729 0.0648645 0.997894i \(-0.479338\pi\)
0.0648645 + 0.997894i \(0.479338\pi\)
\(152\) 1.29021 0.104649
\(153\) 0 0
\(154\) −22.0735 −1.77874
\(155\) 0 0
\(156\) 0 0
\(157\) 13.1103 1.04632 0.523159 0.852235i \(-0.324753\pi\)
0.523159 + 0.852235i \(0.324753\pi\)
\(158\) −16.1524 −1.28502
\(159\) 0 0
\(160\) 0 0
\(161\) −1.49314 −0.117676
\(162\) 0 0
\(163\) 7.73284 0.605683 0.302841 0.953041i \(-0.402065\pi\)
0.302841 + 0.953041i \(0.402065\pi\)
\(164\) 32.5961 2.54533
\(165\) 0 0
\(166\) −4.83384 −0.375179
\(167\) −9.32698 −0.721743 −0.360872 0.932615i \(-0.617521\pi\)
−0.360872 + 0.932615i \(0.617521\pi\)
\(168\) 0 0
\(169\) 26.5667 2.04359
\(170\) 0 0
\(171\) 0 0
\(172\) −20.8117 −1.58688
\(173\) −5.17455 −0.393414 −0.196707 0.980462i \(-0.563025\pi\)
−0.196707 + 0.980462i \(0.563025\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −9.12405 −0.687751
\(177\) 0 0
\(178\) −9.63824 −0.722417
\(179\) −15.3270 −1.14559 −0.572796 0.819698i \(-0.694141\pi\)
−0.572796 + 0.819698i \(0.694141\pi\)
\(180\) 0 0
\(181\) −10.4059 −0.773462 −0.386731 0.922193i \(-0.626396\pi\)
−0.386731 + 0.922193i \(0.626396\pi\)
\(182\) 37.0598 2.74706
\(183\) 0 0
\(184\) 0.701404 0.0517082
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −30.6540 −2.23567
\(189\) 0 0
\(190\) 0 0
\(191\) 6.54364 0.473481 0.236740 0.971573i \(-0.423921\pi\)
0.236740 + 0.971573i \(0.423921\pi\)
\(192\) 0 0
\(193\) 24.9863 1.79855 0.899276 0.437382i \(-0.144094\pi\)
0.899276 + 0.437382i \(0.144094\pi\)
\(194\) 36.1892 2.59823
\(195\) 0 0
\(196\) 1.41425 0.101018
\(197\) 8.79707 0.626765 0.313383 0.949627i \(-0.398538\pi\)
0.313383 + 0.949627i \(0.398538\pi\)
\(198\) 0 0
\(199\) 8.74657 0.620028 0.310014 0.950732i \(-0.399666\pi\)
0.310014 + 0.950732i \(0.399666\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 28.4794 2.00380
\(203\) 8.23970 0.578314
\(204\) 0 0
\(205\) 0 0
\(206\) 0.543637 0.0378770
\(207\) 0 0
\(208\) 15.3186 1.06215
\(209\) 3.74657 0.259156
\(210\) 0 0
\(211\) −12.7182 −0.875556 −0.437778 0.899083i \(-0.644234\pi\)
−0.437778 + 0.899083i \(0.644234\pi\)
\(212\) −14.5172 −0.997049
\(213\) 0 0
\(214\) 4.80440 0.328422
\(215\) 0 0
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) −2.58041 −0.174767
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.5436 0.706054 0.353027 0.935613i \(-0.385152\pi\)
0.353027 + 0.935613i \(0.385152\pi\)
\(224\) 21.4353 1.43221
\(225\) 0 0
\(226\) −26.9074 −1.78985
\(227\) 7.83384 0.519950 0.259975 0.965615i \(-0.416286\pi\)
0.259975 + 0.965615i \(0.416286\pi\)
\(228\) 0 0
\(229\) −23.6035 −1.55976 −0.779880 0.625929i \(-0.784720\pi\)
−0.779880 + 0.625929i \(0.784720\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.87062 −0.254118
\(233\) −23.7833 −1.55810 −0.779049 0.626963i \(-0.784298\pi\)
−0.779049 + 0.626963i \(0.784298\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −13.6666 −0.889621
\(237\) 0 0
\(238\) 0 0
\(239\) 1.27648 0.0825685 0.0412843 0.999147i \(-0.486855\pi\)
0.0412843 + 0.999147i \(0.486855\pi\)
\(240\) 0 0
\(241\) 21.4931 1.38449 0.692247 0.721660i \(-0.256621\pi\)
0.692247 + 0.721660i \(0.256621\pi\)
\(242\) 6.51419 0.418748
\(243\) 0 0
\(244\) −22.0946 −1.41446
\(245\) 0 0
\(246\) 0 0
\(247\) −6.29021 −0.400236
\(248\) 1.87901 0.119317
\(249\) 0 0
\(250\) 0 0
\(251\) 29.9725 1.89185 0.945925 0.324385i \(-0.105157\pi\)
0.945925 + 0.324385i \(0.105157\pi\)
\(252\) 0 0
\(253\) 2.03677 0.128051
\(254\) 26.6907 1.67473
\(255\) 0 0
\(256\) 2.60147 0.162592
\(257\) 19.0735 1.18978 0.594888 0.803809i \(-0.297197\pi\)
0.594888 + 0.803809i \(0.297197\pi\)
\(258\) 0 0
\(259\) 14.2902 0.887950
\(260\) 0 0
\(261\) 0 0
\(262\) −40.6486 −2.51128
\(263\) 11.6456 0.718096 0.359048 0.933319i \(-0.383101\pi\)
0.359048 + 0.933319i \(0.383101\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.89167 −0.361242
\(267\) 0 0
\(268\) 7.37214 0.450325
\(269\) −26.1471 −1.59422 −0.797108 0.603836i \(-0.793638\pi\)
−0.797108 + 0.603836i \(0.793638\pi\)
\(270\) 0 0
\(271\) 15.8338 0.961837 0.480919 0.876765i \(-0.340303\pi\)
0.480919 + 0.876765i \(0.340303\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 45.8883 2.77222
\(275\) 0 0
\(276\) 0 0
\(277\) −20.6677 −1.24180 −0.620900 0.783889i \(-0.713233\pi\)
−0.620900 + 0.783889i \(0.713233\pi\)
\(278\) 43.5740 2.61340
\(279\) 0 0
\(280\) 0 0
\(281\) −1.35536 −0.0808541 −0.0404270 0.999182i \(-0.512872\pi\)
−0.0404270 + 0.999182i \(0.512872\pi\)
\(282\) 0 0
\(283\) −28.1471 −1.67317 −0.836586 0.547836i \(-0.815452\pi\)
−0.836586 + 0.547836i \(0.815452\pi\)
\(284\) −20.3795 −1.20930
\(285\) 0 0
\(286\) −50.5530 −2.98926
\(287\) −34.4143 −2.03141
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −19.7202 −1.15404
\(293\) −8.47009 −0.494828 −0.247414 0.968910i \(-0.579581\pi\)
−0.247414 + 0.968910i \(0.579581\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.71285 −0.390176
\(297\) 0 0
\(298\) −10.0735 −0.583545
\(299\) −3.41959 −0.197760
\(300\) 0 0
\(301\) 21.9725 1.26648
\(302\) 3.41959 0.196775
\(303\) 0 0
\(304\) −2.43531 −0.139674
\(305\) 0 0
\(306\) 0 0
\(307\) 19.3133 1.10227 0.551133 0.834418i \(-0.314196\pi\)
0.551133 + 0.834418i \(0.314196\pi\)
\(308\) −26.7696 −1.52534
\(309\) 0 0
\(310\) 0 0
\(311\) −20.5804 −1.16701 −0.583504 0.812110i \(-0.698319\pi\)
−0.583504 + 0.812110i \(0.698319\pi\)
\(312\) 0 0
\(313\) −22.4426 −1.26853 −0.634266 0.773115i \(-0.718698\pi\)
−0.634266 + 0.773115i \(0.718698\pi\)
\(314\) 28.1230 1.58707
\(315\) 0 0
\(316\) −19.5888 −1.10196
\(317\) 11.1745 0.627625 0.313813 0.949485i \(-0.398394\pi\)
0.313813 + 0.949485i \(0.398394\pi\)
\(318\) 0 0
\(319\) −11.2397 −0.629303
\(320\) 0 0
\(321\) 0 0
\(322\) −3.20293 −0.178492
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 16.5877 0.918710
\(327\) 0 0
\(328\) 16.1662 0.892627
\(329\) 32.3638 1.78427
\(330\) 0 0
\(331\) −25.9358 −1.42556 −0.712779 0.701388i \(-0.752564\pi\)
−0.712779 + 0.701388i \(0.752564\pi\)
\(332\) −5.86223 −0.321731
\(333\) 0 0
\(334\) −20.0073 −1.09475
\(335\) 0 0
\(336\) 0 0
\(337\) −15.0873 −0.821856 −0.410928 0.911668i \(-0.634795\pi\)
−0.410928 + 0.911668i \(0.634795\pi\)
\(338\) 56.9883 3.09975
\(339\) 0 0
\(340\) 0 0
\(341\) 5.45636 0.295479
\(342\) 0 0
\(343\) 17.7328 0.957483
\(344\) −10.3216 −0.556506
\(345\) 0 0
\(346\) −11.0999 −0.596736
\(347\) −6.62252 −0.355516 −0.177758 0.984074i \(-0.556884\pi\)
−0.177758 + 0.984074i \(0.556884\pi\)
\(348\) 0 0
\(349\) 9.07355 0.485696 0.242848 0.970064i \(-0.421918\pi\)
0.242848 + 0.970064i \(0.421918\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −29.2397 −1.55848
\(353\) 20.1471 1.07232 0.536161 0.844116i \(-0.319874\pi\)
0.536161 + 0.844116i \(0.319874\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −11.6887 −0.619502
\(357\) 0 0
\(358\) −32.8779 −1.73765
\(359\) −15.8843 −0.838344 −0.419172 0.907907i \(-0.637679\pi\)
−0.419172 + 0.907907i \(0.637679\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −22.3216 −1.17320
\(363\) 0 0
\(364\) 44.9442 2.35571
\(365\) 0 0
\(366\) 0 0
\(367\) −24.8853 −1.29900 −0.649500 0.760361i \(-0.725022\pi\)
−0.649500 + 0.760361i \(0.725022\pi\)
\(368\) −1.32392 −0.0690143
\(369\) 0 0
\(370\) 0 0
\(371\) 15.3270 0.795737
\(372\) 0 0
\(373\) −11.6677 −0.604130 −0.302065 0.953287i \(-0.597676\pi\)
−0.302065 + 0.953287i \(0.597676\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −15.2029 −0.784031
\(377\) 18.8706 0.971886
\(378\) 0 0
\(379\) 6.29021 0.323106 0.161553 0.986864i \(-0.448350\pi\)
0.161553 + 0.986864i \(0.448350\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 14.0368 0.718184
\(383\) 12.0652 0.616501 0.308250 0.951305i \(-0.400257\pi\)
0.308250 + 0.951305i \(0.400257\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 53.5981 2.72807
\(387\) 0 0
\(388\) 43.8883 2.22809
\(389\) 14.3638 0.728271 0.364136 0.931346i \(-0.381364\pi\)
0.364136 + 0.931346i \(0.381364\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.701404 0.0354262
\(393\) 0 0
\(394\) 18.8706 0.950688
\(395\) 0 0
\(396\) 0 0
\(397\) 31.0966 1.56069 0.780347 0.625347i \(-0.215043\pi\)
0.780347 + 0.625347i \(0.215043\pi\)
\(398\) 18.7623 0.940468
\(399\) 0 0
\(400\) 0 0
\(401\) 0.543637 0.0271479 0.0135740 0.999908i \(-0.495679\pi\)
0.0135740 + 0.999908i \(0.495679\pi\)
\(402\) 0 0
\(403\) −9.16082 −0.456333
\(404\) 34.5383 1.71834
\(405\) 0 0
\(406\) 17.6750 0.877196
\(407\) −19.4931 −0.966239
\(408\) 0 0
\(409\) 26.4648 1.30860 0.654299 0.756236i \(-0.272964\pi\)
0.654299 + 0.756236i \(0.272964\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.659294 0.0324811
\(413\) 14.4289 0.710000
\(414\) 0 0
\(415\) 0 0
\(416\) 49.0913 2.40690
\(417\) 0 0
\(418\) 8.03677 0.393091
\(419\) 6.18920 0.302362 0.151181 0.988506i \(-0.451692\pi\)
0.151181 + 0.988506i \(0.451692\pi\)
\(420\) 0 0
\(421\) 15.2765 0.744530 0.372265 0.928126i \(-0.378581\pi\)
0.372265 + 0.928126i \(0.378581\pi\)
\(422\) −27.2818 −1.32806
\(423\) 0 0
\(424\) −7.19988 −0.349657
\(425\) 0 0
\(426\) 0 0
\(427\) 23.3270 1.12887
\(428\) 5.82651 0.281635
\(429\) 0 0
\(430\) 0 0
\(431\) −13.5583 −0.653080 −0.326540 0.945183i \(-0.605883\pi\)
−0.326540 + 0.945183i \(0.605883\pi\)
\(432\) 0 0
\(433\) 29.6823 1.42644 0.713221 0.700939i \(-0.247236\pi\)
0.713221 + 0.700939i \(0.247236\pi\)
\(434\) −8.58041 −0.411873
\(435\) 0 0
\(436\) −3.12938 −0.149870
\(437\) 0.543637 0.0260057
\(438\) 0 0
\(439\) 34.0093 1.62318 0.811588 0.584230i \(-0.198603\pi\)
0.811588 + 0.584230i \(0.198603\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.3416 −0.776414 −0.388207 0.921572i \(-0.626906\pi\)
−0.388207 + 0.921572i \(0.626906\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 22.6172 1.07095
\(447\) 0 0
\(448\) 32.6035 1.54037
\(449\) −16.8990 −0.797513 −0.398757 0.917057i \(-0.630558\pi\)
−0.398757 + 0.917057i \(0.630558\pi\)
\(450\) 0 0
\(451\) 46.9442 2.21051
\(452\) −32.6318 −1.53487
\(453\) 0 0
\(454\) 16.8044 0.788669
\(455\) 0 0
\(456\) 0 0
\(457\) −16.8622 −0.788782 −0.394391 0.918943i \(-0.629044\pi\)
−0.394391 + 0.918943i \(0.629044\pi\)
\(458\) −50.6318 −2.36587
\(459\) 0 0
\(460\) 0 0
\(461\) 24.4648 1.13944 0.569719 0.821840i \(-0.307052\pi\)
0.569719 + 0.821840i \(0.307052\pi\)
\(462\) 0 0
\(463\) 14.7550 0.685721 0.342861 0.939386i \(-0.388604\pi\)
0.342861 + 0.939386i \(0.388604\pi\)
\(464\) 7.30592 0.339169
\(465\) 0 0
\(466\) −51.0177 −2.36335
\(467\) 12.3270 0.570425 0.285212 0.958464i \(-0.407936\pi\)
0.285212 + 0.958464i \(0.407936\pi\)
\(468\) 0 0
\(469\) −7.78334 −0.359401
\(470\) 0 0
\(471\) 0 0
\(472\) −6.77801 −0.311983
\(473\) −29.9725 −1.37814
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 2.73818 0.125241
\(479\) 19.0084 0.868516 0.434258 0.900789i \(-0.357011\pi\)
0.434258 + 0.900789i \(0.357011\pi\)
\(480\) 0 0
\(481\) 32.7275 1.49225
\(482\) 46.1050 2.10002
\(483\) 0 0
\(484\) 7.90006 0.359094
\(485\) 0 0
\(486\) 0 0
\(487\) −33.2765 −1.50790 −0.753951 0.656931i \(-0.771854\pi\)
−0.753951 + 0.656931i \(0.771854\pi\)
\(488\) −10.9579 −0.496040
\(489\) 0 0
\(490\) 0 0
\(491\) −28.7275 −1.29645 −0.648227 0.761447i \(-0.724489\pi\)
−0.648227 + 0.761447i \(0.724489\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −13.4931 −0.607085
\(495\) 0 0
\(496\) −3.54669 −0.159251
\(497\) 21.5162 0.965133
\(498\) 0 0
\(499\) −24.4878 −1.09622 −0.548112 0.836405i \(-0.684653\pi\)
−0.548112 + 0.836405i \(0.684653\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 64.2942 2.86959
\(503\) −7.30393 −0.325666 −0.162833 0.986654i \(-0.552063\pi\)
−0.162833 + 0.986654i \(0.552063\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 4.36909 0.194230
\(507\) 0 0
\(508\) 32.3691 1.43615
\(509\) −33.3784 −1.47947 −0.739736 0.672897i \(-0.765050\pi\)
−0.739736 + 0.672897i \(0.765050\pi\)
\(510\) 0 0
\(511\) 20.8201 0.921028
\(512\) 25.2902 1.11768
\(513\) 0 0
\(514\) 40.9147 1.80467
\(515\) 0 0
\(516\) 0 0
\(517\) −44.1471 −1.94159
\(518\) 30.6540 1.34686
\(519\) 0 0
\(520\) 0 0
\(521\) 4.08727 0.179067 0.0895334 0.995984i \(-0.471462\pi\)
0.0895334 + 0.995984i \(0.471462\pi\)
\(522\) 0 0
\(523\) −27.9304 −1.22131 −0.610656 0.791896i \(-0.709094\pi\)
−0.610656 + 0.791896i \(0.709094\pi\)
\(524\) −49.2965 −2.15353
\(525\) 0 0
\(526\) 24.9809 1.08922
\(527\) 0 0
\(528\) 0 0
\(529\) −22.7045 −0.987150
\(530\) 0 0
\(531\) 0 0
\(532\) −7.14510 −0.309779
\(533\) −78.8157 −3.41389
\(534\) 0 0
\(535\) 0 0
\(536\) 3.65624 0.157925
\(537\) 0 0
\(538\) −56.0882 −2.41813
\(539\) 2.03677 0.0877301
\(540\) 0 0
\(541\) 26.7917 1.15187 0.575933 0.817497i \(-0.304639\pi\)
0.575933 + 0.817497i \(0.304639\pi\)
\(542\) 33.9652 1.45893
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.26716 0.396235 0.198118 0.980178i \(-0.436517\pi\)
0.198118 + 0.980178i \(0.436517\pi\)
\(548\) 55.6509 2.37729
\(549\) 0 0
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 20.6814 0.879463
\(554\) −44.3343 −1.88358
\(555\) 0 0
\(556\) 52.8442 2.24109
\(557\) −32.5804 −1.38048 −0.690238 0.723582i \(-0.742494\pi\)
−0.690238 + 0.723582i \(0.742494\pi\)
\(558\) 0 0
\(559\) 50.3216 2.12838
\(560\) 0 0
\(561\) 0 0
\(562\) −2.90739 −0.122641
\(563\) 33.3270 1.40456 0.702282 0.711899i \(-0.252164\pi\)
0.702282 + 0.711899i \(0.252164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −60.3784 −2.53789
\(567\) 0 0
\(568\) −10.1073 −0.424091
\(569\) 27.3859 1.14808 0.574038 0.818829i \(-0.305376\pi\)
0.574038 + 0.818829i \(0.305376\pi\)
\(570\) 0 0
\(571\) −43.2995 −1.81203 −0.906014 0.423247i \(-0.860890\pi\)
−0.906014 + 0.423247i \(0.860890\pi\)
\(572\) −61.3079 −2.56341
\(573\) 0 0
\(574\) −73.8221 −3.08128
\(575\) 0 0
\(576\) 0 0
\(577\) −47.3721 −1.97213 −0.986064 0.166366i \(-0.946797\pi\)
−0.986064 + 0.166366i \(0.946797\pi\)
\(578\) −36.4667 −1.51682
\(579\) 0 0
\(580\) 0 0
\(581\) 6.18920 0.256771
\(582\) 0 0
\(583\) −20.9074 −0.865896
\(584\) −9.78029 −0.404711
\(585\) 0 0
\(586\) −18.1692 −0.750563
\(587\) −29.0230 −1.19791 −0.598955 0.800783i \(-0.704417\pi\)
−0.598955 + 0.800783i \(0.704417\pi\)
\(588\) 0 0
\(589\) 1.45636 0.0600084
\(590\) 0 0
\(591\) 0 0
\(592\) 12.6707 0.520764
\(593\) 30.8706 1.26770 0.633852 0.773454i \(-0.281473\pi\)
0.633852 + 0.773454i \(0.281473\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.2167 −0.500414
\(597\) 0 0
\(598\) −7.33537 −0.299966
\(599\) −17.1608 −0.701172 −0.350586 0.936531i \(-0.614018\pi\)
−0.350586 + 0.936531i \(0.614018\pi\)
\(600\) 0 0
\(601\) −13.2029 −0.538559 −0.269279 0.963062i \(-0.586786\pi\)
−0.269279 + 0.963062i \(0.586786\pi\)
\(602\) 47.1334 1.92101
\(603\) 0 0
\(604\) 4.14709 0.168743
\(605\) 0 0
\(606\) 0 0
\(607\) 16.7603 0.680279 0.340140 0.940375i \(-0.389526\pi\)
0.340140 + 0.940375i \(0.389526\pi\)
\(608\) −7.80440 −0.316510
\(609\) 0 0
\(610\) 0 0
\(611\) 74.1196 2.99856
\(612\) 0 0
\(613\) −32.7780 −1.32389 −0.661946 0.749552i \(-0.730269\pi\)
−0.661946 + 0.749552i \(0.730269\pi\)
\(614\) 41.4289 1.67193
\(615\) 0 0
\(616\) −13.2765 −0.534925
\(617\) −33.4510 −1.34669 −0.673344 0.739329i \(-0.735143\pi\)
−0.673344 + 0.739329i \(0.735143\pi\)
\(618\) 0 0
\(619\) 39.3731 1.58254 0.791269 0.611469i \(-0.209421\pi\)
0.791269 + 0.611469i \(0.209421\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −44.1471 −1.77014
\(623\) 12.3407 0.494420
\(624\) 0 0
\(625\) 0 0
\(626\) −48.1418 −1.92413
\(627\) 0 0
\(628\) 34.1060 1.36098
\(629\) 0 0
\(630\) 0 0
\(631\) 40.5804 1.61548 0.807740 0.589538i \(-0.200690\pi\)
0.807740 + 0.589538i \(0.200690\pi\)
\(632\) −9.71513 −0.386447
\(633\) 0 0
\(634\) 23.9706 0.951992
\(635\) 0 0
\(636\) 0 0
\(637\) −3.41959 −0.135489
\(638\) −24.1103 −0.954537
\(639\) 0 0
\(640\) 0 0
\(641\) 6.81172 0.269047 0.134523 0.990910i \(-0.457050\pi\)
0.134523 + 0.990910i \(0.457050\pi\)
\(642\) 0 0
\(643\) 14.3868 0.567360 0.283680 0.958919i \(-0.408445\pi\)
0.283680 + 0.958919i \(0.408445\pi\)
\(644\) −3.88434 −0.153065
\(645\) 0 0
\(646\) 0 0
\(647\) 0.137775 0.00541649 0.00270825 0.999996i \(-0.499138\pi\)
0.00270825 + 0.999996i \(0.499138\pi\)
\(648\) 0 0
\(649\) −19.6823 −0.772599
\(650\) 0 0
\(651\) 0 0
\(652\) 20.1167 0.787832
\(653\) −11.1019 −0.434452 −0.217226 0.976121i \(-0.569701\pi\)
−0.217226 + 0.976121i \(0.569701\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −30.5142 −1.19138
\(657\) 0 0
\(658\) 69.4236 2.70641
\(659\) 29.9725 1.16756 0.583782 0.811910i \(-0.301572\pi\)
0.583782 + 0.811910i \(0.301572\pi\)
\(660\) 0 0
\(661\) −42.5530 −1.65512 −0.827559 0.561379i \(-0.810271\pi\)
−0.827559 + 0.561379i \(0.810271\pi\)
\(662\) −55.6349 −2.16231
\(663\) 0 0
\(664\) −2.90739 −0.112829
\(665\) 0 0
\(666\) 0 0
\(667\) −1.63091 −0.0631491
\(668\) −24.2638 −0.938795
\(669\) 0 0
\(670\) 0 0
\(671\) −31.8201 −1.22840
\(672\) 0 0
\(673\) −12.6961 −0.489397 −0.244699 0.969599i \(-0.578689\pi\)
−0.244699 + 0.969599i \(0.578689\pi\)
\(674\) −32.3638 −1.24661
\(675\) 0 0
\(676\) 69.1123 2.65817
\(677\) −21.3784 −0.821639 −0.410819 0.911717i \(-0.634757\pi\)
−0.410819 + 0.911717i \(0.634757\pi\)
\(678\) 0 0
\(679\) −46.3363 −1.77822
\(680\) 0 0
\(681\) 0 0
\(682\) 11.7045 0.448187
\(683\) 24.0652 0.920828 0.460414 0.887704i \(-0.347701\pi\)
0.460414 + 0.887704i \(0.347701\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 38.0388 1.45233
\(687\) 0 0
\(688\) 19.4825 0.742762
\(689\) 35.1019 1.33728
\(690\) 0 0
\(691\) 29.6677 1.12861 0.564306 0.825566i \(-0.309144\pi\)
0.564306 + 0.825566i \(0.309144\pi\)
\(692\) −13.4614 −0.511726
\(693\) 0 0
\(694\) −14.2060 −0.539252
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 19.4637 0.736712
\(699\) 0 0
\(700\) 0 0
\(701\) −6.65396 −0.251317 −0.125658 0.992074i \(-0.540104\pi\)
−0.125658 + 0.992074i \(0.540104\pi\)
\(702\) 0 0
\(703\) −5.20293 −0.196232
\(704\) −44.4741 −1.67618
\(705\) 0 0
\(706\) 43.2176 1.62652
\(707\) −36.4648 −1.37140
\(708\) 0 0
\(709\) −29.0735 −1.09188 −0.545940 0.837824i \(-0.683827\pi\)
−0.545940 + 0.837824i \(0.683827\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −5.79707 −0.217254
\(713\) 0.791733 0.0296506
\(714\) 0 0
\(715\) 0 0
\(716\) −39.8726 −1.49011
\(717\) 0 0
\(718\) −34.0735 −1.27161
\(719\) −12.6739 −0.472659 −0.236329 0.971673i \(-0.575944\pi\)
−0.236329 + 0.971673i \(0.575944\pi\)
\(720\) 0 0
\(721\) −0.696068 −0.0259229
\(722\) 2.14510 0.0798325
\(723\) 0 0
\(724\) −27.0705 −1.00607
\(725\) 0 0
\(726\) 0 0
\(727\) −13.2260 −0.490524 −0.245262 0.969457i \(-0.578874\pi\)
−0.245262 + 0.969457i \(0.578874\pi\)
\(728\) 22.2902 0.826130
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −33.0735 −1.22160 −0.610800 0.791785i \(-0.709152\pi\)
−0.610800 + 0.791785i \(0.709152\pi\)
\(734\) −53.3815 −1.97035
\(735\) 0 0
\(736\) −4.24276 −0.156390
\(737\) 10.6172 0.391089
\(738\) 0 0
\(739\) −27.2260 −1.00152 −0.500762 0.865585i \(-0.666947\pi\)
−0.500762 + 0.865585i \(0.666947\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 32.8779 1.20699
\(743\) 51.5751 1.89211 0.946053 0.324012i \(-0.105032\pi\)
0.946053 + 0.324012i \(0.105032\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −25.0284 −0.916354
\(747\) 0 0
\(748\) 0 0
\(749\) −6.15150 −0.224771
\(750\) 0 0
\(751\) 16.7971 0.612934 0.306467 0.951881i \(-0.400853\pi\)
0.306467 + 0.951881i \(0.400853\pi\)
\(752\) 28.6961 1.04644
\(753\) 0 0
\(754\) 40.4794 1.47417
\(755\) 0 0
\(756\) 0 0
\(757\) 34.6402 1.25902 0.629510 0.776992i \(-0.283256\pi\)
0.629510 + 0.776992i \(0.283256\pi\)
\(758\) 13.4931 0.490093
\(759\) 0 0
\(760\) 0 0
\(761\) −33.8294 −1.22632 −0.613158 0.789960i \(-0.710101\pi\)
−0.613158 + 0.789960i \(0.710101\pi\)
\(762\) 0 0
\(763\) 3.30393 0.119610
\(764\) 17.0230 0.615872
\(765\) 0 0
\(766\) 25.8810 0.935119
\(767\) 33.0452 1.19319
\(768\) 0 0
\(769\) 21.7550 0.784504 0.392252 0.919858i \(-0.371696\pi\)
0.392252 + 0.919858i \(0.371696\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 65.0009 2.33943
\(773\) −1.77495 −0.0638405 −0.0319203 0.999490i \(-0.510162\pi\)
−0.0319203 + 0.999490i \(0.510162\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 21.7666 0.781374
\(777\) 0 0
\(778\) 30.8117 1.10465
\(779\) 12.5299 0.448931
\(780\) 0 0
\(781\) −29.3500 −1.05023
\(782\) 0 0
\(783\) 0 0
\(784\) −1.32392 −0.0472830
\(785\) 0 0
\(786\) 0 0
\(787\) −19.8937 −0.709132 −0.354566 0.935031i \(-0.615371\pi\)
−0.354566 + 0.935031i \(0.615371\pi\)
\(788\) 22.8853 0.815254
\(789\) 0 0
\(790\) 0 0
\(791\) 34.4520 1.22497
\(792\) 0 0
\(793\) 53.4236 1.89713
\(794\) 66.7054 2.36729
\(795\) 0 0
\(796\) 22.7539 0.806490
\(797\) −7.36909 −0.261027 −0.130513 0.991447i \(-0.541663\pi\)
−0.130513 + 0.991447i \(0.541663\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 1.16616 0.0411785
\(803\) −28.4005 −1.00223
\(804\) 0 0
\(805\) 0 0
\(806\) −19.6509 −0.692174
\(807\) 0 0
\(808\) 17.1294 0.602610
\(809\) 10.4205 0.366366 0.183183 0.983079i \(-0.441360\pi\)
0.183183 + 0.983079i \(0.441360\pi\)
\(810\) 0 0
\(811\) 46.9074 1.64714 0.823571 0.567214i \(-0.191979\pi\)
0.823571 + 0.567214i \(0.191979\pi\)
\(812\) 21.4353 0.752232
\(813\) 0 0
\(814\) −41.8148 −1.46561
\(815\) 0 0
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 56.7696 1.98490
\(819\) 0 0
\(820\) 0 0
\(821\) −35.5392 −1.24033 −0.620164 0.784472i \(-0.712934\pi\)
−0.620164 + 0.784472i \(0.712934\pi\)
\(822\) 0 0
\(823\) −17.7603 −0.619085 −0.309542 0.950886i \(-0.600176\pi\)
−0.309542 + 0.950886i \(0.600176\pi\)
\(824\) 0.326979 0.0113909
\(825\) 0 0
\(826\) 30.9515 1.07694
\(827\) −30.7843 −1.07047 −0.535237 0.844702i \(-0.679778\pi\)
−0.535237 + 0.844702i \(0.679778\pi\)
\(828\) 0 0
\(829\) −23.7098 −0.823475 −0.411738 0.911302i \(-0.635078\pi\)
−0.411738 + 0.911302i \(0.635078\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 74.6686 2.58867
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 9.74657 0.337092
\(837\) 0 0
\(838\) 13.2765 0.458628
\(839\) −34.1662 −1.17955 −0.589773 0.807569i \(-0.700783\pi\)
−0.589773 + 0.807569i \(0.700783\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 32.7696 1.12932
\(843\) 0 0
\(844\) −33.0859 −1.13886
\(845\) 0 0
\(846\) 0 0
\(847\) −8.34071 −0.286590
\(848\) 13.5900 0.466683
\(849\) 0 0
\(850\) 0 0
\(851\) −2.82851 −0.0969600
\(852\) 0 0
\(853\) 28.7780 0.985340 0.492670 0.870216i \(-0.336021\pi\)
0.492670 + 0.870216i \(0.336021\pi\)
\(854\) 50.0388 1.71229
\(855\) 0 0
\(856\) 2.88968 0.0987672
\(857\) −47.2849 −1.61522 −0.807610 0.589717i \(-0.799239\pi\)
−0.807610 + 0.589717i \(0.799239\pi\)
\(858\) 0 0
\(859\) −23.0221 −0.785505 −0.392752 0.919644i \(-0.628477\pi\)
−0.392752 + 0.919644i \(0.628477\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −29.0839 −0.990603
\(863\) 56.0545 1.90812 0.954058 0.299621i \(-0.0968601\pi\)
0.954058 + 0.299621i \(0.0968601\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 63.6717 2.16365
\(867\) 0 0
\(868\) −10.4059 −0.353198
\(869\) −28.2113 −0.957004
\(870\) 0 0
\(871\) −17.8255 −0.603992
\(872\) −1.55203 −0.0525583
\(873\) 0 0
\(874\) 1.16616 0.0394459
\(875\) 0 0
\(876\) 0 0
\(877\) 3.37748 0.114049 0.0570247 0.998373i \(-0.481839\pi\)
0.0570247 + 0.998373i \(0.481839\pi\)
\(878\) 72.9535 2.46206
\(879\) 0 0
\(880\) 0 0
\(881\) −36.0314 −1.21393 −0.606965 0.794729i \(-0.707613\pi\)
−0.606965 + 0.794729i \(0.707613\pi\)
\(882\) 0 0
\(883\) 6.23970 0.209983 0.104991 0.994473i \(-0.466518\pi\)
0.104991 + 0.994473i \(0.466518\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −35.0545 −1.17768
\(887\) 40.2942 1.35295 0.676473 0.736467i \(-0.263507\pi\)
0.676473 + 0.736467i \(0.263507\pi\)
\(888\) 0 0
\(889\) −34.1745 −1.14618
\(890\) 0 0
\(891\) 0 0
\(892\) 27.4289 0.918388
\(893\) −11.7833 −0.394315
\(894\) 0 0
\(895\) 0 0
\(896\) 27.0671 0.904250
\(897\) 0 0
\(898\) −36.2501 −1.20968
\(899\) −4.36909 −0.145717
\(900\) 0 0
\(901\) 0 0
\(902\) 100.700 3.35294
\(903\) 0 0
\(904\) −16.1839 −0.538267
\(905\) 0 0
\(906\) 0 0
\(907\) −1.59414 −0.0529325 −0.0264662 0.999650i \(-0.508425\pi\)
−0.0264662 + 0.999650i \(0.508425\pi\)
\(908\) 20.3795 0.676317
\(909\) 0 0
\(910\) 0 0
\(911\) 6.58880 0.218297 0.109148 0.994025i \(-0.465188\pi\)
0.109148 + 0.994025i \(0.465188\pi\)
\(912\) 0 0
\(913\) −8.44264 −0.279410
\(914\) −36.1712 −1.19644
\(915\) 0 0
\(916\) −61.4036 −2.02883
\(917\) 52.0461 1.71871
\(918\) 0 0
\(919\) −13.3270 −0.439616 −0.219808 0.975543i \(-0.570543\pi\)
−0.219808 + 0.975543i \(0.570543\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 52.4794 1.72832
\(923\) 49.2765 1.62196
\(924\) 0 0
\(925\) 0 0
\(926\) 31.6509 1.04011
\(927\) 0 0
\(928\) 23.4132 0.768576
\(929\) 22.0735 0.724210 0.362105 0.932137i \(-0.382058\pi\)
0.362105 + 0.932137i \(0.382058\pi\)
\(930\) 0 0
\(931\) 0.543637 0.0178170
\(932\) −61.8715 −2.02667
\(933\) 0 0
\(934\) 26.4426 0.865229
\(935\) 0 0
\(936\) 0 0
\(937\) 13.5436 0.442451 0.221226 0.975223i \(-0.428994\pi\)
0.221226 + 0.975223i \(0.428994\pi\)
\(938\) −16.6961 −0.545146
\(939\) 0 0
\(940\) 0 0
\(941\) −3.96323 −0.129197 −0.0645987 0.997911i \(-0.520577\pi\)
−0.0645987 + 0.997911i \(0.520577\pi\)
\(942\) 0 0
\(943\) 6.81172 0.221820
\(944\) 12.7937 0.416400
\(945\) 0 0
\(946\) −64.2942 −2.09038
\(947\) 24.3784 0.792192 0.396096 0.918209i \(-0.370365\pi\)
0.396096 + 0.918209i \(0.370365\pi\)
\(948\) 0 0
\(949\) 47.6823 1.54783
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.4226 −1.34181 −0.670906 0.741543i \(-0.734094\pi\)
−0.670906 + 0.741543i \(0.734094\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.32071 0.107400
\(957\) 0 0
\(958\) 40.7750 1.31738
\(959\) −58.7550 −1.89730
\(960\) 0 0
\(961\) −28.8790 −0.931581
\(962\) 70.2039 2.26346
\(963\) 0 0
\(964\) 55.9137 1.80086
\(965\) 0 0
\(966\) 0 0
\(967\) 34.5888 1.11230 0.556150 0.831082i \(-0.312278\pi\)
0.556150 + 0.831082i \(0.312278\pi\)
\(968\) 3.91806 0.125931
\(969\) 0 0
\(970\) 0 0
\(971\) −9.48475 −0.304380 −0.152190 0.988351i \(-0.548633\pi\)
−0.152190 + 0.988351i \(0.548633\pi\)
\(972\) 0 0
\(973\) −55.7917 −1.78860
\(974\) −71.3815 −2.28721
\(975\) 0 0
\(976\) 20.6834 0.662060
\(977\) −46.7275 −1.49495 −0.747473 0.664293i \(-0.768733\pi\)
−0.747473 + 0.664293i \(0.768733\pi\)
\(978\) 0 0
\(979\) −16.8338 −0.538012
\(980\) 0 0
\(981\) 0 0
\(982\) −61.6234 −1.96648
\(983\) −21.2344 −0.677271 −0.338636 0.940918i \(-0.609965\pi\)
−0.338636 + 0.940918i \(0.609965\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −16.3638 −0.520600
\(989\) −4.34910 −0.138293
\(990\) 0 0
\(991\) 29.7466 0.944931 0.472465 0.881349i \(-0.343364\pi\)
0.472465 + 0.881349i \(0.343364\pi\)
\(992\) −11.3660 −0.360872
\(993\) 0 0
\(994\) 46.1544 1.46393
\(995\) 0 0
\(996\) 0 0
\(997\) −4.84850 −0.153553 −0.0767767 0.997048i \(-0.524463\pi\)
−0.0767767 + 0.997048i \(0.524463\pi\)
\(998\) −52.5288 −1.66277
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.be.1.3 3
3.2 odd 2 1425.2.a.u.1.1 3
5.4 even 2 4275.2.a.bh.1.1 3
15.2 even 4 1425.2.c.p.799.2 6
15.8 even 4 1425.2.c.p.799.5 6
15.14 odd 2 1425.2.a.v.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.u.1.1 3 3.2 odd 2
1425.2.a.v.1.3 yes 3 15.14 odd 2
1425.2.c.p.799.2 6 15.2 even 4
1425.2.c.p.799.5 6 15.8 even 4
4275.2.a.be.1.3 3 1.1 even 1 trivial
4275.2.a.bh.1.1 3 5.4 even 2