Properties

Label 4275.2.a.be.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1425)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.523976\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.523976 q^{2} -1.72545 q^{4} +3.20147 q^{7} -1.95205 q^{8} -2.20147 q^{11} -3.04795 q^{13} +1.67750 q^{14} +2.42807 q^{16} +1.00000 q^{19} -1.15352 q^{22} +3.24943 q^{23} -1.59706 q^{26} -5.52398 q^{28} -3.00000 q^{29} -1.24943 q^{31} +5.17635 q^{32} +3.45090 q^{37} +0.523976 q^{38} -8.55646 q^{41} -8.00000 q^{43} +3.79853 q^{44} +1.70262 q^{46} +3.35499 q^{47} +3.24943 q^{49} +5.25909 q^{52} +0.904094 q^{53} -6.24943 q^{56} -1.57193 q^{58} -11.2015 q^{59} +3.40294 q^{61} -0.654669 q^{62} -2.14386 q^{64} +2.29738 q^{67} -7.29738 q^{71} -1.09591 q^{73} +1.80819 q^{74} -1.72545 q^{76} -7.04795 q^{77} +13.5565 q^{79} -4.48339 q^{82} -8.20147 q^{83} -4.19181 q^{86} +4.29738 q^{88} +7.40294 q^{89} -9.75794 q^{91} -5.60672 q^{92} +1.75794 q^{94} +7.14386 q^{97} +1.70262 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{4} - 9 q^{8} + 3 q^{11} - 6 q^{13} - 3 q^{14} + 12 q^{16} + 3 q^{19} + 3 q^{22} - 3 q^{23} - 24 q^{26} - 15 q^{28} - 9 q^{29} + 9 q^{31} - 18 q^{32} - 12 q^{37} - 24 q^{43} + 21 q^{44} + 21 q^{46}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.523976 0.370507 0.185254 0.982691i \(-0.440689\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(3\) 0 0
\(4\) −1.72545 −0.862724
\(5\) 0 0
\(6\) 0 0
\(7\) 3.20147 1.21004 0.605021 0.796209i \(-0.293165\pi\)
0.605021 + 0.796209i \(0.293165\pi\)
\(8\) −1.95205 −0.690153
\(9\) 0 0
\(10\) 0 0
\(11\) −2.20147 −0.663769 −0.331884 0.943320i \(-0.607684\pi\)
−0.331884 + 0.943320i \(0.607684\pi\)
\(12\) 0 0
\(13\) −3.04795 −0.845350 −0.422675 0.906281i \(-0.638909\pi\)
−0.422675 + 0.906281i \(0.638909\pi\)
\(14\) 1.67750 0.448330
\(15\) 0 0
\(16\) 2.42807 0.607018
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −1.15352 −0.245931
\(23\) 3.24943 0.677552 0.338776 0.940867i \(-0.389987\pi\)
0.338776 + 0.940867i \(0.389987\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.59706 −0.313208
\(27\) 0 0
\(28\) −5.52398 −1.04393
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) −1.24943 −0.224403 −0.112202 0.993685i \(-0.535790\pi\)
−0.112202 + 0.993685i \(0.535790\pi\)
\(32\) 5.17635 0.915057
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.45090 0.567324 0.283662 0.958924i \(-0.408451\pi\)
0.283662 + 0.958924i \(0.408451\pi\)
\(38\) 0.523976 0.0850002
\(39\) 0 0
\(40\) 0 0
\(41\) −8.55646 −1.33630 −0.668148 0.744029i \(-0.732913\pi\)
−0.668148 + 0.744029i \(0.732913\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 3.79853 0.572650
\(45\) 0 0
\(46\) 1.70262 0.251038
\(47\) 3.35499 0.489376 0.244688 0.969602i \(-0.421314\pi\)
0.244688 + 0.969602i \(0.421314\pi\)
\(48\) 0 0
\(49\) 3.24943 0.464204
\(50\) 0 0
\(51\) 0 0
\(52\) 5.25909 0.729304
\(53\) 0.904094 0.124187 0.0620935 0.998070i \(-0.480222\pi\)
0.0620935 + 0.998070i \(0.480222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −6.24943 −0.835115
\(57\) 0 0
\(58\) −1.57193 −0.206404
\(59\) −11.2015 −1.45831 −0.729154 0.684350i \(-0.760086\pi\)
−0.729154 + 0.684350i \(0.760086\pi\)
\(60\) 0 0
\(61\) 3.40294 0.435702 0.217851 0.975982i \(-0.430095\pi\)
0.217851 + 0.975982i \(0.430095\pi\)
\(62\) −0.654669 −0.0831431
\(63\) 0 0
\(64\) −2.14386 −0.267982
\(65\) 0 0
\(66\) 0 0
\(67\) 2.29738 0.280669 0.140335 0.990104i \(-0.455182\pi\)
0.140335 + 0.990104i \(0.455182\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.29738 −0.866039 −0.433020 0.901384i \(-0.642552\pi\)
−0.433020 + 0.901384i \(0.642552\pi\)
\(72\) 0 0
\(73\) −1.09591 −0.128266 −0.0641330 0.997941i \(-0.520428\pi\)
−0.0641330 + 0.997941i \(0.520428\pi\)
\(74\) 1.80819 0.210198
\(75\) 0 0
\(76\) −1.72545 −0.197923
\(77\) −7.04795 −0.803189
\(78\) 0 0
\(79\) 13.5565 1.52522 0.762611 0.646858i \(-0.223917\pi\)
0.762611 + 0.646858i \(0.223917\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −4.48339 −0.495107
\(83\) −8.20147 −0.900229 −0.450114 0.892971i \(-0.648617\pi\)
−0.450114 + 0.892971i \(0.648617\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.19181 −0.452015
\(87\) 0 0
\(88\) 4.29738 0.458102
\(89\) 7.40294 0.784711 0.392355 0.919814i \(-0.371660\pi\)
0.392355 + 0.919814i \(0.371660\pi\)
\(90\) 0 0
\(91\) −9.75794 −1.02291
\(92\) −5.60672 −0.584541
\(93\) 0 0
\(94\) 1.75794 0.181317
\(95\) 0 0
\(96\) 0 0
\(97\) 7.14386 0.725349 0.362674 0.931916i \(-0.381864\pi\)
0.362674 + 0.931916i \(0.381864\pi\)
\(98\) 1.70262 0.171991
\(99\) 0 0
\(100\) 0 0
\(101\) −13.7579 −1.36897 −0.684483 0.729029i \(-0.739972\pi\)
−0.684483 + 0.729029i \(0.739972\pi\)
\(102\) 0 0
\(103\) 6.20147 0.611049 0.305525 0.952184i \(-0.401168\pi\)
0.305525 + 0.952184i \(0.401168\pi\)
\(104\) 5.94975 0.583421
\(105\) 0 0
\(106\) 0.473724 0.0460122
\(107\) −15.6044 −1.50854 −0.754268 0.656567i \(-0.772008\pi\)
−0.754268 + 0.656567i \(0.772008\pi\)
\(108\) 0 0
\(109\) 7.45090 0.713667 0.356833 0.934168i \(-0.383856\pi\)
0.356833 + 0.934168i \(0.383856\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.77340 0.734517
\(113\) −15.2494 −1.43455 −0.717273 0.696793i \(-0.754610\pi\)
−0.717273 + 0.696793i \(0.754610\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.17635 0.480612
\(117\) 0 0
\(118\) −5.86931 −0.540314
\(119\) 0 0
\(120\) 0 0
\(121\) −6.15352 −0.559411
\(122\) 1.78306 0.161431
\(123\) 0 0
\(124\) 2.15582 0.193598
\(125\) 0 0
\(126\) 0 0
\(127\) −14.0553 −1.24721 −0.623604 0.781741i \(-0.714332\pi\)
−0.623604 + 0.781741i \(0.714332\pi\)
\(128\) −11.4760 −1.01435
\(129\) 0 0
\(130\) 0 0
\(131\) −4.34763 −0.379854 −0.189927 0.981798i \(-0.560825\pi\)
−0.189927 + 0.981798i \(0.560825\pi\)
\(132\) 0 0
\(133\) 3.20147 0.277603
\(134\) 1.20377 0.103990
\(135\) 0 0
\(136\) 0 0
\(137\) −19.7077 −1.68374 −0.841871 0.539680i \(-0.818545\pi\)
−0.841871 + 0.539680i \(0.818545\pi\)
\(138\) 0 0
\(139\) −15.9115 −1.34959 −0.674796 0.738004i \(-0.735768\pi\)
−0.674796 + 0.738004i \(0.735768\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.82365 −0.320874
\(143\) 6.70998 0.561117
\(144\) 0 0
\(145\) 0 0
\(146\) −0.574229 −0.0475235
\(147\) 0 0
\(148\) −5.95435 −0.489444
\(149\) 15.8538 1.29880 0.649399 0.760448i \(-0.275021\pi\)
0.649399 + 0.760448i \(0.275021\pi\)
\(150\) 0 0
\(151\) 18.9018 1.53821 0.769103 0.639125i \(-0.220703\pi\)
0.769103 + 0.639125i \(0.220703\pi\)
\(152\) −1.95205 −0.158332
\(153\) 0 0
\(154\) −3.69296 −0.297587
\(155\) 0 0
\(156\) 0 0
\(157\) −14.4606 −1.15408 −0.577039 0.816717i \(-0.695792\pi\)
−0.577039 + 0.816717i \(0.695792\pi\)
\(158\) 7.10327 0.565106
\(159\) 0 0
\(160\) 0 0
\(161\) 10.4029 0.819867
\(162\) 0 0
\(163\) −22.0074 −1.72375 −0.861875 0.507121i \(-0.830710\pi\)
−0.861875 + 0.507121i \(0.830710\pi\)
\(164\) 14.7637 1.15285
\(165\) 0 0
\(166\) −4.29738 −0.333541
\(167\) 3.10557 0.240316 0.120158 0.992755i \(-0.461660\pi\)
0.120158 + 0.992755i \(0.461660\pi\)
\(168\) 0 0
\(169\) −3.70998 −0.285383
\(170\) 0 0
\(171\) 0 0
\(172\) 13.8036 1.05251
\(173\) −15.9977 −1.21628 −0.608141 0.793829i \(-0.708085\pi\)
−0.608141 + 0.793829i \(0.708085\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.34533 −0.402919
\(177\) 0 0
\(178\) 3.87897 0.290741
\(179\) −2.89443 −0.216340 −0.108170 0.994132i \(-0.534499\pi\)
−0.108170 + 0.994132i \(0.534499\pi\)
\(180\) 0 0
\(181\) 6.90179 0.513006 0.256503 0.966543i \(-0.417430\pi\)
0.256503 + 0.966543i \(0.417430\pi\)
\(182\) −5.11293 −0.378995
\(183\) 0 0
\(184\) −6.34303 −0.467614
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −5.78887 −0.422196
\(189\) 0 0
\(190\) 0 0
\(191\) 9.24943 0.669265 0.334632 0.942349i \(-0.391388\pi\)
0.334632 + 0.942349i \(0.391388\pi\)
\(192\) 0 0
\(193\) 1.19411 0.0859540 0.0429770 0.999076i \(-0.486316\pi\)
0.0429770 + 0.999076i \(0.486316\pi\)
\(194\) 3.74321 0.268747
\(195\) 0 0
\(196\) −5.60672 −0.400480
\(197\) 17.4509 1.24332 0.621662 0.783285i \(-0.286458\pi\)
0.621662 + 0.783285i \(0.286458\pi\)
\(198\) 0 0
\(199\) 2.79853 0.198382 0.0991912 0.995068i \(-0.468374\pi\)
0.0991912 + 0.995068i \(0.468374\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7.20883 −0.507212
\(203\) −9.60442 −0.674098
\(204\) 0 0
\(205\) 0 0
\(206\) 3.24943 0.226398
\(207\) 0 0
\(208\) −7.40065 −0.513142
\(209\) −2.20147 −0.152279
\(210\) 0 0
\(211\) −26.2471 −1.80693 −0.903463 0.428665i \(-0.858984\pi\)
−0.903463 + 0.428665i \(0.858984\pi\)
\(212\) −1.55997 −0.107139
\(213\) 0 0
\(214\) −8.17635 −0.558924
\(215\) 0 0
\(216\) 0 0
\(217\) −4.00000 −0.271538
\(218\) 3.90409 0.264419
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.2494 0.887247 0.443624 0.896213i \(-0.353693\pi\)
0.443624 + 0.896213i \(0.353693\pi\)
\(224\) 16.5719 1.10726
\(225\) 0 0
\(226\) −7.99034 −0.531509
\(227\) 7.29738 0.484344 0.242172 0.970233i \(-0.422140\pi\)
0.242172 + 0.970233i \(0.422140\pi\)
\(228\) 0 0
\(229\) 15.8635 1.04829 0.524145 0.851629i \(-0.324385\pi\)
0.524145 + 0.851629i \(0.324385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.85614 0.384475
\(233\) −8.64501 −0.566353 −0.283177 0.959068i \(-0.591388\pi\)
−0.283177 + 0.959068i \(0.591388\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 19.3276 1.25812
\(237\) 0 0
\(238\) 0 0
\(239\) −25.7579 −1.66614 −0.833071 0.553166i \(-0.813420\pi\)
−0.833071 + 0.553166i \(0.813420\pi\)
\(240\) 0 0
\(241\) 9.59706 0.618201 0.309100 0.951029i \(-0.399972\pi\)
0.309100 + 0.951029i \(0.399972\pi\)
\(242\) −3.22430 −0.207266
\(243\) 0 0
\(244\) −5.87161 −0.375891
\(245\) 0 0
\(246\) 0 0
\(247\) −3.04795 −0.193937
\(248\) 2.43894 0.154873
\(249\) 0 0
\(250\) 0 0
\(251\) −17.6118 −1.11165 −0.555823 0.831301i \(-0.687597\pi\)
−0.555823 + 0.831301i \(0.687597\pi\)
\(252\) 0 0
\(253\) −7.15352 −0.449738
\(254\) −7.36465 −0.462099
\(255\) 0 0
\(256\) −1.72545 −0.107841
\(257\) 0.692961 0.0432257 0.0216129 0.999766i \(-0.493120\pi\)
0.0216129 + 0.999766i \(0.493120\pi\)
\(258\) 0 0
\(259\) 11.0480 0.686486
\(260\) 0 0
\(261\) 0 0
\(262\) −2.27806 −0.140739
\(263\) −23.5062 −1.44946 −0.724728 0.689036i \(-0.758034\pi\)
−0.724728 + 0.689036i \(0.758034\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.67750 0.102854
\(267\) 0 0
\(268\) −3.96401 −0.242140
\(269\) 10.6141 0.647152 0.323576 0.946202i \(-0.395115\pi\)
0.323576 + 0.946202i \(0.395115\pi\)
\(270\) 0 0
\(271\) 15.2974 0.929250 0.464625 0.885508i \(-0.346189\pi\)
0.464625 + 0.885508i \(0.346189\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −10.3264 −0.623838
\(275\) 0 0
\(276\) 0 0
\(277\) −19.5948 −1.17733 −0.588667 0.808375i \(-0.700347\pi\)
−0.588667 + 0.808375i \(0.700347\pi\)
\(278\) −8.33723 −0.500034
\(279\) 0 0
\(280\) 0 0
\(281\) 30.5542 1.82271 0.911354 0.411623i \(-0.135038\pi\)
0.911354 + 0.411623i \(0.135038\pi\)
\(282\) 0 0
\(283\) 8.61408 0.512054 0.256027 0.966670i \(-0.417586\pi\)
0.256027 + 0.966670i \(0.417586\pi\)
\(284\) 12.5913 0.747153
\(285\) 0 0
\(286\) 3.51587 0.207898
\(287\) −27.3933 −1.61697
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 1.89093 0.110658
\(293\) −29.5565 −1.72671 −0.863354 0.504600i \(-0.831640\pi\)
−0.863354 + 0.504600i \(0.831640\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6.73631 −0.391540
\(297\) 0 0
\(298\) 8.30704 0.481214
\(299\) −9.90409 −0.572769
\(300\) 0 0
\(301\) −25.6118 −1.47624
\(302\) 9.90409 0.569917
\(303\) 0 0
\(304\) 2.42807 0.139259
\(305\) 0 0
\(306\) 0 0
\(307\) −16.9115 −0.965188 −0.482594 0.875844i \(-0.660305\pi\)
−0.482594 + 0.875844i \(0.660305\pi\)
\(308\) 12.1609 0.692931
\(309\) 0 0
\(310\) 0 0
\(311\) −14.0959 −0.799305 −0.399653 0.916667i \(-0.630869\pi\)
−0.399653 + 0.916667i \(0.630869\pi\)
\(312\) 0 0
\(313\) 4.05531 0.229220 0.114610 0.993411i \(-0.463438\pi\)
0.114610 + 0.993411i \(0.463438\pi\)
\(314\) −7.57699 −0.427594
\(315\) 0 0
\(316\) −23.3910 −1.31585
\(317\) 21.9977 1.23551 0.617757 0.786369i \(-0.288042\pi\)
0.617757 + 0.786369i \(0.288042\pi\)
\(318\) 0 0
\(319\) 6.60442 0.369776
\(320\) 0 0
\(321\) 0 0
\(322\) 5.45090 0.303767
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −11.5313 −0.638662
\(327\) 0 0
\(328\) 16.7026 0.922248
\(329\) 10.7409 0.592166
\(330\) 0 0
\(331\) 12.4583 0.684768 0.342384 0.939560i \(-0.388766\pi\)
0.342384 + 0.939560i \(0.388766\pi\)
\(332\) 14.1512 0.776649
\(333\) 0 0
\(334\) 1.62724 0.0890388
\(335\) 0 0
\(336\) 0 0
\(337\) −20.4989 −1.11664 −0.558322 0.829624i \(-0.688555\pi\)
−0.558322 + 0.829624i \(0.688555\pi\)
\(338\) −1.94394 −0.105737
\(339\) 0 0
\(340\) 0 0
\(341\) 2.75057 0.148952
\(342\) 0 0
\(343\) −12.0074 −0.648337
\(344\) 15.6164 0.841979
\(345\) 0 0
\(346\) −8.38242 −0.450642
\(347\) −4.45320 −0.239060 −0.119530 0.992831i \(-0.538139\pi\)
−0.119530 + 0.992831i \(0.538139\pi\)
\(348\) 0 0
\(349\) −9.30704 −0.498194 −0.249097 0.968478i \(-0.580134\pi\)
−0.249097 + 0.968478i \(0.580134\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −11.3956 −0.607387
\(353\) −16.6141 −0.884278 −0.442139 0.896947i \(-0.645780\pi\)
−0.442139 + 0.896947i \(0.645780\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.7734 −0.676989
\(357\) 0 0
\(358\) −1.51661 −0.0801556
\(359\) −29.9497 −1.58069 −0.790344 0.612664i \(-0.790098\pi\)
−0.790344 + 0.612664i \(0.790098\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 3.61638 0.190073
\(363\) 0 0
\(364\) 16.8368 0.882489
\(365\) 0 0
\(366\) 0 0
\(367\) 28.1106 1.46736 0.733681 0.679494i \(-0.237800\pi\)
0.733681 + 0.679494i \(0.237800\pi\)
\(368\) 7.88983 0.411286
\(369\) 0 0
\(370\) 0 0
\(371\) 2.89443 0.150271
\(372\) 0 0
\(373\) −10.5948 −0.548576 −0.274288 0.961648i \(-0.588442\pi\)
−0.274288 + 0.961648i \(0.588442\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.54910 −0.337744
\(377\) 9.14386 0.470933
\(378\) 0 0
\(379\) 3.04795 0.156563 0.0782814 0.996931i \(-0.475057\pi\)
0.0782814 + 0.996931i \(0.475057\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.84648 0.247968
\(383\) −16.6021 −0.848329 −0.424164 0.905585i \(-0.639432\pi\)
−0.424164 + 0.905585i \(0.639432\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.625686 0.0318466
\(387\) 0 0
\(388\) −12.3264 −0.625776
\(389\) −7.25909 −0.368050 −0.184025 0.982922i \(-0.558913\pi\)
−0.184025 + 0.982922i \(0.558913\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −6.34303 −0.320371
\(393\) 0 0
\(394\) 9.14386 0.460661
\(395\) 0 0
\(396\) 0 0
\(397\) −20.2664 −1.01714 −0.508572 0.861020i \(-0.669826\pi\)
−0.508572 + 0.861020i \(0.669826\pi\)
\(398\) 1.46636 0.0735021
\(399\) 0 0
\(400\) 0 0
\(401\) 3.24943 0.162269 0.0811343 0.996703i \(-0.474146\pi\)
0.0811343 + 0.996703i \(0.474146\pi\)
\(402\) 0 0
\(403\) 3.80819 0.189699
\(404\) 23.7386 1.18104
\(405\) 0 0
\(406\) −5.03249 −0.249758
\(407\) −7.59706 −0.376572
\(408\) 0 0
\(409\) 34.0457 1.68345 0.841725 0.539907i \(-0.181541\pi\)
0.841725 + 0.539907i \(0.181541\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.7003 −0.527167
\(413\) −35.8612 −1.76461
\(414\) 0 0
\(415\) 0 0
\(416\) −15.7773 −0.773544
\(417\) 0 0
\(418\) −1.15352 −0.0564205
\(419\) −26.2568 −1.28273 −0.641364 0.767237i \(-0.721631\pi\)
−0.641364 + 0.767237i \(0.721631\pi\)
\(420\) 0 0
\(421\) −11.7579 −0.573047 −0.286523 0.958073i \(-0.592500\pi\)
−0.286523 + 0.958073i \(0.592500\pi\)
\(422\) −13.7529 −0.669479
\(423\) 0 0
\(424\) −1.76483 −0.0857080
\(425\) 0 0
\(426\) 0 0
\(427\) 10.8944 0.527219
\(428\) 26.9246 1.30145
\(429\) 0 0
\(430\) 0 0
\(431\) 27.0051 1.30079 0.650394 0.759597i \(-0.274604\pi\)
0.650394 + 0.759597i \(0.274604\pi\)
\(432\) 0 0
\(433\) −14.6597 −0.704502 −0.352251 0.935906i \(-0.614584\pi\)
−0.352251 + 0.935906i \(0.614584\pi\)
\(434\) −2.09591 −0.100607
\(435\) 0 0
\(436\) −12.8561 −0.615698
\(437\) 3.24943 0.155441
\(438\) 0 0
\(439\) −22.7653 −1.08653 −0.543264 0.839562i \(-0.682812\pi\)
−0.543264 + 0.839562i \(0.682812\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 39.3601 1.87005 0.935026 0.354578i \(-0.115376\pi\)
0.935026 + 0.354578i \(0.115376\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.94239 0.328732
\(447\) 0 0
\(448\) −6.86350 −0.324270
\(449\) 12.3047 0.580697 0.290348 0.956921i \(-0.406229\pi\)
0.290348 + 0.956921i \(0.406229\pi\)
\(450\) 0 0
\(451\) 18.8368 0.886991
\(452\) 26.3121 1.23762
\(453\) 0 0
\(454\) 3.82365 0.179453
\(455\) 0 0
\(456\) 0 0
\(457\) 3.15122 0.147408 0.0737039 0.997280i \(-0.476518\pi\)
0.0737039 + 0.997280i \(0.476518\pi\)
\(458\) 8.31210 0.388399
\(459\) 0 0
\(460\) 0 0
\(461\) 32.0457 1.49251 0.746257 0.665657i \(-0.231849\pi\)
0.746257 + 0.665657i \(0.231849\pi\)
\(462\) 0 0
\(463\) 19.0936 0.887355 0.443678 0.896186i \(-0.353674\pi\)
0.443678 + 0.896186i \(0.353674\pi\)
\(464\) −7.28421 −0.338161
\(465\) 0 0
\(466\) −4.52978 −0.209838
\(467\) −0.105567 −0.00488505 −0.00244252 0.999997i \(-0.500777\pi\)
−0.00244252 + 0.999997i \(0.500777\pi\)
\(468\) 0 0
\(469\) 7.35499 0.339622
\(470\) 0 0
\(471\) 0 0
\(472\) 21.8658 1.00646
\(473\) 17.6118 0.809790
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −13.4966 −0.617318
\(479\) 29.2951 1.33853 0.669263 0.743025i \(-0.266610\pi\)
0.669263 + 0.743025i \(0.266610\pi\)
\(480\) 0 0
\(481\) −10.5182 −0.479587
\(482\) 5.02863 0.229048
\(483\) 0 0
\(484\) 10.6176 0.482617
\(485\) 0 0
\(486\) 0 0
\(487\) −6.24206 −0.282855 −0.141427 0.989949i \(-0.545169\pi\)
−0.141427 + 0.989949i \(0.545169\pi\)
\(488\) −6.64271 −0.300701
\(489\) 0 0
\(490\) 0 0
\(491\) 14.5182 0.655196 0.327598 0.944817i \(-0.393761\pi\)
0.327598 + 0.944817i \(0.393761\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −1.59706 −0.0718549
\(495\) 0 0
\(496\) −3.03369 −0.136217
\(497\) −23.3624 −1.04794
\(498\) 0 0
\(499\) 0.913756 0.0409053 0.0204527 0.999791i \(-0.493489\pi\)
0.0204527 + 0.999791i \(0.493489\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −9.22816 −0.411873
\(503\) −27.8538 −1.24194 −0.620971 0.783834i \(-0.713261\pi\)
−0.620971 + 0.783834i \(0.713261\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.74828 −0.166631
\(507\) 0 0
\(508\) 24.2517 1.07600
\(509\) 31.5136 1.39681 0.698407 0.715701i \(-0.253892\pi\)
0.698407 + 0.715701i \(0.253892\pi\)
\(510\) 0 0
\(511\) −3.50851 −0.155207
\(512\) 22.0480 0.974391
\(513\) 0 0
\(514\) 0.363095 0.0160154
\(515\) 0 0
\(516\) 0 0
\(517\) −7.38592 −0.324832
\(518\) 5.78887 0.254348
\(519\) 0 0
\(520\) 0 0
\(521\) 9.49885 0.416152 0.208076 0.978113i \(-0.433280\pi\)
0.208076 + 0.978113i \(0.433280\pi\)
\(522\) 0 0
\(523\) 23.9691 1.04809 0.524047 0.851689i \(-0.324422\pi\)
0.524047 + 0.851689i \(0.324422\pi\)
\(524\) 7.50161 0.327709
\(525\) 0 0
\(526\) −12.3167 −0.537034
\(527\) 0 0
\(528\) 0 0
\(529\) −12.4412 −0.540923
\(530\) 0 0
\(531\) 0 0
\(532\) −5.52398 −0.239495
\(533\) 26.0797 1.12964
\(534\) 0 0
\(535\) 0 0
\(536\) −4.48459 −0.193705
\(537\) 0 0
\(538\) 5.56153 0.239774
\(539\) −7.15352 −0.308124
\(540\) 0 0
\(541\) 21.9401 0.943278 0.471639 0.881792i \(-0.343663\pi\)
0.471639 + 0.881792i \(0.343663\pi\)
\(542\) 8.01546 0.344294
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 39.0074 1.66783 0.833917 0.551890i \(-0.186093\pi\)
0.833917 + 0.551890i \(0.186093\pi\)
\(548\) 34.0046 1.45260
\(549\) 0 0
\(550\) 0 0
\(551\) −3.00000 −0.127804
\(552\) 0 0
\(553\) 43.4006 1.84558
\(554\) −10.2672 −0.436211
\(555\) 0 0
\(556\) 27.4544 1.16433
\(557\) −26.0959 −1.10572 −0.552860 0.833274i \(-0.686463\pi\)
−0.552860 + 0.833274i \(0.686463\pi\)
\(558\) 0 0
\(559\) 24.3836 1.03132
\(560\) 0 0
\(561\) 0 0
\(562\) 16.0097 0.675327
\(563\) 20.8944 0.880595 0.440298 0.897852i \(-0.354873\pi\)
0.440298 + 0.897852i \(0.354873\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.51357 0.189720
\(567\) 0 0
\(568\) 14.2448 0.597700
\(569\) 39.8419 1.67026 0.835129 0.550054i \(-0.185393\pi\)
0.835129 + 0.550054i \(0.185393\pi\)
\(570\) 0 0
\(571\) 16.7173 0.699599 0.349800 0.936825i \(-0.386250\pi\)
0.349800 + 0.936825i \(0.386250\pi\)
\(572\) −11.5777 −0.484089
\(573\) 0 0
\(574\) −14.3534 −0.599101
\(575\) 0 0
\(576\) 0 0
\(577\) −36.0360 −1.50020 −0.750099 0.661326i \(-0.769994\pi\)
−0.750099 + 0.661326i \(0.769994\pi\)
\(578\) −8.90760 −0.370507
\(579\) 0 0
\(580\) 0 0
\(581\) −26.2568 −1.08932
\(582\) 0 0
\(583\) −1.99034 −0.0824314
\(584\) 2.13926 0.0885232
\(585\) 0 0
\(586\) −15.4869 −0.639758
\(587\) 3.95941 0.163422 0.0817111 0.996656i \(-0.473962\pi\)
0.0817111 + 0.996656i \(0.473962\pi\)
\(588\) 0 0
\(589\) −1.24943 −0.0514817
\(590\) 0 0
\(591\) 0 0
\(592\) 8.37902 0.344376
\(593\) 21.1439 0.868274 0.434137 0.900847i \(-0.357053\pi\)
0.434137 + 0.900847i \(0.357053\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −27.3550 −1.12050
\(597\) 0 0
\(598\) −5.18951 −0.212215
\(599\) −4.19181 −0.171273 −0.0856364 0.996326i \(-0.527292\pi\)
−0.0856364 + 0.996326i \(0.527292\pi\)
\(600\) 0 0
\(601\) −4.54910 −0.185562 −0.0927809 0.995687i \(-0.529576\pi\)
−0.0927809 + 0.995687i \(0.529576\pi\)
\(602\) −13.4200 −0.546957
\(603\) 0 0
\(604\) −32.6141 −1.32705
\(605\) 0 0
\(606\) 0 0
\(607\) 34.6044 1.40455 0.702275 0.711906i \(-0.252168\pi\)
0.702275 + 0.711906i \(0.252168\pi\)
\(608\) 5.17635 0.209929
\(609\) 0 0
\(610\) 0 0
\(611\) −10.2259 −0.413694
\(612\) 0 0
\(613\) −4.13420 −0.166979 −0.0834893 0.996509i \(-0.526606\pi\)
−0.0834893 + 0.996509i \(0.526606\pi\)
\(614\) −8.86120 −0.357609
\(615\) 0 0
\(616\) 13.7579 0.554323
\(617\) −17.2398 −0.694047 −0.347023 0.937856i \(-0.612808\pi\)
−0.347023 + 0.937856i \(0.612808\pi\)
\(618\) 0 0
\(619\) −39.0244 −1.56852 −0.784261 0.620431i \(-0.786958\pi\)
−0.784261 + 0.620431i \(0.786958\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.38592 −0.296148
\(623\) 23.7003 0.949533
\(624\) 0 0
\(625\) 0 0
\(626\) 2.12489 0.0849276
\(627\) 0 0
\(628\) 24.9510 0.995651
\(629\) 0 0
\(630\) 0 0
\(631\) 34.0959 1.35734 0.678668 0.734445i \(-0.262557\pi\)
0.678668 + 0.734445i \(0.262557\pi\)
\(632\) −26.4629 −1.05264
\(633\) 0 0
\(634\) 11.5263 0.457767
\(635\) 0 0
\(636\) 0 0
\(637\) −9.90409 −0.392415
\(638\) 3.46056 0.137005
\(639\) 0 0
\(640\) 0 0
\(641\) −27.8036 −1.09818 −0.549088 0.835765i \(-0.685025\pi\)
−0.549088 + 0.835765i \(0.685025\pi\)
\(642\) 0 0
\(643\) −40.2185 −1.58606 −0.793031 0.609181i \(-0.791498\pi\)
−0.793031 + 0.609181i \(0.791498\pi\)
\(644\) −17.9497 −0.707319
\(645\) 0 0
\(646\) 0 0
\(647\) 20.1512 0.792226 0.396113 0.918202i \(-0.370359\pi\)
0.396113 + 0.918202i \(0.370359\pi\)
\(648\) 0 0
\(649\) 24.6597 0.967979
\(650\) 0 0
\(651\) 0 0
\(652\) 37.9726 1.48712
\(653\) 26.7556 1.04703 0.523514 0.852017i \(-0.324621\pi\)
0.523514 + 0.852017i \(0.324621\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −20.7757 −0.811155
\(657\) 0 0
\(658\) 5.62799 0.219402
\(659\) −17.6118 −0.686057 −0.343029 0.939325i \(-0.611453\pi\)
−0.343029 + 0.939325i \(0.611453\pi\)
\(660\) 0 0
\(661\) 11.5159 0.447916 0.223958 0.974599i \(-0.428102\pi\)
0.223958 + 0.974599i \(0.428102\pi\)
\(662\) 6.52783 0.253711
\(663\) 0 0
\(664\) 16.0097 0.621295
\(665\) 0 0
\(666\) 0 0
\(667\) −9.74828 −0.377455
\(668\) −5.35850 −0.207326
\(669\) 0 0
\(670\) 0 0
\(671\) −7.49149 −0.289206
\(672\) 0 0
\(673\) 7.85384 0.302743 0.151372 0.988477i \(-0.451631\pi\)
0.151372 + 0.988477i \(0.451631\pi\)
\(674\) −10.7409 −0.413725
\(675\) 0 0
\(676\) 6.40139 0.246207
\(677\) 43.5136 1.67236 0.836181 0.548453i \(-0.184783\pi\)
0.836181 + 0.548453i \(0.184783\pi\)
\(678\) 0 0
\(679\) 22.8709 0.877703
\(680\) 0 0
\(681\) 0 0
\(682\) 1.44124 0.0551878
\(683\) −4.60212 −0.176095 −0.0880476 0.996116i \(-0.528063\pi\)
−0.0880476 + 0.996116i \(0.528063\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.29157 −0.240213
\(687\) 0 0
\(688\) −19.4246 −0.740555
\(689\) −2.75564 −0.104981
\(690\) 0 0
\(691\) 28.5948 1.08780 0.543898 0.839151i \(-0.316948\pi\)
0.543898 + 0.839151i \(0.316948\pi\)
\(692\) 27.6032 1.04932
\(693\) 0 0
\(694\) −2.33337 −0.0885735
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −4.87667 −0.184585
\(699\) 0 0
\(700\) 0 0
\(701\) 18.2111 0.687825 0.343913 0.939002i \(-0.388248\pi\)
0.343913 + 0.939002i \(0.388248\pi\)
\(702\) 0 0
\(703\) 3.45090 0.130153
\(704\) 4.71964 0.177878
\(705\) 0 0
\(706\) −8.70538 −0.327631
\(707\) −44.0457 −1.65651
\(708\) 0 0
\(709\) −10.6930 −0.401583 −0.200791 0.979634i \(-0.564351\pi\)
−0.200791 + 0.979634i \(0.564351\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −14.4509 −0.541570
\(713\) −4.05991 −0.152045
\(714\) 0 0
\(715\) 0 0
\(716\) 4.99420 0.186642
\(717\) 0 0
\(718\) −15.6930 −0.585656
\(719\) 41.9548 1.56465 0.782325 0.622870i \(-0.214034\pi\)
0.782325 + 0.622870i \(0.214034\pi\)
\(720\) 0 0
\(721\) 19.8538 0.739396
\(722\) 0.523976 0.0195004
\(723\) 0 0
\(724\) −11.9087 −0.442583
\(725\) 0 0
\(726\) 0 0
\(727\) 28.4103 1.05368 0.526840 0.849964i \(-0.323377\pi\)
0.526840 + 0.849964i \(0.323377\pi\)
\(728\) 19.0480 0.705964
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −14.6930 −0.542697 −0.271348 0.962481i \(-0.587470\pi\)
−0.271348 + 0.962481i \(0.587470\pi\)
\(734\) 14.7293 0.543669
\(735\) 0 0
\(736\) 16.8201 0.619999
\(737\) −5.05761 −0.186300
\(738\) 0 0
\(739\) 14.4103 0.530092 0.265046 0.964236i \(-0.414613\pi\)
0.265046 + 0.964236i \(0.414613\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.51661 0.0556767
\(743\) 31.5851 1.15874 0.579372 0.815063i \(-0.303298\pi\)
0.579372 + 0.815063i \(0.303298\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −5.55140 −0.203251
\(747\) 0 0
\(748\) 0 0
\(749\) −49.9571 −1.82539
\(750\) 0 0
\(751\) 25.4509 0.928716 0.464358 0.885647i \(-0.346285\pi\)
0.464358 + 0.885647i \(0.346285\pi\)
\(752\) 8.14616 0.297060
\(753\) 0 0
\(754\) 4.79117 0.174484
\(755\) 0 0
\(756\) 0 0
\(757\) −14.0170 −0.509457 −0.254729 0.967013i \(-0.581986\pi\)
−0.254729 + 0.967013i \(0.581986\pi\)
\(758\) 1.59706 0.0580077
\(759\) 0 0
\(760\) 0 0
\(761\) 47.2738 1.71367 0.856837 0.515587i \(-0.172426\pi\)
0.856837 + 0.515587i \(0.172426\pi\)
\(762\) 0 0
\(763\) 23.8538 0.863567
\(764\) −15.9594 −0.577391
\(765\) 0 0
\(766\) −8.69912 −0.314312
\(767\) 34.1416 1.23278
\(768\) 0 0
\(769\) 26.0936 0.940960 0.470480 0.882411i \(-0.344081\pi\)
0.470480 + 0.882411i \(0.344081\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.06038 −0.0741546
\(773\) 23.6501 0.850634 0.425317 0.905044i \(-0.360163\pi\)
0.425317 + 0.905044i \(0.360163\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −13.9451 −0.500602
\(777\) 0 0
\(778\) −3.80359 −0.136365
\(779\) −8.55646 −0.306567
\(780\) 0 0
\(781\) 16.0650 0.574850
\(782\) 0 0
\(783\) 0 0
\(784\) 7.88983 0.281780
\(785\) 0 0
\(786\) 0 0
\(787\) 22.8156 0.813287 0.406643 0.913587i \(-0.366699\pi\)
0.406643 + 0.913587i \(0.366699\pi\)
\(788\) −30.1106 −1.07265
\(789\) 0 0
\(790\) 0 0
\(791\) −48.8206 −1.73586
\(792\) 0 0
\(793\) −10.3720 −0.368321
\(794\) −10.6191 −0.376859
\(795\) 0 0
\(796\) −4.82872 −0.171149
\(797\) 0.748275 0.0265053 0.0132526 0.999912i \(-0.495781\pi\)
0.0132526 + 0.999912i \(0.495781\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 1.70262 0.0601217
\(803\) 2.41261 0.0851390
\(804\) 0 0
\(805\) 0 0
\(806\) 1.99540 0.0702850
\(807\) 0 0
\(808\) 26.8561 0.944796
\(809\) −50.1563 −1.76340 −0.881700 0.471810i \(-0.843601\pi\)
−0.881700 + 0.471810i \(0.843601\pi\)
\(810\) 0 0
\(811\) 27.9903 0.982874 0.491437 0.870913i \(-0.336472\pi\)
0.491437 + 0.870913i \(0.336472\pi\)
\(812\) 16.5719 0.581561
\(813\) 0 0
\(814\) −3.98068 −0.139523
\(815\) 0 0
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 17.8391 0.623730
\(819\) 0 0
\(820\) 0 0
\(821\) 42.3218 1.47704 0.738520 0.674232i \(-0.235525\pi\)
0.738520 + 0.674232i \(0.235525\pi\)
\(822\) 0 0
\(823\) −35.6044 −1.24109 −0.620546 0.784170i \(-0.713089\pi\)
−0.620546 + 0.784170i \(0.713089\pi\)
\(824\) −12.1056 −0.421717
\(825\) 0 0
\(826\) −18.7904 −0.653802
\(827\) 51.4154 1.78789 0.893944 0.448179i \(-0.147927\pi\)
0.893944 + 0.448179i \(0.147927\pi\)
\(828\) 0 0
\(829\) −26.9520 −0.936083 −0.468042 0.883706i \(-0.655040\pi\)
−0.468042 + 0.883706i \(0.655040\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6.53438 0.226539
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 3.79853 0.131375
\(837\) 0 0
\(838\) −13.7579 −0.475260
\(839\) −34.7026 −1.19807 −0.599034 0.800724i \(-0.704448\pi\)
−0.599034 + 0.800724i \(0.704448\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −6.16088 −0.212318
\(843\) 0 0
\(844\) 45.2881 1.55888
\(845\) 0 0
\(846\) 0 0
\(847\) −19.7003 −0.676911
\(848\) 2.19521 0.0753837
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2134 0.384392
\(852\) 0 0
\(853\) 0.134197 0.00459483 0.00229741 0.999997i \(-0.499269\pi\)
0.00229741 + 0.999997i \(0.499269\pi\)
\(854\) 5.70843 0.195338
\(855\) 0 0
\(856\) 30.4606 1.04112
\(857\) −30.5371 −1.04313 −0.521564 0.853212i \(-0.674651\pi\)
−0.521564 + 0.853212i \(0.674651\pi\)
\(858\) 0 0
\(859\) −57.1010 −1.94826 −0.974130 0.225989i \(-0.927439\pi\)
−0.974130 + 0.225989i \(0.927439\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 14.1500 0.481951
\(863\) 0.376261 0.0128081 0.00640403 0.999979i \(-0.497962\pi\)
0.00640403 + 0.999979i \(0.497962\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −7.68135 −0.261023
\(867\) 0 0
\(868\) 6.90179 0.234262
\(869\) −29.8442 −1.01239
\(870\) 0 0
\(871\) −7.00230 −0.237264
\(872\) −14.5445 −0.492539
\(873\) 0 0
\(874\) 1.70262 0.0575921
\(875\) 0 0
\(876\) 0 0
\(877\) 5.54680 0.187302 0.0936511 0.995605i \(-0.470146\pi\)
0.0936511 + 0.995605i \(0.470146\pi\)
\(878\) −11.9285 −0.402567
\(879\) 0 0
\(880\) 0 0
\(881\) −13.3357 −0.449290 −0.224645 0.974441i \(-0.572122\pi\)
−0.224645 + 0.974441i \(0.572122\pi\)
\(882\) 0 0
\(883\) −11.6044 −0.390520 −0.195260 0.980752i \(-0.562555\pi\)
−0.195260 + 0.980752i \(0.562555\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.6237 0.692868
\(887\) −33.2282 −1.11569 −0.557846 0.829944i \(-0.688372\pi\)
−0.557846 + 0.829944i \(0.688372\pi\)
\(888\) 0 0
\(889\) −44.9977 −1.50917
\(890\) 0 0
\(891\) 0 0
\(892\) −22.8612 −0.765450
\(893\) 3.35499 0.112271
\(894\) 0 0
\(895\) 0 0
\(896\) −36.7402 −1.22740
\(897\) 0 0
\(898\) 6.44739 0.215152
\(899\) 3.74828 0.125012
\(900\) 0 0
\(901\) 0 0
\(902\) 9.87005 0.328637
\(903\) 0 0
\(904\) 29.7676 0.990056
\(905\) 0 0
\(906\) 0 0
\(907\) −18.9018 −0.627624 −0.313812 0.949485i \(-0.601606\pi\)
−0.313812 + 0.949485i \(0.601606\pi\)
\(908\) −12.5913 −0.417855
\(909\) 0 0
\(910\) 0 0
\(911\) 10.3910 0.344269 0.172134 0.985073i \(-0.444934\pi\)
0.172134 + 0.985073i \(0.444934\pi\)
\(912\) 0 0
\(913\) 18.0553 0.597544
\(914\) 1.65116 0.0546157
\(915\) 0 0
\(916\) −27.3717 −0.904385
\(917\) −13.9188 −0.459640
\(918\) 0 0
\(919\) −0.894433 −0.0295046 −0.0147523 0.999891i \(-0.504696\pi\)
−0.0147523 + 0.999891i \(0.504696\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 16.7912 0.552988
\(923\) 22.2421 0.732106
\(924\) 0 0
\(925\) 0 0
\(926\) 10.0046 0.328772
\(927\) 0 0
\(928\) −15.5290 −0.509766
\(929\) 3.69296 0.121162 0.0605811 0.998163i \(-0.480705\pi\)
0.0605811 + 0.998163i \(0.480705\pi\)
\(930\) 0 0
\(931\) 3.24943 0.106496
\(932\) 14.9165 0.488607
\(933\) 0 0
\(934\) −0.0553145 −0.00180995
\(935\) 0 0
\(936\) 0 0
\(937\) 16.2494 0.530846 0.265423 0.964132i \(-0.414488\pi\)
0.265423 + 0.964132i \(0.414488\pi\)
\(938\) 3.85384 0.125832
\(939\) 0 0
\(940\) 0 0
\(941\) −13.1535 −0.428792 −0.214396 0.976747i \(-0.568778\pi\)
−0.214396 + 0.976747i \(0.568778\pi\)
\(942\) 0 0
\(943\) −27.8036 −0.905409
\(944\) −27.1980 −0.885218
\(945\) 0 0
\(946\) 9.22816 0.300033
\(947\) −40.5136 −1.31651 −0.658257 0.752793i \(-0.728706\pi\)
−0.658257 + 0.752793i \(0.728706\pi\)
\(948\) 0 0
\(949\) 3.34027 0.108430
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −44.6884 −1.44760 −0.723799 0.690011i \(-0.757606\pi\)
−0.723799 + 0.690011i \(0.757606\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 44.4440 1.43742
\(957\) 0 0
\(958\) 15.3499 0.495934
\(959\) −63.0936 −2.03740
\(960\) 0 0
\(961\) −29.4389 −0.949643
\(962\) −5.51127 −0.177691
\(963\) 0 0
\(964\) −16.5592 −0.533337
\(965\) 0 0
\(966\) 0 0
\(967\) 38.3910 1.23457 0.617285 0.786739i \(-0.288232\pi\)
0.617285 + 0.786739i \(0.288232\pi\)
\(968\) 12.0120 0.386079
\(969\) 0 0
\(970\) 0 0
\(971\) 12.6980 0.407499 0.203749 0.979023i \(-0.434687\pi\)
0.203749 + 0.979023i \(0.434687\pi\)
\(972\) 0 0
\(973\) −50.9401 −1.63306
\(974\) −3.27069 −0.104800
\(975\) 0 0
\(976\) 8.26259 0.264479
\(977\) −3.48183 −0.111394 −0.0556968 0.998448i \(-0.517738\pi\)
−0.0556968 + 0.998448i \(0.517738\pi\)
\(978\) 0 0
\(979\) −16.2974 −0.520866
\(980\) 0 0
\(981\) 0 0
\(982\) 7.60718 0.242755
\(983\) 10.1152 0.322626 0.161313 0.986903i \(-0.448427\pi\)
0.161313 + 0.986903i \(0.448427\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 5.25909 0.167314
\(989\) −25.9954 −0.826606
\(990\) 0 0
\(991\) 23.7985 0.755985 0.377993 0.925809i \(-0.376614\pi\)
0.377993 + 0.925809i \(0.376614\pi\)
\(992\) −6.46746 −0.205342
\(993\) 0 0
\(994\) −12.2413 −0.388271
\(995\) 0 0
\(996\) 0 0
\(997\) 38.9571 1.23378 0.616892 0.787048i \(-0.288392\pi\)
0.616892 + 0.787048i \(0.288392\pi\)
\(998\) 0.478786 0.0151557
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.be.1.2 3
3.2 odd 2 1425.2.a.u.1.2 3
5.4 even 2 4275.2.a.bh.1.2 3
15.2 even 4 1425.2.c.p.799.3 6
15.8 even 4 1425.2.c.p.799.4 6
15.14 odd 2 1425.2.a.v.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.u.1.2 3 3.2 odd 2
1425.2.a.v.1.2 yes 3 15.14 odd 2
1425.2.c.p.799.3 6 15.2 even 4
1425.2.c.p.799.4 6 15.8 even 4
4275.2.a.be.1.2 3 1.1 even 1 trivial
4275.2.a.bh.1.2 3 5.4 even 2