Properties

Label 4275.2.a.bd.1.3
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} +0.193937 q^{4} +4.48119 q^{7} -2.67513 q^{8} -3.67513 q^{11} +2.86907 q^{13} +6.63752 q^{14} -4.35026 q^{16} -6.15633 q^{17} -1.00000 q^{19} -5.44358 q^{22} -8.15633 q^{23} +4.24965 q^{26} +0.869067 q^{28} -4.63752 q^{29} -2.80606 q^{31} -1.09332 q^{32} -9.11871 q^{34} -3.44358 q^{37} -1.48119 q^{38} +5.59991 q^{41} -10.1441 q^{43} -0.712742 q^{44} -12.0811 q^{46} -3.84367 q^{47} +13.0811 q^{49} +0.556417 q^{52} +3.89446 q^{53} -11.9878 q^{56} -6.86907 q^{58} +9.53690 q^{59} -9.89446 q^{61} -4.15633 q^{62} +7.08110 q^{64} +8.70052 q^{67} -1.19394 q^{68} +2.00000 q^{71} -3.08840 q^{73} -5.10062 q^{74} -0.193937 q^{76} -16.4690 q^{77} +4.96239 q^{79} +8.29455 q^{82} -6.73084 q^{83} -15.0254 q^{86} +9.83146 q^{88} -11.4739 q^{89} +12.8568 q^{91} -1.58181 q^{92} -5.69323 q^{94} +9.63023 q^{97} +19.3757 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + q^{4} + 8 q^{7} - 3 q^{8} - 6 q^{11} + 4 q^{13} + 4 q^{14} - 3 q^{16} - 8 q^{17} - 3 q^{19} - 14 q^{23} - 4 q^{26} - 2 q^{28} + 2 q^{29} - 8 q^{31} + 3 q^{32} - 6 q^{34} + 6 q^{37} + q^{38}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 0 0
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) 0 0
\(7\) 4.48119 1.69373 0.846866 0.531806i \(-0.178486\pi\)
0.846866 + 0.531806i \(0.178486\pi\)
\(8\) −2.67513 −0.945802
\(9\) 0 0
\(10\) 0 0
\(11\) −3.67513 −1.10809 −0.554047 0.832486i \(-0.686917\pi\)
−0.554047 + 0.832486i \(0.686917\pi\)
\(12\) 0 0
\(13\) 2.86907 0.795736 0.397868 0.917443i \(-0.369750\pi\)
0.397868 + 0.917443i \(0.369750\pi\)
\(14\) 6.63752 1.77395
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) −6.15633 −1.49313 −0.746564 0.665314i \(-0.768298\pi\)
−0.746564 + 0.665314i \(0.768298\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −5.44358 −1.16058
\(23\) −8.15633 −1.70071 −0.850356 0.526208i \(-0.823613\pi\)
−0.850356 + 0.526208i \(0.823613\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.24965 0.833424
\(27\) 0 0
\(28\) 0.869067 0.164238
\(29\) −4.63752 −0.861166 −0.430583 0.902551i \(-0.641692\pi\)
−0.430583 + 0.902551i \(0.641692\pi\)
\(30\) 0 0
\(31\) −2.80606 −0.503984 −0.251992 0.967729i \(-0.581086\pi\)
−0.251992 + 0.967729i \(0.581086\pi\)
\(32\) −1.09332 −0.193274
\(33\) 0 0
\(34\) −9.11871 −1.56385
\(35\) 0 0
\(36\) 0 0
\(37\) −3.44358 −0.566122 −0.283061 0.959102i \(-0.591350\pi\)
−0.283061 + 0.959102i \(0.591350\pi\)
\(38\) −1.48119 −0.240281
\(39\) 0 0
\(40\) 0 0
\(41\) 5.59991 0.874559 0.437279 0.899326i \(-0.355942\pi\)
0.437279 + 0.899326i \(0.355942\pi\)
\(42\) 0 0
\(43\) −10.1441 −1.54696 −0.773481 0.633820i \(-0.781486\pi\)
−0.773481 + 0.633820i \(0.781486\pi\)
\(44\) −0.712742 −0.107450
\(45\) 0 0
\(46\) −12.0811 −1.78126
\(47\) −3.84367 −0.560658 −0.280329 0.959904i \(-0.590443\pi\)
−0.280329 + 0.959904i \(0.590443\pi\)
\(48\) 0 0
\(49\) 13.0811 1.86873
\(50\) 0 0
\(51\) 0 0
\(52\) 0.556417 0.0771612
\(53\) 3.89446 0.534945 0.267473 0.963565i \(-0.413812\pi\)
0.267473 + 0.963565i \(0.413812\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −11.9878 −1.60193
\(57\) 0 0
\(58\) −6.86907 −0.901953
\(59\) 9.53690 1.24160 0.620800 0.783969i \(-0.286808\pi\)
0.620800 + 0.783969i \(0.286808\pi\)
\(60\) 0 0
\(61\) −9.89446 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(62\) −4.15633 −0.527854
\(63\) 0 0
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) 0 0
\(67\) 8.70052 1.06294 0.531469 0.847078i \(-0.321640\pi\)
0.531469 + 0.847078i \(0.321640\pi\)
\(68\) −1.19394 −0.144786
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −3.08840 −0.361469 −0.180735 0.983532i \(-0.557848\pi\)
−0.180735 + 0.983532i \(0.557848\pi\)
\(74\) −5.10062 −0.592934
\(75\) 0 0
\(76\) −0.193937 −0.0222460
\(77\) −16.4690 −1.87681
\(78\) 0 0
\(79\) 4.96239 0.558312 0.279156 0.960246i \(-0.409945\pi\)
0.279156 + 0.960246i \(0.409945\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.29455 0.915980
\(83\) −6.73084 −0.738806 −0.369403 0.929269i \(-0.620438\pi\)
−0.369403 + 0.929269i \(0.620438\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −15.0254 −1.62023
\(87\) 0 0
\(88\) 9.83146 1.04804
\(89\) −11.4739 −1.21623 −0.608115 0.793849i \(-0.708074\pi\)
−0.608115 + 0.793849i \(0.708074\pi\)
\(90\) 0 0
\(91\) 12.8568 1.34776
\(92\) −1.58181 −0.164915
\(93\) 0 0
\(94\) −5.69323 −0.587212
\(95\) 0 0
\(96\) 0 0
\(97\) 9.63023 0.977801 0.488901 0.872339i \(-0.337398\pi\)
0.488901 + 0.872339i \(0.337398\pi\)
\(98\) 19.3757 1.95724
\(99\) 0 0
\(100\) 0 0
\(101\) −5.61213 −0.558427 −0.279214 0.960229i \(-0.590074\pi\)
−0.279214 + 0.960229i \(0.590074\pi\)
\(102\) 0 0
\(103\) −3.53690 −0.348502 −0.174251 0.984701i \(-0.555750\pi\)
−0.174251 + 0.984701i \(0.555750\pi\)
\(104\) −7.67513 −0.752609
\(105\) 0 0
\(106\) 5.76845 0.560282
\(107\) 16.4387 1.58919 0.794593 0.607143i \(-0.207685\pi\)
0.794593 + 0.607143i \(0.207685\pi\)
\(108\) 0 0
\(109\) −12.3879 −1.18654 −0.593272 0.805002i \(-0.702164\pi\)
−0.593272 + 0.805002i \(0.702164\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −19.4944 −1.84204
\(113\) −11.2447 −1.05781 −0.528907 0.848680i \(-0.677398\pi\)
−0.528907 + 0.848680i \(0.677398\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.899385 −0.0835058
\(117\) 0 0
\(118\) 14.1260 1.30040
\(119\) −27.5877 −2.52896
\(120\) 0 0
\(121\) 2.50659 0.227872
\(122\) −14.6556 −1.32686
\(123\) 0 0
\(124\) −0.544198 −0.0488705
\(125\) 0 0
\(126\) 0 0
\(127\) −11.8641 −1.05277 −0.526386 0.850246i \(-0.676453\pi\)
−0.526386 + 0.850246i \(0.676453\pi\)
\(128\) 12.6751 1.12033
\(129\) 0 0
\(130\) 0 0
\(131\) −1.54912 −0.135347 −0.0676737 0.997708i \(-0.521558\pi\)
−0.0676737 + 0.997708i \(0.521558\pi\)
\(132\) 0 0
\(133\) −4.48119 −0.388569
\(134\) 12.8872 1.11328
\(135\) 0 0
\(136\) 16.4690 1.41220
\(137\) 17.0738 1.45871 0.729357 0.684133i \(-0.239819\pi\)
0.729357 + 0.684133i \(0.239819\pi\)
\(138\) 0 0
\(139\) 5.61213 0.476014 0.238007 0.971263i \(-0.423506\pi\)
0.238007 + 0.971263i \(0.423506\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.96239 0.248598
\(143\) −10.5442 −0.881750
\(144\) 0 0
\(145\) 0 0
\(146\) −4.57452 −0.378590
\(147\) 0 0
\(148\) −0.667837 −0.0548958
\(149\) −5.53690 −0.453601 −0.226800 0.973941i \(-0.572827\pi\)
−0.226800 + 0.973941i \(0.572827\pi\)
\(150\) 0 0
\(151\) 0.0811024 0.00660002 0.00330001 0.999995i \(-0.498950\pi\)
0.00330001 + 0.999995i \(0.498950\pi\)
\(152\) 2.67513 0.216982
\(153\) 0 0
\(154\) −24.3938 −1.96570
\(155\) 0 0
\(156\) 0 0
\(157\) −2.64974 −0.211472 −0.105736 0.994394i \(-0.533720\pi\)
−0.105736 + 0.994394i \(0.533720\pi\)
\(158\) 7.35026 0.584755
\(159\) 0 0
\(160\) 0 0
\(161\) −36.5501 −2.88055
\(162\) 0 0
\(163\) −0.667837 −0.0523090 −0.0261545 0.999658i \(-0.508326\pi\)
−0.0261545 + 0.999658i \(0.508326\pi\)
\(164\) 1.08603 0.0848045
\(165\) 0 0
\(166\) −9.96968 −0.773797
\(167\) −10.4182 −0.806184 −0.403092 0.915160i \(-0.632064\pi\)
−0.403092 + 0.915160i \(0.632064\pi\)
\(168\) 0 0
\(169\) −4.76845 −0.366804
\(170\) 0 0
\(171\) 0 0
\(172\) −1.96731 −0.150006
\(173\) −4.54420 −0.345489 −0.172744 0.984967i \(-0.555263\pi\)
−0.172744 + 0.984967i \(0.555263\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.9878 1.20512
\(177\) 0 0
\(178\) −16.9951 −1.27383
\(179\) 15.0884 1.12776 0.563880 0.825857i \(-0.309308\pi\)
0.563880 + 0.825857i \(0.309308\pi\)
\(180\) 0 0
\(181\) −8.44851 −0.627973 −0.313986 0.949428i \(-0.601665\pi\)
−0.313986 + 0.949428i \(0.601665\pi\)
\(182\) 19.0435 1.41160
\(183\) 0 0
\(184\) 21.8192 1.60854
\(185\) 0 0
\(186\) 0 0
\(187\) 22.6253 1.65453
\(188\) −0.745429 −0.0543660
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5393 0.979667 0.489834 0.871816i \(-0.337057\pi\)
0.489834 + 0.871816i \(0.337057\pi\)
\(192\) 0 0
\(193\) −11.1817 −0.804878 −0.402439 0.915447i \(-0.631837\pi\)
−0.402439 + 0.915447i \(0.631837\pi\)
\(194\) 14.2642 1.02411
\(195\) 0 0
\(196\) 2.53690 0.181207
\(197\) −7.24472 −0.516165 −0.258083 0.966123i \(-0.583091\pi\)
−0.258083 + 0.966123i \(0.583091\pi\)
\(198\) 0 0
\(199\) −26.8627 −1.90425 −0.952124 0.305712i \(-0.901106\pi\)
−0.952124 + 0.305712i \(0.901106\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8.31265 −0.584876
\(203\) −20.7816 −1.45858
\(204\) 0 0
\(205\) 0 0
\(206\) −5.23884 −0.365007
\(207\) 0 0
\(208\) −12.4812 −0.865415
\(209\) 3.67513 0.254214
\(210\) 0 0
\(211\) 4.43866 0.305570 0.152785 0.988259i \(-0.451176\pi\)
0.152785 + 0.988259i \(0.451176\pi\)
\(212\) 0.755278 0.0518727
\(213\) 0 0
\(214\) 24.3488 1.66445
\(215\) 0 0
\(216\) 0 0
\(217\) −12.5745 −0.853614
\(218\) −18.3488 −1.24274
\(219\) 0 0
\(220\) 0 0
\(221\) −17.6629 −1.18814
\(222\) 0 0
\(223\) 9.08840 0.608604 0.304302 0.952576i \(-0.401577\pi\)
0.304302 + 0.952576i \(0.401577\pi\)
\(224\) −4.89938 −0.327354
\(225\) 0 0
\(226\) −16.6556 −1.10792
\(227\) −11.1939 −0.742968 −0.371484 0.928439i \(-0.621151\pi\)
−0.371484 + 0.928439i \(0.621151\pi\)
\(228\) 0 0
\(229\) −23.6932 −1.56569 −0.782846 0.622215i \(-0.786233\pi\)
−0.782846 + 0.622215i \(0.786233\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.4060 0.814492
\(233\) 12.0508 0.789473 0.394737 0.918794i \(-0.370836\pi\)
0.394737 + 0.918794i \(0.370836\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.84955 0.120396
\(237\) 0 0
\(238\) −40.8627 −2.64874
\(239\) −13.9878 −0.904794 −0.452397 0.891817i \(-0.649431\pi\)
−0.452397 + 0.891817i \(0.649431\pi\)
\(240\) 0 0
\(241\) 23.7743 1.53144 0.765720 0.643174i \(-0.222383\pi\)
0.765720 + 0.643174i \(0.222383\pi\)
\(242\) 3.71274 0.238664
\(243\) 0 0
\(244\) −1.91890 −0.122845
\(245\) 0 0
\(246\) 0 0
\(247\) −2.86907 −0.182554
\(248\) 7.50659 0.476669
\(249\) 0 0
\(250\) 0 0
\(251\) −6.76353 −0.426910 −0.213455 0.976953i \(-0.568472\pi\)
−0.213455 + 0.976953i \(0.568472\pi\)
\(252\) 0 0
\(253\) 29.9756 1.88455
\(254\) −17.5731 −1.10263
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 19.9551 1.24476 0.622382 0.782713i \(-0.286165\pi\)
0.622382 + 0.782713i \(0.286165\pi\)
\(258\) 0 0
\(259\) −15.4314 −0.958858
\(260\) 0 0
\(261\) 0 0
\(262\) −2.29455 −0.141758
\(263\) −5.14315 −0.317140 −0.158570 0.987348i \(-0.550688\pi\)
−0.158570 + 0.987348i \(0.550688\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.63752 −0.406972
\(267\) 0 0
\(268\) 1.68735 0.103071
\(269\) 11.1368 0.679023 0.339512 0.940602i \(-0.389738\pi\)
0.339512 + 0.940602i \(0.389738\pi\)
\(270\) 0 0
\(271\) 15.4763 0.940116 0.470058 0.882635i \(-0.344233\pi\)
0.470058 + 0.882635i \(0.344233\pi\)
\(272\) 26.7816 1.62387
\(273\) 0 0
\(274\) 25.2896 1.52780
\(275\) 0 0
\(276\) 0 0
\(277\) 12.6253 0.758581 0.379290 0.925278i \(-0.376168\pi\)
0.379290 + 0.925278i \(0.376168\pi\)
\(278\) 8.31265 0.498560
\(279\) 0 0
\(280\) 0 0
\(281\) −2.66196 −0.158799 −0.0793995 0.996843i \(-0.525300\pi\)
−0.0793995 + 0.996843i \(0.525300\pi\)
\(282\) 0 0
\(283\) 1.63023 0.0969068 0.0484534 0.998825i \(-0.484571\pi\)
0.0484534 + 0.998825i \(0.484571\pi\)
\(284\) 0.387873 0.0230160
\(285\) 0 0
\(286\) −15.6180 −0.923512
\(287\) 25.0943 1.48127
\(288\) 0 0
\(289\) 20.9003 1.22943
\(290\) 0 0
\(291\) 0 0
\(292\) −0.598953 −0.0350511
\(293\) 15.3707 0.897968 0.448984 0.893540i \(-0.351786\pi\)
0.448984 + 0.893540i \(0.351786\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.21203 0.535439
\(297\) 0 0
\(298\) −8.20123 −0.475085
\(299\) −23.4010 −1.35332
\(300\) 0 0
\(301\) −45.4577 −2.62014
\(302\) 0.120128 0.00691261
\(303\) 0 0
\(304\) 4.35026 0.249505
\(305\) 0 0
\(306\) 0 0
\(307\) 18.3634 1.04806 0.524028 0.851701i \(-0.324429\pi\)
0.524028 + 0.851701i \(0.324429\pi\)
\(308\) −3.19394 −0.181991
\(309\) 0 0
\(310\) 0 0
\(311\) −11.4739 −0.650625 −0.325313 0.945607i \(-0.605470\pi\)
−0.325313 + 0.945607i \(0.605470\pi\)
\(312\) 0 0
\(313\) −4.57452 −0.258567 −0.129283 0.991608i \(-0.541268\pi\)
−0.129283 + 0.991608i \(0.541268\pi\)
\(314\) −3.92478 −0.221488
\(315\) 0 0
\(316\) 0.962389 0.0541386
\(317\) 22.4083 1.25858 0.629289 0.777171i \(-0.283346\pi\)
0.629289 + 0.777171i \(0.283346\pi\)
\(318\) 0 0
\(319\) 17.0435 0.954252
\(320\) 0 0
\(321\) 0 0
\(322\) −54.1378 −3.01698
\(323\) 6.15633 0.342547
\(324\) 0 0
\(325\) 0 0
\(326\) −0.989196 −0.0547865
\(327\) 0 0
\(328\) −14.9805 −0.827159
\(329\) −17.2243 −0.949604
\(330\) 0 0
\(331\) −31.8700 −1.75173 −0.875867 0.482552i \(-0.839710\pi\)
−0.875867 + 0.482552i \(0.839710\pi\)
\(332\) −1.30536 −0.0716407
\(333\) 0 0
\(334\) −15.4314 −0.844367
\(335\) 0 0
\(336\) 0 0
\(337\) 12.3815 0.674465 0.337233 0.941421i \(-0.390509\pi\)
0.337233 + 0.941421i \(0.390509\pi\)
\(338\) −7.06300 −0.384177
\(339\) 0 0
\(340\) 0 0
\(341\) 10.3127 0.558461
\(342\) 0 0
\(343\) 27.2506 1.47139
\(344\) 27.1368 1.46312
\(345\) 0 0
\(346\) −6.73084 −0.361852
\(347\) −29.7440 −1.59674 −0.798371 0.602166i \(-0.794305\pi\)
−0.798371 + 0.602166i \(0.794305\pi\)
\(348\) 0 0
\(349\) −3.42548 −0.183362 −0.0916810 0.995788i \(-0.529224\pi\)
−0.0916810 + 0.995788i \(0.529224\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.01810 0.214165
\(353\) 7.48612 0.398446 0.199223 0.979954i \(-0.436158\pi\)
0.199223 + 0.979954i \(0.436158\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.22521 −0.117936
\(357\) 0 0
\(358\) 22.3488 1.18117
\(359\) 35.1632 1.85584 0.927920 0.372779i \(-0.121595\pi\)
0.927920 + 0.372779i \(0.121595\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −12.5139 −0.657715
\(363\) 0 0
\(364\) 2.49341 0.130690
\(365\) 0 0
\(366\) 0 0
\(367\) −2.14411 −0.111921 −0.0559607 0.998433i \(-0.517822\pi\)
−0.0559607 + 0.998433i \(0.517822\pi\)
\(368\) 35.4821 1.84963
\(369\) 0 0
\(370\) 0 0
\(371\) 17.4518 0.906054
\(372\) 0 0
\(373\) 36.4930 1.88953 0.944767 0.327743i \(-0.106288\pi\)
0.944767 + 0.327743i \(0.106288\pi\)
\(374\) 33.5125 1.73289
\(375\) 0 0
\(376\) 10.2823 0.530271
\(377\) −13.3054 −0.685261
\(378\) 0 0
\(379\) 2.00588 0.103035 0.0515176 0.998672i \(-0.483594\pi\)
0.0515176 + 0.998672i \(0.483594\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20.0543 1.02607
\(383\) −18.2374 −0.931889 −0.465945 0.884814i \(-0.654285\pi\)
−0.465945 + 0.884814i \(0.654285\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −16.5623 −0.842999
\(387\) 0 0
\(388\) 1.86765 0.0948157
\(389\) −13.2144 −0.669997 −0.334998 0.942219i \(-0.608736\pi\)
−0.334998 + 0.942219i \(0.608736\pi\)
\(390\) 0 0
\(391\) 50.2130 2.53938
\(392\) −34.9937 −1.76745
\(393\) 0 0
\(394\) −10.7308 −0.540612
\(395\) 0 0
\(396\) 0 0
\(397\) −9.46168 −0.474868 −0.237434 0.971404i \(-0.576306\pi\)
−0.237434 + 0.971404i \(0.576306\pi\)
\(398\) −39.7889 −1.99444
\(399\) 0 0
\(400\) 0 0
\(401\) 28.0240 1.39945 0.699725 0.714412i \(-0.253306\pi\)
0.699725 + 0.714412i \(0.253306\pi\)
\(402\) 0 0
\(403\) −8.05079 −0.401038
\(404\) −1.08840 −0.0541498
\(405\) 0 0
\(406\) −30.7816 −1.52767
\(407\) 12.6556 0.627316
\(408\) 0 0
\(409\) −17.9756 −0.888834 −0.444417 0.895820i \(-0.646589\pi\)
−0.444417 + 0.895820i \(0.646589\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.685935 −0.0337936
\(413\) 42.7367 2.10294
\(414\) 0 0
\(415\) 0 0
\(416\) −3.13681 −0.153795
\(417\) 0 0
\(418\) 5.44358 0.266254
\(419\) −13.4377 −0.656475 −0.328237 0.944595i \(-0.606455\pi\)
−0.328237 + 0.944595i \(0.606455\pi\)
\(420\) 0 0
\(421\) −24.3634 −1.18740 −0.593701 0.804686i \(-0.702334\pi\)
−0.593701 + 0.804686i \(0.702334\pi\)
\(422\) 6.57452 0.320042
\(423\) 0 0
\(424\) −10.4182 −0.505952
\(425\) 0 0
\(426\) 0 0
\(427\) −44.3390 −2.14571
\(428\) 3.18806 0.154101
\(429\) 0 0
\(430\) 0 0
\(431\) 1.42548 0.0686632 0.0343316 0.999410i \(-0.489070\pi\)
0.0343316 + 0.999410i \(0.489070\pi\)
\(432\) 0 0
\(433\) 1.65466 0.0795180 0.0397590 0.999209i \(-0.487341\pi\)
0.0397590 + 0.999209i \(0.487341\pi\)
\(434\) −18.6253 −0.894043
\(435\) 0 0
\(436\) −2.40246 −0.115057
\(437\) 8.15633 0.390170
\(438\) 0 0
\(439\) −26.3996 −1.25999 −0.629993 0.776601i \(-0.716942\pi\)
−0.629993 + 0.776601i \(0.716942\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −26.1622 −1.24441
\(443\) 3.35614 0.159455 0.0797275 0.996817i \(-0.474595\pi\)
0.0797275 + 0.996817i \(0.474595\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 13.4617 0.637429
\(447\) 0 0
\(448\) 31.7318 1.49919
\(449\) −12.0122 −0.566892 −0.283446 0.958988i \(-0.591478\pi\)
−0.283446 + 0.958988i \(0.591478\pi\)
\(450\) 0 0
\(451\) −20.5804 −0.969093
\(452\) −2.18076 −0.102574
\(453\) 0 0
\(454\) −16.5804 −0.778156
\(455\) 0 0
\(456\) 0 0
\(457\) −31.5877 −1.47761 −0.738805 0.673919i \(-0.764609\pi\)
−0.738805 + 0.673919i \(0.764609\pi\)
\(458\) −35.0943 −1.63985
\(459\) 0 0
\(460\) 0 0
\(461\) −5.07381 −0.236311 −0.118155 0.992995i \(-0.537698\pi\)
−0.118155 + 0.992995i \(0.537698\pi\)
\(462\) 0 0
\(463\) 14.2701 0.663188 0.331594 0.943422i \(-0.392414\pi\)
0.331594 + 0.943422i \(0.392414\pi\)
\(464\) 20.1744 0.936574
\(465\) 0 0
\(466\) 17.8496 0.826865
\(467\) −32.3839 −1.49855 −0.749274 0.662260i \(-0.769597\pi\)
−0.749274 + 0.662260i \(0.769597\pi\)
\(468\) 0 0
\(469\) 38.9887 1.80033
\(470\) 0 0
\(471\) 0 0
\(472\) −25.5125 −1.17431
\(473\) 37.2809 1.71418
\(474\) 0 0
\(475\) 0 0
\(476\) −5.35026 −0.245229
\(477\) 0 0
\(478\) −20.7186 −0.947648
\(479\) 7.28726 0.332963 0.166482 0.986045i \(-0.446759\pi\)
0.166482 + 0.986045i \(0.446759\pi\)
\(480\) 0 0
\(481\) −9.87987 −0.450483
\(482\) 35.2144 1.60397
\(483\) 0 0
\(484\) 0.486119 0.0220963
\(485\) 0 0
\(486\) 0 0
\(487\) 37.5731 1.70260 0.851300 0.524679i \(-0.175815\pi\)
0.851300 + 0.524679i \(0.175815\pi\)
\(488\) 26.4690 1.19819
\(489\) 0 0
\(490\) 0 0
\(491\) −23.5901 −1.06460 −0.532302 0.846554i \(-0.678673\pi\)
−0.532302 + 0.846554i \(0.678673\pi\)
\(492\) 0 0
\(493\) 28.5501 1.28583
\(494\) −4.24965 −0.191201
\(495\) 0 0
\(496\) 12.2071 0.548115
\(497\) 8.96239 0.402018
\(498\) 0 0
\(499\) −25.7137 −1.15110 −0.575552 0.817765i \(-0.695213\pi\)
−0.575552 + 0.817765i \(0.695213\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −10.0181 −0.447130
\(503\) −0.0956908 −0.00426664 −0.00213332 0.999998i \(-0.500679\pi\)
−0.00213332 + 0.999998i \(0.500679\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 44.3996 1.97380
\(507\) 0 0
\(508\) −2.30089 −0.102086
\(509\) −23.0010 −1.01950 −0.509750 0.860323i \(-0.670262\pi\)
−0.509750 + 0.860323i \(0.670262\pi\)
\(510\) 0 0
\(511\) −13.8397 −0.612233
\(512\) −18.5188 −0.818423
\(513\) 0 0
\(514\) 29.5574 1.30372
\(515\) 0 0
\(516\) 0 0
\(517\) 14.1260 0.621261
\(518\) −22.8568 −1.00427
\(519\) 0 0
\(520\) 0 0
\(521\) −14.2398 −0.623857 −0.311928 0.950106i \(-0.600975\pi\)
−0.311928 + 0.950106i \(0.600975\pi\)
\(522\) 0 0
\(523\) −17.9756 −0.786016 −0.393008 0.919535i \(-0.628566\pi\)
−0.393008 + 0.919535i \(0.628566\pi\)
\(524\) −0.300432 −0.0131244
\(525\) 0 0
\(526\) −7.61801 −0.332161
\(527\) 17.2750 0.752513
\(528\) 0 0
\(529\) 43.5256 1.89242
\(530\) 0 0
\(531\) 0 0
\(532\) −0.869067 −0.0376789
\(533\) 16.0665 0.695918
\(534\) 0 0
\(535\) 0 0
\(536\) −23.2750 −1.00533
\(537\) 0 0
\(538\) 16.4958 0.711184
\(539\) −48.0748 −2.07073
\(540\) 0 0
\(541\) −27.1490 −1.16723 −0.583614 0.812031i \(-0.698362\pi\)
−0.583614 + 0.812031i \(0.698362\pi\)
\(542\) 22.9234 0.984643
\(543\) 0 0
\(544\) 6.73084 0.288582
\(545\) 0 0
\(546\) 0 0
\(547\) 34.5256 1.47621 0.738105 0.674686i \(-0.235721\pi\)
0.738105 + 0.674686i \(0.235721\pi\)
\(548\) 3.31124 0.141449
\(549\) 0 0
\(550\) 0 0
\(551\) 4.63752 0.197565
\(552\) 0 0
\(553\) 22.2374 0.945632
\(554\) 18.7005 0.794509
\(555\) 0 0
\(556\) 1.08840 0.0461583
\(557\) 21.6873 0.918922 0.459461 0.888198i \(-0.348043\pi\)
0.459461 + 0.888198i \(0.348043\pi\)
\(558\) 0 0
\(559\) −29.1041 −1.23097
\(560\) 0 0
\(561\) 0 0
\(562\) −3.94288 −0.166320
\(563\) 8.80606 0.371131 0.185566 0.982632i \(-0.440588\pi\)
0.185566 + 0.982632i \(0.440588\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.41468 0.101497
\(567\) 0 0
\(568\) −5.35026 −0.224492
\(569\) 26.5379 1.11252 0.556262 0.831007i \(-0.312235\pi\)
0.556262 + 0.831007i \(0.312235\pi\)
\(570\) 0 0
\(571\) 31.0376 1.29888 0.649442 0.760411i \(-0.275003\pi\)
0.649442 + 0.760411i \(0.275003\pi\)
\(572\) −2.04491 −0.0855018
\(573\) 0 0
\(574\) 37.1695 1.55142
\(575\) 0 0
\(576\) 0 0
\(577\) 23.3357 0.971477 0.485738 0.874104i \(-0.338551\pi\)
0.485738 + 0.874104i \(0.338551\pi\)
\(578\) 30.9575 1.28766
\(579\) 0 0
\(580\) 0 0
\(581\) −30.1622 −1.25134
\(582\) 0 0
\(583\) −14.3127 −0.592769
\(584\) 8.26187 0.341878
\(585\) 0 0
\(586\) 22.7670 0.940498
\(587\) 19.4168 0.801416 0.400708 0.916206i \(-0.368764\pi\)
0.400708 + 0.916206i \(0.368764\pi\)
\(588\) 0 0
\(589\) 2.80606 0.115622
\(590\) 0 0
\(591\) 0 0
\(592\) 14.9805 0.615694
\(593\) −6.21108 −0.255058 −0.127529 0.991835i \(-0.540705\pi\)
−0.127529 + 0.991835i \(0.540705\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.07381 −0.0439849
\(597\) 0 0
\(598\) −34.6615 −1.41741
\(599\) −30.4993 −1.24617 −0.623084 0.782155i \(-0.714120\pi\)
−0.623084 + 0.782155i \(0.714120\pi\)
\(600\) 0 0
\(601\) 16.8218 0.686175 0.343088 0.939303i \(-0.388527\pi\)
0.343088 + 0.939303i \(0.388527\pi\)
\(602\) −67.3317 −2.74424
\(603\) 0 0
\(604\) 0.0157287 0.000639993 0
\(605\) 0 0
\(606\) 0 0
\(607\) 37.7645 1.53281 0.766407 0.642356i \(-0.222043\pi\)
0.766407 + 0.642356i \(0.222043\pi\)
\(608\) 1.09332 0.0443400
\(609\) 0 0
\(610\) 0 0
\(611\) −11.0278 −0.446136
\(612\) 0 0
\(613\) 25.7235 1.03896 0.519482 0.854481i \(-0.326125\pi\)
0.519482 + 0.854481i \(0.326125\pi\)
\(614\) 27.1998 1.09770
\(615\) 0 0
\(616\) 44.0567 1.77509
\(617\) 9.31994 0.375207 0.187603 0.982245i \(-0.439928\pi\)
0.187603 + 0.982245i \(0.439928\pi\)
\(618\) 0 0
\(619\) 33.9610 1.36501 0.682503 0.730882i \(-0.260891\pi\)
0.682503 + 0.730882i \(0.260891\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −16.9951 −0.681440
\(623\) −51.4168 −2.05997
\(624\) 0 0
\(625\) 0 0
\(626\) −6.77575 −0.270813
\(627\) 0 0
\(628\) −0.513881 −0.0205061
\(629\) 21.1998 0.845292
\(630\) 0 0
\(631\) 31.3620 1.24850 0.624251 0.781224i \(-0.285404\pi\)
0.624251 + 0.781224i \(0.285404\pi\)
\(632\) −13.2750 −0.528053
\(633\) 0 0
\(634\) 33.1911 1.31819
\(635\) 0 0
\(636\) 0 0
\(637\) 37.5306 1.48702
\(638\) 25.2447 0.999448
\(639\) 0 0
\(640\) 0 0
\(641\) 13.5853 0.536588 0.268294 0.963337i \(-0.413540\pi\)
0.268294 + 0.963337i \(0.413540\pi\)
\(642\) 0 0
\(643\) 41.0557 1.61908 0.809540 0.587065i \(-0.199717\pi\)
0.809540 + 0.587065i \(0.199717\pi\)
\(644\) −7.08840 −0.279322
\(645\) 0 0
\(646\) 9.11871 0.358771
\(647\) −16.2170 −0.637554 −0.318777 0.947830i \(-0.603272\pi\)
−0.318777 + 0.947830i \(0.603272\pi\)
\(648\) 0 0
\(649\) −35.0494 −1.37581
\(650\) 0 0
\(651\) 0 0
\(652\) −0.129518 −0.00507231
\(653\) 8.44263 0.330386 0.165193 0.986261i \(-0.447175\pi\)
0.165193 + 0.986261i \(0.447175\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −24.3611 −0.951140
\(657\) 0 0
\(658\) −25.5125 −0.994579
\(659\) 5.71179 0.222500 0.111250 0.993792i \(-0.464515\pi\)
0.111250 + 0.993792i \(0.464515\pi\)
\(660\) 0 0
\(661\) −12.5139 −0.486734 −0.243367 0.969934i \(-0.578252\pi\)
−0.243367 + 0.969934i \(0.578252\pi\)
\(662\) −47.2057 −1.83470
\(663\) 0 0
\(664\) 18.0059 0.698764
\(665\) 0 0
\(666\) 0 0
\(667\) 37.8251 1.46459
\(668\) −2.02047 −0.0781743
\(669\) 0 0
\(670\) 0 0
\(671\) 36.3634 1.40379
\(672\) 0 0
\(673\) −27.7807 −1.07087 −0.535433 0.844578i \(-0.679852\pi\)
−0.535433 + 0.844578i \(0.679852\pi\)
\(674\) 18.3395 0.706410
\(675\) 0 0
\(676\) −0.924777 −0.0355684
\(677\) 41.3923 1.59084 0.795418 0.606061i \(-0.207251\pi\)
0.795418 + 0.606061i \(0.207251\pi\)
\(678\) 0 0
\(679\) 43.1549 1.65613
\(680\) 0 0
\(681\) 0 0
\(682\) 15.2750 0.584911
\(683\) 13.9902 0.535318 0.267659 0.963514i \(-0.413750\pi\)
0.267659 + 0.963514i \(0.413750\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 40.3634 1.54108
\(687\) 0 0
\(688\) 44.1295 1.68242
\(689\) 11.1735 0.425675
\(690\) 0 0
\(691\) 25.0640 0.953478 0.476739 0.879045i \(-0.341819\pi\)
0.476739 + 0.879045i \(0.341819\pi\)
\(692\) −0.881286 −0.0335015
\(693\) 0 0
\(694\) −44.0567 −1.67237
\(695\) 0 0
\(696\) 0 0
\(697\) −34.4749 −1.30583
\(698\) −5.07381 −0.192046
\(699\) 0 0
\(700\) 0 0
\(701\) −5.62672 −0.212518 −0.106259 0.994338i \(-0.533887\pi\)
−0.106259 + 0.994338i \(0.533887\pi\)
\(702\) 0 0
\(703\) 3.44358 0.129877
\(704\) −26.0240 −0.980816
\(705\) 0 0
\(706\) 11.0884 0.417317
\(707\) −25.1490 −0.945827
\(708\) 0 0
\(709\) −37.8653 −1.42206 −0.711030 0.703161i \(-0.751771\pi\)
−0.711030 + 0.703161i \(0.751771\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.6942 1.15031
\(713\) 22.8872 0.857131
\(714\) 0 0
\(715\) 0 0
\(716\) 2.92619 0.109357
\(717\) 0 0
\(718\) 52.0835 1.94374
\(719\) 20.8749 0.778504 0.389252 0.921131i \(-0.372734\pi\)
0.389252 + 0.921131i \(0.372734\pi\)
\(720\) 0 0
\(721\) −15.8496 −0.590268
\(722\) 1.48119 0.0551243
\(723\) 0 0
\(724\) −1.63847 −0.0608934
\(725\) 0 0
\(726\) 0 0
\(727\) −3.34392 −0.124019 −0.0620096 0.998076i \(-0.519751\pi\)
−0.0620096 + 0.998076i \(0.519751\pi\)
\(728\) −34.3938 −1.27472
\(729\) 0 0
\(730\) 0 0
\(731\) 62.4504 2.30981
\(732\) 0 0
\(733\) −31.0884 −1.14828 −0.574138 0.818759i \(-0.694663\pi\)
−0.574138 + 0.818759i \(0.694663\pi\)
\(734\) −3.17584 −0.117222
\(735\) 0 0
\(736\) 8.91748 0.328703
\(737\) −31.9756 −1.17783
\(738\) 0 0
\(739\) 3.13918 0.115477 0.0577383 0.998332i \(-0.481611\pi\)
0.0577383 + 0.998332i \(0.481611\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 25.8496 0.948967
\(743\) 6.48944 0.238075 0.119037 0.992890i \(-0.462019\pi\)
0.119037 + 0.992890i \(0.462019\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 54.0532 1.97903
\(747\) 0 0
\(748\) 4.38787 0.160437
\(749\) 73.6648 2.69165
\(750\) 0 0
\(751\) 24.6458 0.899337 0.449668 0.893196i \(-0.351542\pi\)
0.449668 + 0.893196i \(0.351542\pi\)
\(752\) 16.7210 0.609752
\(753\) 0 0
\(754\) −19.7078 −0.717716
\(755\) 0 0
\(756\) 0 0
\(757\) −37.3766 −1.35848 −0.679238 0.733918i \(-0.737690\pi\)
−0.679238 + 0.733918i \(0.737690\pi\)
\(758\) 2.97110 0.107915
\(759\) 0 0
\(760\) 0 0
\(761\) −5.64832 −0.204752 −0.102376 0.994746i \(-0.532644\pi\)
−0.102376 + 0.994746i \(0.532644\pi\)
\(762\) 0 0
\(763\) −55.5125 −2.00969
\(764\) 2.62576 0.0949967
\(765\) 0 0
\(766\) −27.0132 −0.976026
\(767\) 27.3620 0.987985
\(768\) 0 0
\(769\) −10.2520 −0.369697 −0.184849 0.982767i \(-0.559179\pi\)
−0.184849 + 0.982767i \(0.559179\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.16854 −0.0780476
\(773\) −13.1939 −0.474553 −0.237276 0.971442i \(-0.576255\pi\)
−0.237276 + 0.971442i \(0.576255\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −25.7621 −0.924806
\(777\) 0 0
\(778\) −19.5731 −0.701730
\(779\) −5.59991 −0.200638
\(780\) 0 0
\(781\) −7.35026 −0.263013
\(782\) 74.3752 2.65965
\(783\) 0 0
\(784\) −56.9062 −2.03236
\(785\) 0 0
\(786\) 0 0
\(787\) 14.6497 0.522207 0.261103 0.965311i \(-0.415914\pi\)
0.261103 + 0.965311i \(0.415914\pi\)
\(788\) −1.40502 −0.0500516
\(789\) 0 0
\(790\) 0 0
\(791\) −50.3898 −1.79165
\(792\) 0 0
\(793\) −28.3879 −1.00808
\(794\) −14.0146 −0.497359
\(795\) 0 0
\(796\) −5.20967 −0.184652
\(797\) −36.7426 −1.30149 −0.650745 0.759296i \(-0.725543\pi\)
−0.650745 + 0.759296i \(0.725543\pi\)
\(798\) 0 0
\(799\) 23.6629 0.837134
\(800\) 0 0
\(801\) 0 0
\(802\) 41.5090 1.46573
\(803\) 11.3503 0.400542
\(804\) 0 0
\(805\) 0 0
\(806\) −11.9248 −0.420032
\(807\) 0 0
\(808\) 15.0132 0.528162
\(809\) −14.3127 −0.503206 −0.251603 0.967831i \(-0.580958\pi\)
−0.251603 + 0.967831i \(0.580958\pi\)
\(810\) 0 0
\(811\) 0.625301 0.0219573 0.0109786 0.999940i \(-0.496505\pi\)
0.0109786 + 0.999940i \(0.496505\pi\)
\(812\) −4.03032 −0.141436
\(813\) 0 0
\(814\) 18.7454 0.657027
\(815\) 0 0
\(816\) 0 0
\(817\) 10.1441 0.354897
\(818\) −26.6253 −0.930932
\(819\) 0 0
\(820\) 0 0
\(821\) 14.8510 0.518302 0.259151 0.965837i \(-0.416557\pi\)
0.259151 + 0.965837i \(0.416557\pi\)
\(822\) 0 0
\(823\) 54.0181 1.88295 0.941476 0.337079i \(-0.109439\pi\)
0.941476 + 0.337079i \(0.109439\pi\)
\(824\) 9.46168 0.329613
\(825\) 0 0
\(826\) 63.3014 2.20254
\(827\) −5.32979 −0.185335 −0.0926675 0.995697i \(-0.529539\pi\)
−0.0926675 + 0.995697i \(0.529539\pi\)
\(828\) 0 0
\(829\) −26.5599 −0.922464 −0.461232 0.887279i \(-0.652592\pi\)
−0.461232 + 0.887279i \(0.652592\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 20.3162 0.704336
\(833\) −80.5315 −2.79025
\(834\) 0 0
\(835\) 0 0
\(836\) 0.712742 0.0246507
\(837\) 0 0
\(838\) −19.9038 −0.687567
\(839\) 9.07381 0.313263 0.156631 0.987657i \(-0.449937\pi\)
0.156631 + 0.987657i \(0.449937\pi\)
\(840\) 0 0
\(841\) −7.49341 −0.258394
\(842\) −36.0870 −1.24364
\(843\) 0 0
\(844\) 0.860818 0.0296306
\(845\) 0 0
\(846\) 0 0
\(847\) 11.2325 0.385953
\(848\) −16.9419 −0.581788
\(849\) 0 0
\(850\) 0 0
\(851\) 28.0870 0.962809
\(852\) 0 0
\(853\) 7.19982 0.246517 0.123259 0.992375i \(-0.460666\pi\)
0.123259 + 0.992375i \(0.460666\pi\)
\(854\) −65.6747 −2.24734
\(855\) 0 0
\(856\) −43.9756 −1.50305
\(857\) 25.5066 0.871288 0.435644 0.900119i \(-0.356521\pi\)
0.435644 + 0.900119i \(0.356521\pi\)
\(858\) 0 0
\(859\) 2.47295 0.0843758 0.0421879 0.999110i \(-0.486567\pi\)
0.0421879 + 0.999110i \(0.486567\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.11142 0.0719152
\(863\) −47.0903 −1.60297 −0.801486 0.598013i \(-0.795957\pi\)
−0.801486 + 0.598013i \(0.795957\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.45088 0.0832842
\(867\) 0 0
\(868\) −2.43866 −0.0827735
\(869\) −18.2374 −0.618662
\(870\) 0 0
\(871\) 24.9624 0.845818
\(872\) 33.1392 1.12223
\(873\) 0 0
\(874\) 12.0811 0.408649
\(875\) 0 0
\(876\) 0 0
\(877\) −52.2067 −1.76289 −0.881447 0.472284i \(-0.843430\pi\)
−0.881447 + 0.472284i \(0.843430\pi\)
\(878\) −39.1030 −1.31966
\(879\) 0 0
\(880\) 0 0
\(881\) 2.06537 0.0695842 0.0347921 0.999395i \(-0.488923\pi\)
0.0347921 + 0.999395i \(0.488923\pi\)
\(882\) 0 0
\(883\) −42.9053 −1.44388 −0.721939 0.691957i \(-0.756749\pi\)
−0.721939 + 0.691957i \(0.756749\pi\)
\(884\) −3.42548 −0.115212
\(885\) 0 0
\(886\) 4.97110 0.167007
\(887\) −22.1768 −0.744624 −0.372312 0.928108i \(-0.621435\pi\)
−0.372312 + 0.928108i \(0.621435\pi\)
\(888\) 0 0
\(889\) −53.1655 −1.78311
\(890\) 0 0
\(891\) 0 0
\(892\) 1.76257 0.0590153
\(893\) 3.84367 0.128624
\(894\) 0 0
\(895\) 0 0
\(896\) 56.7997 1.89755
\(897\) 0 0
\(898\) −17.7924 −0.593741
\(899\) 13.0132 0.434014
\(900\) 0 0
\(901\) −23.9756 −0.798742
\(902\) −30.4836 −1.01499
\(903\) 0 0
\(904\) 30.0811 1.00048
\(905\) 0 0
\(906\) 0 0
\(907\) −25.6629 −0.852123 −0.426062 0.904694i \(-0.640099\pi\)
−0.426062 + 0.904694i \(0.640099\pi\)
\(908\) −2.17091 −0.0720443
\(909\) 0 0
\(910\) 0 0
\(911\) 2.65959 0.0881161 0.0440580 0.999029i \(-0.485971\pi\)
0.0440580 + 0.999029i \(0.485971\pi\)
\(912\) 0 0
\(913\) 24.7367 0.818666
\(914\) −46.7875 −1.54759
\(915\) 0 0
\(916\) −4.59498 −0.151823
\(917\) −6.94192 −0.229242
\(918\) 0 0
\(919\) −6.94780 −0.229187 −0.114593 0.993412i \(-0.536557\pi\)
−0.114593 + 0.993412i \(0.536557\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −7.51530 −0.247503
\(923\) 5.73813 0.188873
\(924\) 0 0
\(925\) 0 0
\(926\) 21.1368 0.694599
\(927\) 0 0
\(928\) 5.07030 0.166441
\(929\) −53.3112 −1.74908 −0.874542 0.484949i \(-0.838838\pi\)
−0.874542 + 0.484949i \(0.838838\pi\)
\(930\) 0 0
\(931\) −13.0811 −0.428716
\(932\) 2.33709 0.0765539
\(933\) 0 0
\(934\) −47.9669 −1.56952
\(935\) 0 0
\(936\) 0 0
\(937\) −40.9135 −1.33659 −0.668293 0.743898i \(-0.732975\pi\)
−0.668293 + 0.743898i \(0.732975\pi\)
\(938\) 57.7499 1.88560
\(939\) 0 0
\(940\) 0 0
\(941\) 27.0762 0.882658 0.441329 0.897345i \(-0.354507\pi\)
0.441329 + 0.897345i \(0.354507\pi\)
\(942\) 0 0
\(943\) −45.6747 −1.48737
\(944\) −41.4880 −1.35032
\(945\) 0 0
\(946\) 55.2203 1.79537
\(947\) −13.7929 −0.448209 −0.224104 0.974565i \(-0.571946\pi\)
−0.224104 + 0.974565i \(0.571946\pi\)
\(948\) 0 0
\(949\) −8.86082 −0.287634
\(950\) 0 0
\(951\) 0 0
\(952\) 73.8007 2.39189
\(953\) −13.7948 −0.446857 −0.223429 0.974720i \(-0.571725\pi\)
−0.223429 + 0.974720i \(0.571725\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.71274 −0.0877364
\(957\) 0 0
\(958\) 10.7938 0.348733
\(959\) 76.5111 2.47067
\(960\) 0 0
\(961\) −23.1260 −0.746000
\(962\) −14.6340 −0.471819
\(963\) 0 0
\(964\) 4.61071 0.148501
\(965\) 0 0
\(966\) 0 0
\(967\) 20.6072 0.662683 0.331341 0.943511i \(-0.392499\pi\)
0.331341 + 0.943511i \(0.392499\pi\)
\(968\) −6.70545 −0.215521
\(969\) 0 0
\(970\) 0 0
\(971\) −1.93463 −0.0620851 −0.0310426 0.999518i \(-0.509883\pi\)
−0.0310426 + 0.999518i \(0.509883\pi\)
\(972\) 0 0
\(973\) 25.1490 0.806241
\(974\) 55.6531 1.78324
\(975\) 0 0
\(976\) 43.0435 1.37779
\(977\) −30.6312 −0.979978 −0.489989 0.871729i \(-0.662999\pi\)
−0.489989 + 0.871729i \(0.662999\pi\)
\(978\) 0 0
\(979\) 42.1681 1.34770
\(980\) 0 0
\(981\) 0 0
\(982\) −34.9415 −1.11503
\(983\) 51.2663 1.63514 0.817571 0.575828i \(-0.195320\pi\)
0.817571 + 0.575828i \(0.195320\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 42.2882 1.34673
\(987\) 0 0
\(988\) −0.556417 −0.0177020
\(989\) 82.7386 2.63094
\(990\) 0 0
\(991\) −31.5778 −1.00310 −0.501552 0.865128i \(-0.667237\pi\)
−0.501552 + 0.865128i \(0.667237\pi\)
\(992\) 3.06793 0.0974068
\(993\) 0 0
\(994\) 13.2750 0.421059
\(995\) 0 0
\(996\) 0 0
\(997\) −35.7090 −1.13091 −0.565457 0.824778i \(-0.691300\pi\)
−0.565457 + 0.824778i \(0.691300\pi\)
\(998\) −38.0870 −1.20562
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bd.1.3 3
3.2 odd 2 1425.2.a.x.1.1 3
5.2 odd 4 855.2.c.e.514.5 6
5.3 odd 4 855.2.c.e.514.2 6
5.4 even 2 4275.2.a.bi.1.1 3
15.2 even 4 285.2.c.a.229.2 6
15.8 even 4 285.2.c.a.229.5 yes 6
15.14 odd 2 1425.2.a.s.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.a.229.2 6 15.2 even 4
285.2.c.a.229.5 yes 6 15.8 even 4
855.2.c.e.514.2 6 5.3 odd 4
855.2.c.e.514.5 6 5.2 odd 4
1425.2.a.s.1.3 3 15.14 odd 2
1425.2.a.x.1.1 3 3.2 odd 2
4275.2.a.bd.1.3 3 1.1 even 1 trivial
4275.2.a.bi.1.1 3 5.4 even 2