Properties

Label 4275.2.a.bd.1.2
Level $4275$
Weight $2$
Character 4275.1
Self dual yes
Analytic conductor $34.136$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4275,2,Mod(1,4275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4275 = 3^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.1360468641\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 4275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} -1.90321 q^{4} +2.68889 q^{7} +1.21432 q^{8} +0.214320 q^{11} -3.11753 q^{13} -0.836535 q^{14} +3.42864 q^{16} -0.474572 q^{17} -1.00000 q^{19} -0.0666765 q^{22} -2.47457 q^{23} +0.969888 q^{26} -5.11753 q^{28} +2.83654 q^{29} -4.90321 q^{31} -3.49532 q^{32} +0.147643 q^{34} +1.93332 q^{37} +0.311108 q^{38} -5.45875 q^{41} +10.7906 q^{43} -0.407896 q^{44} +0.769859 q^{46} -9.52543 q^{47} +0.230141 q^{49} +5.93332 q^{52} -13.7605 q^{53} +3.26517 q^{56} -0.882468 q^{58} +6.56199 q^{59} +7.76049 q^{61} +1.52543 q^{62} -5.76986 q^{64} -6.85728 q^{67} +0.903212 q^{68} +2.00000 q^{71} +16.6637 q^{73} -0.601472 q^{74} +1.90321 q^{76} +0.576283 q^{77} +1.37778 q^{79} +1.69826 q^{82} -1.65878 q^{83} -3.35704 q^{86} +0.260253 q^{88} -16.5827 q^{89} -8.38271 q^{91} +4.70964 q^{92} +2.96343 q^{94} +9.05731 q^{97} -0.0715987 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + q^{4} + 8 q^{7} - 3 q^{8} - 6 q^{11} + 4 q^{13} + 4 q^{14} - 3 q^{16} - 8 q^{17} - 3 q^{19} - 14 q^{23} - 4 q^{26} - 2 q^{28} + 2 q^{29} - 8 q^{31} + 3 q^{32} - 6 q^{34} + 6 q^{37} + q^{38}+ \cdots + 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) 0 0
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0 0
\(7\) 2.68889 1.01631 0.508153 0.861267i \(-0.330328\pi\)
0.508153 + 0.861267i \(0.330328\pi\)
\(8\) 1.21432 0.429327
\(9\) 0 0
\(10\) 0 0
\(11\) 0.214320 0.0646198 0.0323099 0.999478i \(-0.489714\pi\)
0.0323099 + 0.999478i \(0.489714\pi\)
\(12\) 0 0
\(13\) −3.11753 −0.864648 −0.432324 0.901718i \(-0.642306\pi\)
−0.432324 + 0.901718i \(0.642306\pi\)
\(14\) −0.836535 −0.223573
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −0.474572 −0.115101 −0.0575504 0.998343i \(-0.518329\pi\)
−0.0575504 + 0.998343i \(0.518329\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −0.0666765 −0.0142155
\(23\) −2.47457 −0.515984 −0.257992 0.966147i \(-0.583061\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0.969888 0.190211
\(27\) 0 0
\(28\) −5.11753 −0.967123
\(29\) 2.83654 0.526731 0.263366 0.964696i \(-0.415167\pi\)
0.263366 + 0.964696i \(0.415167\pi\)
\(30\) 0 0
\(31\) −4.90321 −0.880643 −0.440321 0.897840i \(-0.645136\pi\)
−0.440321 + 0.897840i \(0.645136\pi\)
\(32\) −3.49532 −0.617890
\(33\) 0 0
\(34\) 0.147643 0.0253206
\(35\) 0 0
\(36\) 0 0
\(37\) 1.93332 0.317836 0.158918 0.987292i \(-0.449199\pi\)
0.158918 + 0.987292i \(0.449199\pi\)
\(38\) 0.311108 0.0504684
\(39\) 0 0
\(40\) 0 0
\(41\) −5.45875 −0.852514 −0.426257 0.904602i \(-0.640168\pi\)
−0.426257 + 0.904602i \(0.640168\pi\)
\(42\) 0 0
\(43\) 10.7906 1.64555 0.822776 0.568366i \(-0.192424\pi\)
0.822776 + 0.568366i \(0.192424\pi\)
\(44\) −0.407896 −0.0614926
\(45\) 0 0
\(46\) 0.769859 0.113509
\(47\) −9.52543 −1.38943 −0.694713 0.719287i \(-0.744469\pi\)
−0.694713 + 0.719287i \(0.744469\pi\)
\(48\) 0 0
\(49\) 0.230141 0.0328773
\(50\) 0 0
\(51\) 0 0
\(52\) 5.93332 0.822804
\(53\) −13.7605 −1.89015 −0.945074 0.326855i \(-0.894011\pi\)
−0.945074 + 0.326855i \(0.894011\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.26517 0.436327
\(57\) 0 0
\(58\) −0.882468 −0.115874
\(59\) 6.56199 0.854299 0.427149 0.904181i \(-0.359518\pi\)
0.427149 + 0.904181i \(0.359518\pi\)
\(60\) 0 0
\(61\) 7.76049 0.993629 0.496815 0.867857i \(-0.334503\pi\)
0.496815 + 0.867857i \(0.334503\pi\)
\(62\) 1.52543 0.193729
\(63\) 0 0
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) 0 0
\(67\) −6.85728 −0.837750 −0.418875 0.908044i \(-0.637575\pi\)
−0.418875 + 0.908044i \(0.637575\pi\)
\(68\) 0.903212 0.109531
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 16.6637 1.95034 0.975169 0.221460i \(-0.0710822\pi\)
0.975169 + 0.221460i \(0.0710822\pi\)
\(74\) −0.601472 −0.0699197
\(75\) 0 0
\(76\) 1.90321 0.218313
\(77\) 0.576283 0.0656735
\(78\) 0 0
\(79\) 1.37778 0.155013 0.0775064 0.996992i \(-0.475304\pi\)
0.0775064 + 0.996992i \(0.475304\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.69826 0.187541
\(83\) −1.65878 −0.182075 −0.0910374 0.995847i \(-0.529018\pi\)
−0.0910374 + 0.995847i \(0.529018\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.35704 −0.361999
\(87\) 0 0
\(88\) 0.260253 0.0277430
\(89\) −16.5827 −1.75777 −0.878883 0.477037i \(-0.841711\pi\)
−0.878883 + 0.477037i \(0.841711\pi\)
\(90\) 0 0
\(91\) −8.38271 −0.878746
\(92\) 4.70964 0.491013
\(93\) 0 0
\(94\) 2.96343 0.305655
\(95\) 0 0
\(96\) 0 0
\(97\) 9.05731 0.919630 0.459815 0.888015i \(-0.347916\pi\)
0.459815 + 0.888015i \(0.347916\pi\)
\(98\) −0.0715987 −0.00723256
\(99\) 0 0
\(100\) 0 0
\(101\) −9.80642 −0.975776 −0.487888 0.872906i \(-0.662232\pi\)
−0.487888 + 0.872906i \(0.662232\pi\)
\(102\) 0 0
\(103\) −0.561993 −0.0553748 −0.0276874 0.999617i \(-0.508814\pi\)
−0.0276874 + 0.999617i \(0.508814\pi\)
\(104\) −3.78568 −0.371216
\(105\) 0 0
\(106\) 4.28100 0.415807
\(107\) −11.0923 −1.07234 −0.536169 0.844111i \(-0.680129\pi\)
−0.536169 + 0.844111i \(0.680129\pi\)
\(108\) 0 0
\(109\) −8.19358 −0.784802 −0.392401 0.919794i \(-0.628355\pi\)
−0.392401 + 0.919794i \(0.628355\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 9.21924 0.871136
\(113\) 14.1891 1.33480 0.667401 0.744699i \(-0.267407\pi\)
0.667401 + 0.744699i \(0.267407\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.39853 −0.501241
\(117\) 0 0
\(118\) −2.04149 −0.187934
\(119\) −1.27607 −0.116978
\(120\) 0 0
\(121\) −10.9541 −0.995824
\(122\) −2.41435 −0.218585
\(123\) 0 0
\(124\) 9.33185 0.838025
\(125\) 0 0
\(126\) 0 0
\(127\) 16.2766 1.44431 0.722155 0.691731i \(-0.243152\pi\)
0.722155 + 0.691731i \(0.243152\pi\)
\(128\) 8.78568 0.776552
\(129\) 0 0
\(130\) 0 0
\(131\) −13.8272 −1.20809 −0.604043 0.796952i \(-0.706444\pi\)
−0.604043 + 0.796952i \(0.706444\pi\)
\(132\) 0 0
\(133\) −2.68889 −0.233157
\(134\) 2.13335 0.184294
\(135\) 0 0
\(136\) −0.576283 −0.0494158
\(137\) 11.1240 0.950386 0.475193 0.879882i \(-0.342378\pi\)
0.475193 + 0.879882i \(0.342378\pi\)
\(138\) 0 0
\(139\) 9.80642 0.831770 0.415885 0.909417i \(-0.363472\pi\)
0.415885 + 0.909417i \(0.363472\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.622216 −0.0522152
\(143\) −0.668149 −0.0558734
\(144\) 0 0
\(145\) 0 0
\(146\) −5.18421 −0.429048
\(147\) 0 0
\(148\) −3.67952 −0.302455
\(149\) −2.56199 −0.209887 −0.104943 0.994478i \(-0.533466\pi\)
−0.104943 + 0.994478i \(0.533466\pi\)
\(150\) 0 0
\(151\) −12.7699 −1.03920 −0.519598 0.854411i \(-0.673918\pi\)
−0.519598 + 0.854411i \(0.673918\pi\)
\(152\) −1.21432 −0.0984943
\(153\) 0 0
\(154\) −0.179286 −0.0144473
\(155\) 0 0
\(156\) 0 0
\(157\) −10.4286 −0.832296 −0.416148 0.909297i \(-0.636620\pi\)
−0.416148 + 0.909297i \(0.636620\pi\)
\(158\) −0.428639 −0.0341007
\(159\) 0 0
\(160\) 0 0
\(161\) −6.65386 −0.524398
\(162\) 0 0
\(163\) −3.67952 −0.288203 −0.144101 0.989563i \(-0.546029\pi\)
−0.144101 + 0.989563i \(0.546029\pi\)
\(164\) 10.3892 0.811257
\(165\) 0 0
\(166\) 0.516060 0.0400540
\(167\) −16.7096 −1.29303 −0.646515 0.762901i \(-0.723774\pi\)
−0.646515 + 0.762901i \(0.723774\pi\)
\(168\) 0 0
\(169\) −3.28100 −0.252384
\(170\) 0 0
\(171\) 0 0
\(172\) −20.5368 −1.56592
\(173\) 5.33185 0.405373 0.202687 0.979244i \(-0.435033\pi\)
0.202687 + 0.979244i \(0.435033\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.734825 0.0553895
\(177\) 0 0
\(178\) 5.15902 0.386685
\(179\) −4.66370 −0.348582 −0.174291 0.984694i \(-0.555763\pi\)
−0.174291 + 0.984694i \(0.555763\pi\)
\(180\) 0 0
\(181\) −25.2257 −1.87501 −0.937506 0.347970i \(-0.886871\pi\)
−0.937506 + 0.347970i \(0.886871\pi\)
\(182\) 2.60793 0.193312
\(183\) 0 0
\(184\) −3.00492 −0.221526
\(185\) 0 0
\(186\) 0 0
\(187\) −0.101710 −0.00743779
\(188\) 18.1289 1.32219
\(189\) 0 0
\(190\) 0 0
\(191\) −18.4909 −1.33795 −0.668976 0.743284i \(-0.733267\pi\)
−0.668976 + 0.743284i \(0.733267\pi\)
\(192\) 0 0
\(193\) 6.16839 0.444010 0.222005 0.975046i \(-0.428740\pi\)
0.222005 + 0.975046i \(0.428740\pi\)
\(194\) −2.81780 −0.202306
\(195\) 0 0
\(196\) −0.438007 −0.0312862
\(197\) 18.1891 1.29592 0.647961 0.761674i \(-0.275622\pi\)
0.647961 + 0.761674i \(0.275622\pi\)
\(198\) 0 0
\(199\) 14.3970 1.02058 0.510288 0.860004i \(-0.329539\pi\)
0.510288 + 0.860004i \(0.329539\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.05086 0.214657
\(203\) 7.62714 0.535320
\(204\) 0 0
\(205\) 0 0
\(206\) 0.174840 0.0121817
\(207\) 0 0
\(208\) −10.6889 −0.741141
\(209\) −0.214320 −0.0148248
\(210\) 0 0
\(211\) −23.0923 −1.58974 −0.794871 0.606778i \(-0.792462\pi\)
−0.794871 + 0.606778i \(0.792462\pi\)
\(212\) 26.1891 1.79868
\(213\) 0 0
\(214\) 3.45091 0.235900
\(215\) 0 0
\(216\) 0 0
\(217\) −13.1842 −0.895002
\(218\) 2.54909 0.172646
\(219\) 0 0
\(220\) 0 0
\(221\) 1.47949 0.0995216
\(222\) 0 0
\(223\) −10.6637 −0.714094 −0.357047 0.934086i \(-0.616216\pi\)
−0.357047 + 0.934086i \(0.616216\pi\)
\(224\) −9.39853 −0.627966
\(225\) 0 0
\(226\) −4.41435 −0.293638
\(227\) −9.09679 −0.603775 −0.301888 0.953344i \(-0.597617\pi\)
−0.301888 + 0.953344i \(0.597617\pi\)
\(228\) 0 0
\(229\) −15.0366 −0.993644 −0.496822 0.867852i \(-0.665500\pi\)
−0.496822 + 0.867852i \(0.665500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.44446 0.226140
\(233\) −11.2859 −0.739365 −0.369683 0.929158i \(-0.620534\pi\)
−0.369683 + 0.929158i \(0.620534\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.4889 −0.812956
\(237\) 0 0
\(238\) 0.396997 0.0257335
\(239\) 1.26517 0.0818374 0.0409187 0.999162i \(-0.486972\pi\)
0.0409187 + 0.999162i \(0.486972\pi\)
\(240\) 0 0
\(241\) 2.26671 0.146011 0.0730057 0.997332i \(-0.476741\pi\)
0.0730057 + 0.997332i \(0.476741\pi\)
\(242\) 3.40790 0.219068
\(243\) 0 0
\(244\) −14.7699 −0.945543
\(245\) 0 0
\(246\) 0 0
\(247\) 3.11753 0.198364
\(248\) −5.95407 −0.378084
\(249\) 0 0
\(250\) 0 0
\(251\) 16.8780 1.06533 0.532666 0.846326i \(-0.321190\pi\)
0.532666 + 0.846326i \(0.321190\pi\)
\(252\) 0 0
\(253\) −0.530350 −0.0333428
\(254\) −5.06376 −0.317729
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 23.2716 1.45164 0.725822 0.687882i \(-0.241460\pi\)
0.725822 + 0.687882i \(0.241460\pi\)
\(258\) 0 0
\(259\) 5.19850 0.323019
\(260\) 0 0
\(261\) 0 0
\(262\) 4.30174 0.265762
\(263\) −26.3827 −1.62683 −0.813414 0.581686i \(-0.802393\pi\)
−0.813414 + 0.581686i \(0.802393\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.836535 0.0512913
\(267\) 0 0
\(268\) 13.0509 0.797208
\(269\) −2.89676 −0.176618 −0.0883092 0.996093i \(-0.528146\pi\)
−0.0883092 + 0.996093i \(0.528146\pi\)
\(270\) 0 0
\(271\) −8.47013 −0.514524 −0.257262 0.966342i \(-0.582820\pi\)
−0.257262 + 0.966342i \(0.582820\pi\)
\(272\) −1.62714 −0.0986597
\(273\) 0 0
\(274\) −3.46076 −0.209072
\(275\) 0 0
\(276\) 0 0
\(277\) −10.1017 −0.606953 −0.303476 0.952839i \(-0.598147\pi\)
−0.303476 + 0.952839i \(0.598147\pi\)
\(278\) −3.05086 −0.182978
\(279\) 0 0
\(280\) 0 0
\(281\) −25.6938 −1.53276 −0.766382 0.642385i \(-0.777945\pi\)
−0.766382 + 0.642385i \(0.777945\pi\)
\(282\) 0 0
\(283\) 1.05731 0.0628505 0.0314252 0.999506i \(-0.489995\pi\)
0.0314252 + 0.999506i \(0.489995\pi\)
\(284\) −3.80642 −0.225870
\(285\) 0 0
\(286\) 0.207866 0.0122914
\(287\) −14.6780 −0.866415
\(288\) 0 0
\(289\) −16.7748 −0.986752
\(290\) 0 0
\(291\) 0 0
\(292\) −31.7146 −1.85595
\(293\) −26.2306 −1.53241 −0.766205 0.642597i \(-0.777857\pi\)
−0.766205 + 0.642597i \(0.777857\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 2.34767 0.136456
\(297\) 0 0
\(298\) 0.797056 0.0461722
\(299\) 7.71456 0.446144
\(300\) 0 0
\(301\) 29.0148 1.67238
\(302\) 3.97280 0.228609
\(303\) 0 0
\(304\) −3.42864 −0.196646
\(305\) 0 0
\(306\) 0 0
\(307\) −16.3368 −0.932389 −0.466194 0.884682i \(-0.654375\pi\)
−0.466194 + 0.884682i \(0.654375\pi\)
\(308\) −1.09679 −0.0624953
\(309\) 0 0
\(310\) 0 0
\(311\) −16.5827 −0.940321 −0.470160 0.882581i \(-0.655804\pi\)
−0.470160 + 0.882581i \(0.655804\pi\)
\(312\) 0 0
\(313\) −5.18421 −0.293029 −0.146514 0.989209i \(-0.546805\pi\)
−0.146514 + 0.989209i \(0.546805\pi\)
\(314\) 3.24443 0.183094
\(315\) 0 0
\(316\) −2.62222 −0.147511
\(317\) −15.6084 −0.876655 −0.438328 0.898815i \(-0.644429\pi\)
−0.438328 + 0.898815i \(0.644429\pi\)
\(318\) 0 0
\(319\) 0.607926 0.0340373
\(320\) 0 0
\(321\) 0 0
\(322\) 2.07007 0.115360
\(323\) 0.474572 0.0264059
\(324\) 0 0
\(325\) 0 0
\(326\) 1.14473 0.0634007
\(327\) 0 0
\(328\) −6.62867 −0.366007
\(329\) −25.6128 −1.41208
\(330\) 0 0
\(331\) 16.2908 0.895426 0.447713 0.894177i \(-0.352239\pi\)
0.447713 + 0.894177i \(0.352239\pi\)
\(332\) 3.15701 0.173263
\(333\) 0 0
\(334\) 5.19850 0.284449
\(335\) 0 0
\(336\) 0 0
\(337\) −27.0859 −1.47546 −0.737731 0.675095i \(-0.764103\pi\)
−0.737731 + 0.675095i \(0.764103\pi\)
\(338\) 1.02074 0.0555211
\(339\) 0 0
\(340\) 0 0
\(341\) −1.05086 −0.0569070
\(342\) 0 0
\(343\) −18.2034 −0.982892
\(344\) 13.1032 0.706479
\(345\) 0 0
\(346\) −1.65878 −0.0891766
\(347\) 2.24935 0.120752 0.0603758 0.998176i \(-0.480770\pi\)
0.0603758 + 0.998176i \(0.480770\pi\)
\(348\) 0 0
\(349\) −2.81579 −0.150726 −0.0753629 0.997156i \(-0.524012\pi\)
−0.0753629 + 0.997156i \(0.524012\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.749115 −0.0399280
\(353\) 27.8479 1.48219 0.741097 0.671398i \(-0.234306\pi\)
0.741097 + 0.671398i \(0.234306\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 31.5605 1.67270
\(357\) 0 0
\(358\) 1.45091 0.0766832
\(359\) −32.7130 −1.72653 −0.863264 0.504753i \(-0.831584\pi\)
−0.863264 + 0.504753i \(0.831584\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 7.84791 0.412477
\(363\) 0 0
\(364\) 15.9541 0.836220
\(365\) 0 0
\(366\) 0 0
\(367\) 18.7906 0.980861 0.490431 0.871480i \(-0.336839\pi\)
0.490431 + 0.871480i \(0.336839\pi\)
\(368\) −8.48442 −0.442281
\(369\) 0 0
\(370\) 0 0
\(371\) −37.0005 −1.92097
\(372\) 0 0
\(373\) −5.33969 −0.276479 −0.138239 0.990399i \(-0.544144\pi\)
−0.138239 + 0.990399i \(0.544144\pi\)
\(374\) 0.0316429 0.00163621
\(375\) 0 0
\(376\) −11.5669 −0.596518
\(377\) −8.84299 −0.455437
\(378\) 0 0
\(379\) −18.0143 −0.925332 −0.462666 0.886533i \(-0.653107\pi\)
−0.462666 + 0.886533i \(0.653107\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5.75265 0.294331
\(383\) 0.295286 0.0150884 0.00754421 0.999972i \(-0.497599\pi\)
0.00754421 + 0.999972i \(0.497599\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.91903 −0.0976762
\(387\) 0 0
\(388\) −17.2380 −0.875126
\(389\) 22.7052 1.15120 0.575599 0.817732i \(-0.304769\pi\)
0.575599 + 0.817732i \(0.304769\pi\)
\(390\) 0 0
\(391\) 1.17436 0.0593901
\(392\) 0.279465 0.0141151
\(393\) 0 0
\(394\) −5.65878 −0.285085
\(395\) 0 0
\(396\) 0 0
\(397\) 0.682439 0.0342506 0.0171253 0.999853i \(-0.494549\pi\)
0.0171253 + 0.999853i \(0.494549\pi\)
\(398\) −4.47902 −0.224513
\(399\) 0 0
\(400\) 0 0
\(401\) 3.23659 0.161628 0.0808139 0.996729i \(-0.474248\pi\)
0.0808139 + 0.996729i \(0.474248\pi\)
\(402\) 0 0
\(403\) 15.2859 0.761446
\(404\) 18.6637 0.928554
\(405\) 0 0
\(406\) −2.37286 −0.117763
\(407\) 0.414349 0.0205385
\(408\) 0 0
\(409\) 12.5303 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.06959 0.0526950
\(413\) 17.6445 0.868229
\(414\) 0 0
\(415\) 0 0
\(416\) 10.8968 0.534258
\(417\) 0 0
\(418\) 0.0666765 0.00326126
\(419\) −28.0810 −1.37184 −0.685922 0.727675i \(-0.740601\pi\)
−0.685922 + 0.727675i \(0.740601\pi\)
\(420\) 0 0
\(421\) 10.3368 0.503784 0.251892 0.967755i \(-0.418947\pi\)
0.251892 + 0.967755i \(0.418947\pi\)
\(422\) 7.18421 0.349722
\(423\) 0 0
\(424\) −16.7096 −0.811492
\(425\) 0 0
\(426\) 0 0
\(427\) 20.8671 1.00983
\(428\) 21.1111 1.02044
\(429\) 0 0
\(430\) 0 0
\(431\) 0.815792 0.0392953 0.0196477 0.999807i \(-0.493746\pi\)
0.0196477 + 0.999807i \(0.493746\pi\)
\(432\) 0 0
\(433\) 31.5877 1.51801 0.759003 0.651087i \(-0.225687\pi\)
0.759003 + 0.651087i \(0.225687\pi\)
\(434\) 4.10171 0.196888
\(435\) 0 0
\(436\) 15.5941 0.746823
\(437\) 2.47457 0.118375
\(438\) 0 0
\(439\) 17.8350 0.851218 0.425609 0.904907i \(-0.360060\pi\)
0.425609 + 0.904907i \(0.360060\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −0.460282 −0.0218934
\(443\) −24.4429 −1.16132 −0.580659 0.814147i \(-0.697205\pi\)
−0.580659 + 0.814147i \(0.697205\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.31756 0.157091
\(447\) 0 0
\(448\) −15.5145 −0.732993
\(449\) −27.2652 −1.28672 −0.643362 0.765562i \(-0.722461\pi\)
−0.643362 + 0.765562i \(0.722461\pi\)
\(450\) 0 0
\(451\) −1.16992 −0.0550893
\(452\) −27.0049 −1.27020
\(453\) 0 0
\(454\) 2.83008 0.132822
\(455\) 0 0
\(456\) 0 0
\(457\) −5.27607 −0.246804 −0.123402 0.992357i \(-0.539381\pi\)
−0.123402 + 0.992357i \(0.539381\pi\)
\(458\) 4.67799 0.218588
\(459\) 0 0
\(460\) 0 0
\(461\) 0.876015 0.0408001 0.0204000 0.999792i \(-0.493506\pi\)
0.0204000 + 0.999792i \(0.493506\pi\)
\(462\) 0 0
\(463\) −22.8321 −1.06110 −0.530549 0.847655i \(-0.678014\pi\)
−0.530549 + 0.847655i \(0.678014\pi\)
\(464\) 9.72546 0.451493
\(465\) 0 0
\(466\) 3.51114 0.162650
\(467\) 36.1388 1.67230 0.836151 0.548499i \(-0.184801\pi\)
0.836151 + 0.548499i \(0.184801\pi\)
\(468\) 0 0
\(469\) −18.4385 −0.851410
\(470\) 0 0
\(471\) 0 0
\(472\) 7.96836 0.366773
\(473\) 2.31264 0.106335
\(474\) 0 0
\(475\) 0 0
\(476\) 2.42864 0.111317
\(477\) 0 0
\(478\) −0.393606 −0.0180031
\(479\) 7.59210 0.346892 0.173446 0.984843i \(-0.444510\pi\)
0.173446 + 0.984843i \(0.444510\pi\)
\(480\) 0 0
\(481\) −6.02720 −0.274817
\(482\) −0.705190 −0.0321205
\(483\) 0 0
\(484\) 20.8479 0.947632
\(485\) 0 0
\(486\) 0 0
\(487\) 25.0638 1.13575 0.567874 0.823116i \(-0.307766\pi\)
0.567874 + 0.823116i \(0.307766\pi\)
\(488\) 9.42372 0.426592
\(489\) 0 0
\(490\) 0 0
\(491\) 31.7768 1.43407 0.717033 0.697039i \(-0.245500\pi\)
0.717033 + 0.697039i \(0.245500\pi\)
\(492\) 0 0
\(493\) −1.34614 −0.0606272
\(494\) −0.969888 −0.0436373
\(495\) 0 0
\(496\) −16.8113 −0.754852
\(497\) 5.37778 0.241227
\(498\) 0 0
\(499\) 16.7654 0.750523 0.375261 0.926919i \(-0.377553\pi\)
0.375261 + 0.926919i \(0.377553\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5.25088 −0.234358
\(503\) 26.5575 1.18414 0.592071 0.805886i \(-0.298310\pi\)
0.592071 + 0.805886i \(0.298310\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0.164996 0.00733496
\(507\) 0 0
\(508\) −30.9777 −1.37441
\(509\) 19.1733 0.849842 0.424921 0.905230i \(-0.360302\pi\)
0.424921 + 0.905230i \(0.360302\pi\)
\(510\) 0 0
\(511\) 44.8069 1.98214
\(512\) −20.3111 −0.897633
\(513\) 0 0
\(514\) −7.23999 −0.319342
\(515\) 0 0
\(516\) 0 0
\(517\) −2.04149 −0.0897845
\(518\) −1.61729 −0.0710598
\(519\) 0 0
\(520\) 0 0
\(521\) 33.3481 1.46101 0.730504 0.682908i \(-0.239285\pi\)
0.730504 + 0.682908i \(0.239285\pi\)
\(522\) 0 0
\(523\) 12.5303 0.547914 0.273957 0.961742i \(-0.411667\pi\)
0.273957 + 0.961742i \(0.411667\pi\)
\(524\) 26.3160 1.14962
\(525\) 0 0
\(526\) 8.20787 0.357880
\(527\) 2.32693 0.101363
\(528\) 0 0
\(529\) −16.8765 −0.733760
\(530\) 0 0
\(531\) 0 0
\(532\) 5.11753 0.221873
\(533\) 17.0178 0.737124
\(534\) 0 0
\(535\) 0 0
\(536\) −8.32693 −0.359669
\(537\) 0 0
\(538\) 0.901204 0.0388537
\(539\) 0.0493238 0.00212453
\(540\) 0 0
\(541\) −28.3684 −1.21965 −0.609827 0.792535i \(-0.708761\pi\)
−0.609827 + 0.792535i \(0.708761\pi\)
\(542\) 2.63512 0.113188
\(543\) 0 0
\(544\) 1.65878 0.0711196
\(545\) 0 0
\(546\) 0 0
\(547\) −25.8765 −1.10640 −0.553199 0.833049i \(-0.686593\pi\)
−0.553199 + 0.833049i \(0.686593\pi\)
\(548\) −21.1713 −0.904393
\(549\) 0 0
\(550\) 0 0
\(551\) −2.83654 −0.120840
\(552\) 0 0
\(553\) 3.70471 0.157540
\(554\) 3.14272 0.133521
\(555\) 0 0
\(556\) −18.6637 −0.791517
\(557\) 33.0509 1.40041 0.700205 0.713942i \(-0.253092\pi\)
0.700205 + 0.713942i \(0.253092\pi\)
\(558\) 0 0
\(559\) −33.6400 −1.42282
\(560\) 0 0
\(561\) 0 0
\(562\) 7.99355 0.337187
\(563\) 10.9032 0.459516 0.229758 0.973248i \(-0.426207\pi\)
0.229758 + 0.973248i \(0.426207\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.328937 −0.0138263
\(567\) 0 0
\(568\) 2.42864 0.101903
\(569\) −18.6113 −0.780227 −0.390113 0.920767i \(-0.627564\pi\)
−0.390113 + 0.920767i \(0.627564\pi\)
\(570\) 0 0
\(571\) 34.6222 1.44889 0.724447 0.689330i \(-0.242095\pi\)
0.724447 + 0.689330i \(0.242095\pi\)
\(572\) 1.27163 0.0531695
\(573\) 0 0
\(574\) 4.56644 0.190599
\(575\) 0 0
\(576\) 0 0
\(577\) 29.3590 1.22223 0.611117 0.791541i \(-0.290721\pi\)
0.611117 + 0.791541i \(0.290721\pi\)
\(578\) 5.21877 0.217072
\(579\) 0 0
\(580\) 0 0
\(581\) −4.46028 −0.185044
\(582\) 0 0
\(583\) −2.94914 −0.122141
\(584\) 20.2351 0.837333
\(585\) 0 0
\(586\) 8.16055 0.337109
\(587\) 12.5892 0.519611 0.259806 0.965661i \(-0.416341\pi\)
0.259806 + 0.965661i \(0.416341\pi\)
\(588\) 0 0
\(589\) 4.90321 0.202033
\(590\) 0 0
\(591\) 0 0
\(592\) 6.62867 0.272437
\(593\) −41.5210 −1.70506 −0.852531 0.522676i \(-0.824934\pi\)
−0.852531 + 0.522676i \(0.824934\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.87601 0.199729
\(597\) 0 0
\(598\) −2.40006 −0.0981457
\(599\) −23.9398 −0.978153 −0.489076 0.872241i \(-0.662666\pi\)
−0.489076 + 0.872241i \(0.662666\pi\)
\(600\) 0 0
\(601\) 43.2070 1.76245 0.881224 0.472698i \(-0.156720\pi\)
0.881224 + 0.472698i \(0.156720\pi\)
\(602\) −9.02672 −0.367902
\(603\) 0 0
\(604\) 24.3037 0.988905
\(605\) 0 0
\(606\) 0 0
\(607\) −28.0513 −1.13857 −0.569284 0.822141i \(-0.692780\pi\)
−0.569284 + 0.822141i \(0.692780\pi\)
\(608\) 3.49532 0.141754
\(609\) 0 0
\(610\) 0 0
\(611\) 29.6958 1.20136
\(612\) 0 0
\(613\) 27.5526 1.11284 0.556420 0.830901i \(-0.312175\pi\)
0.556420 + 0.830901i \(0.312175\pi\)
\(614\) 5.08250 0.205113
\(615\) 0 0
\(616\) 0.699791 0.0281954
\(617\) −8.94470 −0.360100 −0.180050 0.983657i \(-0.557626\pi\)
−0.180050 + 0.983657i \(0.557626\pi\)
\(618\) 0 0
\(619\) 17.2573 0.693631 0.346815 0.937933i \(-0.387263\pi\)
0.346815 + 0.937933i \(0.387263\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.15902 0.206858
\(623\) −44.5892 −1.78643
\(624\) 0 0
\(625\) 0 0
\(626\) 1.61285 0.0644624
\(627\) 0 0
\(628\) 19.8479 0.792018
\(629\) −0.917502 −0.0365832
\(630\) 0 0
\(631\) −16.4572 −0.655152 −0.327576 0.944825i \(-0.606232\pi\)
−0.327576 + 0.944825i \(0.606232\pi\)
\(632\) 1.67307 0.0665512
\(633\) 0 0
\(634\) 4.85590 0.192852
\(635\) 0 0
\(636\) 0 0
\(637\) −0.717472 −0.0284273
\(638\) −0.189130 −0.00748774
\(639\) 0 0
\(640\) 0 0
\(641\) 16.3289 0.644954 0.322477 0.946577i \(-0.395484\pi\)
0.322477 + 0.946577i \(0.395484\pi\)
\(642\) 0 0
\(643\) 39.8731 1.57244 0.786221 0.617946i \(-0.212035\pi\)
0.786221 + 0.617946i \(0.212035\pi\)
\(644\) 12.6637 0.499020
\(645\) 0 0
\(646\) −0.147643 −0.00580894
\(647\) −31.5067 −1.23866 −0.619328 0.785132i \(-0.712595\pi\)
−0.619328 + 0.785132i \(0.712595\pi\)
\(648\) 0 0
\(649\) 1.40636 0.0552046
\(650\) 0 0
\(651\) 0 0
\(652\) 7.00291 0.274255
\(653\) 45.2400 1.77038 0.885189 0.465232i \(-0.154029\pi\)
0.885189 + 0.465232i \(0.154029\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18.7161 −0.730741
\(657\) 0 0
\(658\) 7.96836 0.310639
\(659\) 47.5812 1.85350 0.926750 0.375678i \(-0.122590\pi\)
0.926750 + 0.375678i \(0.122590\pi\)
\(660\) 0 0
\(661\) 7.84791 0.305248 0.152624 0.988284i \(-0.451228\pi\)
0.152624 + 0.988284i \(0.451228\pi\)
\(662\) −5.06821 −0.196981
\(663\) 0 0
\(664\) −2.01429 −0.0781696
\(665\) 0 0
\(666\) 0 0
\(667\) −7.01921 −0.271785
\(668\) 31.8020 1.23046
\(669\) 0 0
\(670\) 0 0
\(671\) 1.66323 0.0642081
\(672\) 0 0
\(673\) −41.5462 −1.60149 −0.800744 0.599007i \(-0.795562\pi\)
−0.800744 + 0.599007i \(0.795562\pi\)
\(674\) 8.42663 0.324582
\(675\) 0 0
\(676\) 6.24443 0.240170
\(677\) 4.05884 0.155994 0.0779969 0.996954i \(-0.475148\pi\)
0.0779969 + 0.996954i \(0.475148\pi\)
\(678\) 0 0
\(679\) 24.3541 0.934626
\(680\) 0 0
\(681\) 0 0
\(682\) 0.326929 0.0125188
\(683\) −30.3180 −1.16009 −0.580044 0.814585i \(-0.696965\pi\)
−0.580044 + 0.814585i \(0.696965\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 5.66323 0.216223
\(687\) 0 0
\(688\) 36.9971 1.41050
\(689\) 42.8988 1.63431
\(690\) 0 0
\(691\) −25.1941 −0.958427 −0.479213 0.877698i \(-0.659078\pi\)
−0.479213 + 0.877698i \(0.659078\pi\)
\(692\) −10.1476 −0.385756
\(693\) 0 0
\(694\) −0.699791 −0.0265637
\(695\) 0 0
\(696\) 0 0
\(697\) 2.59057 0.0981249
\(698\) 0.876015 0.0331577
\(699\) 0 0
\(700\) 0 0
\(701\) 3.98126 0.150370 0.0751851 0.997170i \(-0.476045\pi\)
0.0751851 + 0.997170i \(0.476045\pi\)
\(702\) 0 0
\(703\) −1.93332 −0.0729167
\(704\) −1.23659 −0.0466059
\(705\) 0 0
\(706\) −8.66370 −0.326063
\(707\) −26.3684 −0.991686
\(708\) 0 0
\(709\) −47.8149 −1.79573 −0.897863 0.440275i \(-0.854881\pi\)
−0.897863 + 0.440275i \(0.854881\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.1367 −0.754656
\(713\) 12.1334 0.454398
\(714\) 0 0
\(715\) 0 0
\(716\) 8.87601 0.331712
\(717\) 0 0
\(718\) 10.1773 0.379813
\(719\) −5.13182 −0.191385 −0.0956923 0.995411i \(-0.530506\pi\)
−0.0956923 + 0.995411i \(0.530506\pi\)
\(720\) 0 0
\(721\) −1.51114 −0.0562777
\(722\) −0.311108 −0.0115782
\(723\) 0 0
\(724\) 48.0098 1.78427
\(725\) 0 0
\(726\) 0 0
\(727\) 39.7081 1.47269 0.736346 0.676605i \(-0.236550\pi\)
0.736346 + 0.676605i \(0.236550\pi\)
\(728\) −10.1793 −0.377269
\(729\) 0 0
\(730\) 0 0
\(731\) −5.12092 −0.189404
\(732\) 0 0
\(733\) −11.3363 −0.418716 −0.209358 0.977839i \(-0.567137\pi\)
−0.209358 + 0.977839i \(0.567137\pi\)
\(734\) −5.84590 −0.215776
\(735\) 0 0
\(736\) 8.64941 0.318822
\(737\) −1.46965 −0.0541353
\(738\) 0 0
\(739\) −39.9496 −1.46957 −0.734785 0.678300i \(-0.762717\pi\)
−0.734785 + 0.678300i \(0.762717\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 11.5111 0.422587
\(743\) −44.3783 −1.62808 −0.814040 0.580808i \(-0.802737\pi\)
−0.814040 + 0.580808i \(0.802737\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.66122 0.0608215
\(747\) 0 0
\(748\) 0.193576 0.00707784
\(749\) −29.8261 −1.08982
\(750\) 0 0
\(751\) −31.9037 −1.16418 −0.582091 0.813124i \(-0.697765\pi\)
−0.582091 + 0.813124i \(0.697765\pi\)
\(752\) −32.6593 −1.19096
\(753\) 0 0
\(754\) 2.75112 0.100190
\(755\) 0 0
\(756\) 0 0
\(757\) 24.2449 0.881196 0.440598 0.897704i \(-0.354766\pi\)
0.440598 + 0.897704i \(0.354766\pi\)
\(758\) 5.60439 0.203560
\(759\) 0 0
\(760\) 0 0
\(761\) −0.308193 −0.0111720 −0.00558600 0.999984i \(-0.501778\pi\)
−0.00558600 + 0.999984i \(0.501778\pi\)
\(762\) 0 0
\(763\) −22.0316 −0.797599
\(764\) 35.1920 1.27320
\(765\) 0 0
\(766\) −0.0918659 −0.00331925
\(767\) −20.4572 −0.738667
\(768\) 0 0
\(769\) 22.0830 0.796332 0.398166 0.917313i \(-0.369647\pi\)
0.398166 + 0.917313i \(0.369647\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.7397 −0.422523
\(773\) −11.0968 −0.399124 −0.199562 0.979885i \(-0.563952\pi\)
−0.199562 + 0.979885i \(0.563952\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.9985 0.394822
\(777\) 0 0
\(778\) −7.06376 −0.253248
\(779\) 5.45875 0.195580
\(780\) 0 0
\(781\) 0.428639 0.0153379
\(782\) −0.365354 −0.0130650
\(783\) 0 0
\(784\) 0.789071 0.0281811
\(785\) 0 0
\(786\) 0 0
\(787\) 22.4286 0.799495 0.399747 0.916625i \(-0.369098\pi\)
0.399747 + 0.916625i \(0.369098\pi\)
\(788\) −34.6178 −1.23321
\(789\) 0 0
\(790\) 0 0
\(791\) 38.1530 1.35657
\(792\) 0 0
\(793\) −24.1936 −0.859139
\(794\) −0.212312 −0.00753467
\(795\) 0 0
\(796\) −27.4005 −0.971186
\(797\) 8.36980 0.296474 0.148237 0.988952i \(-0.452640\pi\)
0.148237 + 0.988952i \(0.452640\pi\)
\(798\) 0 0
\(799\) 4.52051 0.159924
\(800\) 0 0
\(801\) 0 0
\(802\) −1.00693 −0.0355559
\(803\) 3.57136 0.126031
\(804\) 0 0
\(805\) 0 0
\(806\) −4.75557 −0.167508
\(807\) 0 0
\(808\) −11.9081 −0.418927
\(809\) −2.94914 −0.103686 −0.0518432 0.998655i \(-0.516510\pi\)
−0.0518432 + 0.998655i \(0.516510\pi\)
\(810\) 0 0
\(811\) −22.1017 −0.776096 −0.388048 0.921639i \(-0.626851\pi\)
−0.388048 + 0.921639i \(0.626851\pi\)
\(812\) −14.5161 −0.509414
\(813\) 0 0
\(814\) −0.128907 −0.00451820
\(815\) 0 0
\(816\) 0 0
\(817\) −10.7906 −0.377515
\(818\) −3.89829 −0.136301
\(819\) 0 0
\(820\) 0 0
\(821\) 13.6316 0.475746 0.237873 0.971296i \(-0.423550\pi\)
0.237873 + 0.971296i \(0.423550\pi\)
\(822\) 0 0
\(823\) 49.2509 1.71678 0.858389 0.512999i \(-0.171466\pi\)
0.858389 + 0.512999i \(0.171466\pi\)
\(824\) −0.682439 −0.0237739
\(825\) 0 0
\(826\) −5.48934 −0.190999
\(827\) −31.3733 −1.09096 −0.545479 0.838125i \(-0.683652\pi\)
−0.545479 + 0.838125i \(0.683652\pi\)
\(828\) 0 0
\(829\) −40.9719 −1.42301 −0.711506 0.702680i \(-0.751987\pi\)
−0.711506 + 0.702680i \(0.751987\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 17.9877 0.623612
\(833\) −0.109219 −0.00378420
\(834\) 0 0
\(835\) 0 0
\(836\) 0.407896 0.0141074
\(837\) 0 0
\(838\) 8.73621 0.301787
\(839\) 3.12399 0.107852 0.0539260 0.998545i \(-0.482826\pi\)
0.0539260 + 0.998545i \(0.482826\pi\)
\(840\) 0 0
\(841\) −20.9541 −0.722554
\(842\) −3.21585 −0.110826
\(843\) 0 0
\(844\) 43.9496 1.51281
\(845\) 0 0
\(846\) 0 0
\(847\) −29.4543 −1.01206
\(848\) −47.1798 −1.62016
\(849\) 0 0
\(850\) 0 0
\(851\) −4.78415 −0.163999
\(852\) 0 0
\(853\) −14.9175 −0.510766 −0.255383 0.966840i \(-0.582201\pi\)
−0.255383 + 0.966840i \(0.582201\pi\)
\(854\) −6.49193 −0.222149
\(855\) 0 0
\(856\) −13.4697 −0.460383
\(857\) 12.0459 0.411481 0.205741 0.978607i \(-0.434040\pi\)
0.205741 + 0.978607i \(0.434040\pi\)
\(858\) 0 0
\(859\) 49.7560 1.69765 0.848827 0.528670i \(-0.177309\pi\)
0.848827 + 0.528670i \(0.177309\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.253799 −0.00864444
\(863\) 57.0103 1.94065 0.970327 0.241797i \(-0.0777367\pi\)
0.970327 + 0.241797i \(0.0777367\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −9.82717 −0.333941
\(867\) 0 0
\(868\) 25.0923 0.851690
\(869\) 0.295286 0.0100169
\(870\) 0 0
\(871\) 21.3778 0.724359
\(872\) −9.94962 −0.336937
\(873\) 0 0
\(874\) −0.769859 −0.0260409
\(875\) 0 0
\(876\) 0 0
\(877\) 32.1051 1.08411 0.542056 0.840342i \(-0.317646\pi\)
0.542056 + 0.840342i \(0.317646\pi\)
\(878\) −5.54861 −0.187256
\(879\) 0 0
\(880\) 0 0
\(881\) −35.0736 −1.18166 −0.590830 0.806796i \(-0.701200\pi\)
−0.590830 + 0.806796i \(0.701200\pi\)
\(882\) 0 0
\(883\) −27.3842 −0.921553 −0.460776 0.887516i \(-0.652429\pi\)
−0.460776 + 0.887516i \(0.652429\pi\)
\(884\) −2.81579 −0.0947053
\(885\) 0 0
\(886\) 7.60439 0.255474
\(887\) 17.3274 0.581797 0.290899 0.956754i \(-0.406046\pi\)
0.290899 + 0.956754i \(0.406046\pi\)
\(888\) 0 0
\(889\) 43.7659 1.46786
\(890\) 0 0
\(891\) 0 0
\(892\) 20.2953 0.679536
\(893\) 9.52543 0.318756
\(894\) 0 0
\(895\) 0 0
\(896\) 23.6237 0.789214
\(897\) 0 0
\(898\) 8.48241 0.283062
\(899\) −13.9081 −0.463862
\(900\) 0 0
\(901\) 6.53035 0.217557
\(902\) 0.363971 0.0121189
\(903\) 0 0
\(904\) 17.2301 0.573066
\(905\) 0 0
\(906\) 0 0
\(907\) −6.52051 −0.216510 −0.108255 0.994123i \(-0.534526\pi\)
−0.108255 + 0.994123i \(0.534526\pi\)
\(908\) 17.3131 0.574556
\(909\) 0 0
\(910\) 0 0
\(911\) 54.7467 1.81384 0.906919 0.421305i \(-0.138428\pi\)
0.906919 + 0.421305i \(0.138428\pi\)
\(912\) 0 0
\(913\) −0.355509 −0.0117656
\(914\) 1.64143 0.0542936
\(915\) 0 0
\(916\) 28.6178 0.945558
\(917\) −37.1798 −1.22778
\(918\) 0 0
\(919\) −17.1655 −0.566237 −0.283118 0.959085i \(-0.591369\pi\)
−0.283118 + 0.959085i \(0.591369\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.272535 −0.00897546
\(923\) −6.23506 −0.205230
\(924\) 0 0
\(925\) 0 0
\(926\) 7.10324 0.233427
\(927\) 0 0
\(928\) −9.91459 −0.325462
\(929\) −28.8287 −0.945839 −0.472919 0.881106i \(-0.656800\pi\)
−0.472919 + 0.881106i \(0.656800\pi\)
\(930\) 0 0
\(931\) −0.230141 −0.00754257
\(932\) 21.4795 0.703584
\(933\) 0 0
\(934\) −11.2430 −0.367884
\(935\) 0 0
\(936\) 0 0
\(937\) 23.6829 0.773687 0.386844 0.922145i \(-0.373565\pi\)
0.386844 + 0.922145i \(0.373565\pi\)
\(938\) 5.73636 0.187299
\(939\) 0 0
\(940\) 0 0
\(941\) −7.92888 −0.258474 −0.129237 0.991614i \(-0.541253\pi\)
−0.129237 + 0.991614i \(0.541253\pi\)
\(942\) 0 0
\(943\) 13.5081 0.439883
\(944\) 22.4987 0.732271
\(945\) 0 0
\(946\) −0.719480 −0.0233923
\(947\) −42.8113 −1.39118 −0.695591 0.718438i \(-0.744857\pi\)
−0.695591 + 0.718438i \(0.744857\pi\)
\(948\) 0 0
\(949\) −51.9496 −1.68636
\(950\) 0 0
\(951\) 0 0
\(952\) −1.54956 −0.0502216
\(953\) 41.5353 1.34546 0.672730 0.739888i \(-0.265122\pi\)
0.672730 + 0.739888i \(0.265122\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −2.40790 −0.0778769
\(957\) 0 0
\(958\) −2.36196 −0.0763116
\(959\) 29.9112 0.965883
\(960\) 0 0
\(961\) −6.95851 −0.224468
\(962\) 1.87511 0.0604559
\(963\) 0 0
\(964\) −4.31402 −0.138945
\(965\) 0 0
\(966\) 0 0
\(967\) 2.64740 0.0851348 0.0425674 0.999094i \(-0.486446\pi\)
0.0425674 + 0.999094i \(0.486446\pi\)
\(968\) −13.3017 −0.427534
\(969\) 0 0
\(970\) 0 0
\(971\) −39.0736 −1.25393 −0.626966 0.779047i \(-0.715703\pi\)
−0.626966 + 0.779047i \(0.715703\pi\)
\(972\) 0 0
\(973\) 26.3684 0.845333
\(974\) −7.79753 −0.249849
\(975\) 0 0
\(976\) 26.6079 0.851699
\(977\) 12.1160 0.387625 0.193813 0.981039i \(-0.437915\pi\)
0.193813 + 0.981039i \(0.437915\pi\)
\(978\) 0 0
\(979\) −3.55401 −0.113587
\(980\) 0 0
\(981\) 0 0
\(982\) −9.88601 −0.315475
\(983\) 30.1003 0.960051 0.480026 0.877254i \(-0.340627\pi\)
0.480026 + 0.877254i \(0.340627\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0.418795 0.0133372
\(987\) 0 0
\(988\) −5.93332 −0.188764
\(989\) −26.7021 −0.849078
\(990\) 0 0
\(991\) 39.0420 1.24021 0.620104 0.784519i \(-0.287090\pi\)
0.620104 + 0.784519i \(0.287090\pi\)
\(992\) 17.1383 0.544141
\(993\) 0 0
\(994\) −1.67307 −0.0530666
\(995\) 0 0
\(996\) 0 0
\(997\) −51.3403 −1.62596 −0.812982 0.582289i \(-0.802157\pi\)
−0.812982 + 0.582289i \(0.802157\pi\)
\(998\) −5.21585 −0.165105
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4275.2.a.bd.1.2 3
3.2 odd 2 1425.2.a.x.1.2 3
5.2 odd 4 855.2.c.e.514.3 6
5.3 odd 4 855.2.c.e.514.4 6
5.4 even 2 4275.2.a.bi.1.2 3
15.2 even 4 285.2.c.a.229.4 yes 6
15.8 even 4 285.2.c.a.229.3 6
15.14 odd 2 1425.2.a.s.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.2.c.a.229.3 6 15.8 even 4
285.2.c.a.229.4 yes 6 15.2 even 4
855.2.c.e.514.3 6 5.2 odd 4
855.2.c.e.514.4 6 5.3 odd 4
1425.2.a.s.1.2 3 15.14 odd 2
1425.2.a.x.1.2 3 3.2 odd 2
4275.2.a.bd.1.2 3 1.1 even 1 trivial
4275.2.a.bi.1.2 3 5.4 even 2