Properties

Label 425.6.a.b.1.1
Level $425$
Weight $6$
Character 425.1
Self dual yes
Analytic conductor $68.163$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,6,Mod(1,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.1631234205\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 425.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.00000 q^{2} -10.0000 q^{3} +4.00000 q^{4} -60.0000 q^{6} +196.000 q^{7} -168.000 q^{8} -143.000 q^{9} +450.000 q^{11} -40.0000 q^{12} +142.000 q^{13} +1176.00 q^{14} -1136.00 q^{16} +289.000 q^{17} -858.000 q^{18} -244.000 q^{19} -1960.00 q^{21} +2700.00 q^{22} -2904.00 q^{23} +1680.00 q^{24} +852.000 q^{26} +3860.00 q^{27} +784.000 q^{28} -6984.00 q^{29} -436.000 q^{31} -1440.00 q^{32} -4500.00 q^{33} +1734.00 q^{34} -572.000 q^{36} +8572.00 q^{37} -1464.00 q^{38} -1420.00 q^{39} +16374.0 q^{41} -11760.0 q^{42} +19216.0 q^{43} +1800.00 q^{44} -17424.0 q^{46} +19920.0 q^{47} +11360.0 q^{48} +21609.0 q^{49} -2890.00 q^{51} +568.000 q^{52} -1146.00 q^{53} +23160.0 q^{54} -32928.0 q^{56} +2440.00 q^{57} -41904.0 q^{58} +22008.0 q^{59} +35780.0 q^{61} -2616.00 q^{62} -28028.0 q^{63} +27712.0 q^{64} -27000.0 q^{66} -23264.0 q^{67} +1156.00 q^{68} +29040.0 q^{69} -31704.0 q^{71} +24024.0 q^{72} +13966.0 q^{73} +51432.0 q^{74} -976.000 q^{76} +88200.0 q^{77} -8520.00 q^{78} -51088.0 q^{79} -3851.00 q^{81} +98244.0 q^{82} +64344.0 q^{83} -7840.00 q^{84} +115296. q^{86} +69840.0 q^{87} -75600.0 q^{88} +70650.0 q^{89} +27832.0 q^{91} -11616.0 q^{92} +4360.00 q^{93} +119520. q^{94} +14400.0 q^{96} -62702.0 q^{97} +129654. q^{98} -64350.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) −10.0000 −0.641500 −0.320750 0.947164i \(-0.603935\pi\)
−0.320750 + 0.947164i \(0.603935\pi\)
\(4\) 4.00000 0.125000
\(5\) 0 0
\(6\) −60.0000 −0.680414
\(7\) 196.000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) −168.000 −0.928078
\(9\) −143.000 −0.588477
\(10\) 0 0
\(11\) 450.000 1.12132 0.560662 0.828045i \(-0.310547\pi\)
0.560662 + 0.828045i \(0.310547\pi\)
\(12\) −40.0000 −0.0801875
\(13\) 142.000 0.233040 0.116520 0.993188i \(-0.462826\pi\)
0.116520 + 0.993188i \(0.462826\pi\)
\(14\) 1176.00 1.60357
\(15\) 0 0
\(16\) −1136.00 −1.10938
\(17\) 289.000 0.242536
\(18\) −858.000 −0.624175
\(19\) −244.000 −0.155062 −0.0775311 0.996990i \(-0.524704\pi\)
−0.0775311 + 0.996990i \(0.524704\pi\)
\(20\) 0 0
\(21\) −1960.00 −0.969857
\(22\) 2700.00 1.18934
\(23\) −2904.00 −1.14466 −0.572331 0.820023i \(-0.693961\pi\)
−0.572331 + 0.820023i \(0.693961\pi\)
\(24\) 1680.00 0.595362
\(25\) 0 0
\(26\) 852.000 0.247176
\(27\) 3860.00 1.01901
\(28\) 784.000 0.188982
\(29\) −6984.00 −1.54209 −0.771044 0.636782i \(-0.780265\pi\)
−0.771044 + 0.636782i \(0.780265\pi\)
\(30\) 0 0
\(31\) −436.000 −0.0814859 −0.0407429 0.999170i \(-0.512972\pi\)
−0.0407429 + 0.999170i \(0.512972\pi\)
\(32\) −1440.00 −0.248592
\(33\) −4500.00 −0.719329
\(34\) 1734.00 0.257248
\(35\) 0 0
\(36\) −572.000 −0.0735597
\(37\) 8572.00 1.02939 0.514693 0.857375i \(-0.327906\pi\)
0.514693 + 0.857375i \(0.327906\pi\)
\(38\) −1464.00 −0.164468
\(39\) −1420.00 −0.149495
\(40\) 0 0
\(41\) 16374.0 1.52123 0.760615 0.649203i \(-0.224897\pi\)
0.760615 + 0.649203i \(0.224897\pi\)
\(42\) −11760.0 −1.02869
\(43\) 19216.0 1.58486 0.792432 0.609961i \(-0.208815\pi\)
0.792432 + 0.609961i \(0.208815\pi\)
\(44\) 1800.00 0.140165
\(45\) 0 0
\(46\) −17424.0 −1.21410
\(47\) 19920.0 1.31536 0.657680 0.753297i \(-0.271538\pi\)
0.657680 + 0.753297i \(0.271538\pi\)
\(48\) 11360.0 0.711664
\(49\) 21609.0 1.28571
\(50\) 0 0
\(51\) −2890.00 −0.155587
\(52\) 568.000 0.0291300
\(53\) −1146.00 −0.0560396 −0.0280198 0.999607i \(-0.508920\pi\)
−0.0280198 + 0.999607i \(0.508920\pi\)
\(54\) 23160.0 1.08082
\(55\) 0 0
\(56\) −32928.0 −1.40312
\(57\) 2440.00 0.0994724
\(58\) −41904.0 −1.63563
\(59\) 22008.0 0.823096 0.411548 0.911388i \(-0.364988\pi\)
0.411548 + 0.911388i \(0.364988\pi\)
\(60\) 0 0
\(61\) 35780.0 1.23116 0.615582 0.788073i \(-0.288921\pi\)
0.615582 + 0.788073i \(0.288921\pi\)
\(62\) −2616.00 −0.0864288
\(63\) −28028.0 −0.889694
\(64\) 27712.0 0.845703
\(65\) 0 0
\(66\) −27000.0 −0.762964
\(67\) −23264.0 −0.633137 −0.316568 0.948570i \(-0.602531\pi\)
−0.316568 + 0.948570i \(0.602531\pi\)
\(68\) 1156.00 0.0303170
\(69\) 29040.0 0.734301
\(70\) 0 0
\(71\) −31704.0 −0.746394 −0.373197 0.927752i \(-0.621738\pi\)
−0.373197 + 0.927752i \(0.621738\pi\)
\(72\) 24024.0 0.546153
\(73\) 13966.0 0.306736 0.153368 0.988169i \(-0.450988\pi\)
0.153368 + 0.988169i \(0.450988\pi\)
\(74\) 51432.0 1.09183
\(75\) 0 0
\(76\) −976.000 −0.0193828
\(77\) 88200.0 1.69528
\(78\) −8520.00 −0.158563
\(79\) −51088.0 −0.920982 −0.460491 0.887664i \(-0.652327\pi\)
−0.460491 + 0.887664i \(0.652327\pi\)
\(80\) 0 0
\(81\) −3851.00 −0.0652170
\(82\) 98244.0 1.61351
\(83\) 64344.0 1.02521 0.512605 0.858625i \(-0.328681\pi\)
0.512605 + 0.858625i \(0.328681\pi\)
\(84\) −7840.00 −0.121232
\(85\) 0 0
\(86\) 115296. 1.68100
\(87\) 69840.0 0.989250
\(88\) −75600.0 −1.04067
\(89\) 70650.0 0.945447 0.472723 0.881211i \(-0.343271\pi\)
0.472723 + 0.881211i \(0.343271\pi\)
\(90\) 0 0
\(91\) 27832.0 0.352323
\(92\) −11616.0 −0.143083
\(93\) 4360.00 0.0522732
\(94\) 119520. 1.39515
\(95\) 0 0
\(96\) 14400.0 0.159472
\(97\) −62702.0 −0.676631 −0.338316 0.941033i \(-0.609857\pi\)
−0.338316 + 0.941033i \(0.609857\pi\)
\(98\) 129654. 1.36371
\(99\) −64350.0 −0.659873
\(100\) 0 0
\(101\) −85470.0 −0.833701 −0.416850 0.908975i \(-0.636866\pi\)
−0.416850 + 0.908975i \(0.636866\pi\)
\(102\) −17340.0 −0.165025
\(103\) 181792. 1.68842 0.844212 0.536009i \(-0.180069\pi\)
0.844212 + 0.536009i \(0.180069\pi\)
\(104\) −23856.0 −0.216279
\(105\) 0 0
\(106\) −6876.00 −0.0594390
\(107\) −82638.0 −0.697783 −0.348891 0.937163i \(-0.613442\pi\)
−0.348891 + 0.937163i \(0.613442\pi\)
\(108\) 15440.0 0.127376
\(109\) 245576. 1.97979 0.989896 0.141794i \(-0.0452869\pi\)
0.989896 + 0.141794i \(0.0452869\pi\)
\(110\) 0 0
\(111\) −85720.0 −0.660351
\(112\) −222656. −1.67722
\(113\) 187014. 1.37777 0.688887 0.724869i \(-0.258100\pi\)
0.688887 + 0.724869i \(0.258100\pi\)
\(114\) 14640.0 0.105506
\(115\) 0 0
\(116\) −27936.0 −0.192761
\(117\) −20306.0 −0.137139
\(118\) 132048. 0.873025
\(119\) 56644.0 0.366679
\(120\) 0 0
\(121\) 41449.0 0.257366
\(122\) 214680. 1.30585
\(123\) −163740. −0.975870
\(124\) −1744.00 −0.0101857
\(125\) 0 0
\(126\) −168168. −0.943663
\(127\) −102848. −0.565831 −0.282915 0.959145i \(-0.591302\pi\)
−0.282915 + 0.959145i \(0.591302\pi\)
\(128\) 212352. 1.14560
\(129\) −192160. −1.01669
\(130\) 0 0
\(131\) 128286. 0.653132 0.326566 0.945174i \(-0.394108\pi\)
0.326566 + 0.945174i \(0.394108\pi\)
\(132\) −18000.0 −0.0899161
\(133\) −47824.0 −0.234432
\(134\) −139584. −0.671543
\(135\) 0 0
\(136\) −48552.0 −0.225092
\(137\) −23334.0 −0.106215 −0.0531077 0.998589i \(-0.516913\pi\)
−0.0531077 + 0.998589i \(0.516913\pi\)
\(138\) 174240. 0.778843
\(139\) −17338.0 −0.0761136 −0.0380568 0.999276i \(-0.512117\pi\)
−0.0380568 + 0.999276i \(0.512117\pi\)
\(140\) 0 0
\(141\) −199200. −0.843804
\(142\) −190224. −0.791670
\(143\) 63900.0 0.261313
\(144\) 162448. 0.652842
\(145\) 0 0
\(146\) 83796.0 0.325343
\(147\) −216090. −0.824786
\(148\) 34288.0 0.128673
\(149\) 51990.0 0.191847 0.0959233 0.995389i \(-0.469420\pi\)
0.0959233 + 0.995389i \(0.469420\pi\)
\(150\) 0 0
\(151\) 131504. 0.469350 0.234675 0.972074i \(-0.424597\pi\)
0.234675 + 0.972074i \(0.424597\pi\)
\(152\) 40992.0 0.143910
\(153\) −41327.0 −0.142727
\(154\) 529200. 1.79812
\(155\) 0 0
\(156\) −5680.00 −0.0186869
\(157\) 598882. 1.93906 0.969532 0.244965i \(-0.0787764\pi\)
0.969532 + 0.244965i \(0.0787764\pi\)
\(158\) −306528. −0.976849
\(159\) 11460.0 0.0359494
\(160\) 0 0
\(161\) −569184. −1.73057
\(162\) −23106.0 −0.0691731
\(163\) 321946. 0.949104 0.474552 0.880227i \(-0.342610\pi\)
0.474552 + 0.880227i \(0.342610\pi\)
\(164\) 65496.0 0.190154
\(165\) 0 0
\(166\) 386064. 1.08740
\(167\) −339516. −0.942039 −0.471020 0.882123i \(-0.656114\pi\)
−0.471020 + 0.882123i \(0.656114\pi\)
\(168\) 329280. 0.900103
\(169\) −351129. −0.945692
\(170\) 0 0
\(171\) 34892.0 0.0912506
\(172\) 76864.0 0.198108
\(173\) −252432. −0.641253 −0.320626 0.947206i \(-0.603893\pi\)
−0.320626 + 0.947206i \(0.603893\pi\)
\(174\) 419040. 1.04926
\(175\) 0 0
\(176\) −511200. −1.24397
\(177\) −220080. −0.528016
\(178\) 423900. 1.00280
\(179\) −555108. −1.29493 −0.647463 0.762097i \(-0.724170\pi\)
−0.647463 + 0.762097i \(0.724170\pi\)
\(180\) 0 0
\(181\) 1508.00 0.00342141 0.00171070 0.999999i \(-0.499455\pi\)
0.00171070 + 0.999999i \(0.499455\pi\)
\(182\) 166992. 0.373695
\(183\) −357800. −0.789792
\(184\) 487872. 1.06233
\(185\) 0 0
\(186\) 26160.0 0.0554441
\(187\) 130050. 0.271961
\(188\) 79680.0 0.164420
\(189\) 756560. 1.54060
\(190\) 0 0
\(191\) −392856. −0.779202 −0.389601 0.920984i \(-0.627387\pi\)
−0.389601 + 0.920984i \(0.627387\pi\)
\(192\) −277120. −0.542519
\(193\) 390538. 0.754692 0.377346 0.926072i \(-0.376837\pi\)
0.377346 + 0.926072i \(0.376837\pi\)
\(194\) −376212. −0.717676
\(195\) 0 0
\(196\) 86436.0 0.160714
\(197\) −205212. −0.376736 −0.188368 0.982099i \(-0.560320\pi\)
−0.188368 + 0.982099i \(0.560320\pi\)
\(198\) −386100. −0.699901
\(199\) −405160. −0.725260 −0.362630 0.931933i \(-0.618121\pi\)
−0.362630 + 0.931933i \(0.618121\pi\)
\(200\) 0 0
\(201\) 232640. 0.406157
\(202\) −512820. −0.884273
\(203\) −1.36886e6 −2.33142
\(204\) −11560.0 −0.0194483
\(205\) 0 0
\(206\) 1.09075e6 1.79084
\(207\) 415272. 0.673607
\(208\) −161312. −0.258528
\(209\) −109800. −0.173875
\(210\) 0 0
\(211\) −269662. −0.416978 −0.208489 0.978025i \(-0.566855\pi\)
−0.208489 + 0.978025i \(0.566855\pi\)
\(212\) −4584.00 −0.00700495
\(213\) 317040. 0.478812
\(214\) −495828. −0.740111
\(215\) 0 0
\(216\) −648480. −0.945719
\(217\) −85456.0 −0.123195
\(218\) 1.47346e6 2.09989
\(219\) −139660. −0.196771
\(220\) 0 0
\(221\) 41038.0 0.0565204
\(222\) −514320. −0.700408
\(223\) 455656. 0.613585 0.306793 0.951776i \(-0.400744\pi\)
0.306793 + 0.951776i \(0.400744\pi\)
\(224\) −282240. −0.375836
\(225\) 0 0
\(226\) 1.12208e6 1.46135
\(227\) −792366. −1.02061 −0.510307 0.859993i \(-0.670468\pi\)
−0.510307 + 0.859993i \(0.670468\pi\)
\(228\) 9760.00 0.0124341
\(229\) −179794. −0.226562 −0.113281 0.993563i \(-0.536136\pi\)
−0.113281 + 0.993563i \(0.536136\pi\)
\(230\) 0 0
\(231\) −882000. −1.08752
\(232\) 1.17331e6 1.43118
\(233\) −245154. −0.295835 −0.147917 0.989000i \(-0.547257\pi\)
−0.147917 + 0.989000i \(0.547257\pi\)
\(234\) −121836. −0.145457
\(235\) 0 0
\(236\) 88032.0 0.102887
\(237\) 510880. 0.590810
\(238\) 339864. 0.388922
\(239\) −334536. −0.378833 −0.189417 0.981897i \(-0.560660\pi\)
−0.189417 + 0.981897i \(0.560660\pi\)
\(240\) 0 0
\(241\) −882922. −0.979219 −0.489609 0.871942i \(-0.662861\pi\)
−0.489609 + 0.871942i \(0.662861\pi\)
\(242\) 248694. 0.272978
\(243\) −899470. −0.977172
\(244\) 143120. 0.153895
\(245\) 0 0
\(246\) −982440. −1.03507
\(247\) −34648.0 −0.0361356
\(248\) 73248.0 0.0756252
\(249\) −643440. −0.657673
\(250\) 0 0
\(251\) −146928. −0.147204 −0.0736021 0.997288i \(-0.523449\pi\)
−0.0736021 + 0.997288i \(0.523449\pi\)
\(252\) −112112. −0.111212
\(253\) −1.30680e6 −1.28354
\(254\) −617088. −0.600154
\(255\) 0 0
\(256\) 387328. 0.369385
\(257\) 737082. 0.696118 0.348059 0.937473i \(-0.386841\pi\)
0.348059 + 0.937473i \(0.386841\pi\)
\(258\) −1.15296e6 −1.07836
\(259\) 1.68011e6 1.55628
\(260\) 0 0
\(261\) 998712. 0.907484
\(262\) 769716. 0.692751
\(263\) 1.08214e6 0.964700 0.482350 0.875978i \(-0.339783\pi\)
0.482350 + 0.875978i \(0.339783\pi\)
\(264\) 756000. 0.667593
\(265\) 0 0
\(266\) −286944. −0.248653
\(267\) −706500. −0.606504
\(268\) −93056.0 −0.0791421
\(269\) 1.51939e6 1.28023 0.640117 0.768278i \(-0.278886\pi\)
0.640117 + 0.768278i \(0.278886\pi\)
\(270\) 0 0
\(271\) 395624. 0.327235 0.163617 0.986524i \(-0.447684\pi\)
0.163617 + 0.986524i \(0.447684\pi\)
\(272\) −328304. −0.269063
\(273\) −278320. −0.226015
\(274\) −140004. −0.112659
\(275\) 0 0
\(276\) 116160. 0.0917876
\(277\) 1.15178e6 0.901921 0.450961 0.892544i \(-0.351081\pi\)
0.450961 + 0.892544i \(0.351081\pi\)
\(278\) −104028. −0.0807306
\(279\) 62348.0 0.0479526
\(280\) 0 0
\(281\) 1.37261e6 1.03701 0.518505 0.855075i \(-0.326489\pi\)
0.518505 + 0.855075i \(0.326489\pi\)
\(282\) −1.19520e6 −0.894989
\(283\) −229754. −0.170529 −0.0852643 0.996358i \(-0.527173\pi\)
−0.0852643 + 0.996358i \(0.527173\pi\)
\(284\) −126816. −0.0932993
\(285\) 0 0
\(286\) 383400. 0.277164
\(287\) 3.20930e6 2.29988
\(288\) 205920. 0.146291
\(289\) 83521.0 0.0588235
\(290\) 0 0
\(291\) 627020. 0.434059
\(292\) 55864.0 0.0383420
\(293\) −761526. −0.518222 −0.259111 0.965848i \(-0.583430\pi\)
−0.259111 + 0.965848i \(0.583430\pi\)
\(294\) −1.29654e6 −0.874818
\(295\) 0 0
\(296\) −1.44010e6 −0.955349
\(297\) 1.73700e6 1.14264
\(298\) 311940. 0.203484
\(299\) −412368. −0.266752
\(300\) 0 0
\(301\) 3.76634e6 2.39609
\(302\) 789024. 0.497821
\(303\) 854700. 0.534819
\(304\) 277184. 0.172022
\(305\) 0 0
\(306\) −247962. −0.151385
\(307\) −599348. −0.362939 −0.181469 0.983397i \(-0.558085\pi\)
−0.181469 + 0.983397i \(0.558085\pi\)
\(308\) 352800. 0.211910
\(309\) −1.81792e6 −1.08312
\(310\) 0 0
\(311\) 847548. 0.496894 0.248447 0.968646i \(-0.420080\pi\)
0.248447 + 0.968646i \(0.420080\pi\)
\(312\) 238560. 0.138743
\(313\) −2.00008e6 −1.15395 −0.576974 0.816763i \(-0.695767\pi\)
−0.576974 + 0.816763i \(0.695767\pi\)
\(314\) 3.59329e6 2.05669
\(315\) 0 0
\(316\) −204352. −0.115123
\(317\) −194460. −0.108688 −0.0543441 0.998522i \(-0.517307\pi\)
−0.0543441 + 0.998522i \(0.517307\pi\)
\(318\) 68760.0 0.0381301
\(319\) −3.14280e6 −1.72918
\(320\) 0 0
\(321\) 826380. 0.447628
\(322\) −3.41510e6 −1.83554
\(323\) −70516.0 −0.0376081
\(324\) −15404.0 −0.00815213
\(325\) 0 0
\(326\) 1.93168e6 1.00668
\(327\) −2.45576e6 −1.27004
\(328\) −2.75083e6 −1.41182
\(329\) 3.90432e6 1.98864
\(330\) 0 0
\(331\) −1.82342e6 −0.914778 −0.457389 0.889267i \(-0.651215\pi\)
−0.457389 + 0.889267i \(0.651215\pi\)
\(332\) 257376. 0.128151
\(333\) −1.22580e6 −0.605770
\(334\) −2.03710e6 −0.999184
\(335\) 0 0
\(336\) 2.22656e6 1.07594
\(337\) 2.59269e6 1.24359 0.621794 0.783181i \(-0.286404\pi\)
0.621794 + 0.783181i \(0.286404\pi\)
\(338\) −2.10677e6 −1.00306
\(339\) −1.87014e6 −0.883842
\(340\) 0 0
\(341\) −196200. −0.0913720
\(342\) 209352. 0.0967858
\(343\) 941192. 0.431959
\(344\) −3.22829e6 −1.47088
\(345\) 0 0
\(346\) −1.51459e6 −0.680151
\(347\) −2.67418e6 −1.19225 −0.596125 0.802892i \(-0.703294\pi\)
−0.596125 + 0.802892i \(0.703294\pi\)
\(348\) 279360. 0.123656
\(349\) 504122. 0.221550 0.110775 0.993846i \(-0.464667\pi\)
0.110775 + 0.993846i \(0.464667\pi\)
\(350\) 0 0
\(351\) 548120. 0.237470
\(352\) −648000. −0.278752
\(353\) −1.00791e6 −0.430512 −0.215256 0.976558i \(-0.569059\pi\)
−0.215256 + 0.976558i \(0.569059\pi\)
\(354\) −1.32048e6 −0.560046
\(355\) 0 0
\(356\) 282600. 0.118181
\(357\) −566440. −0.235225
\(358\) −3.33065e6 −1.37348
\(359\) −4.74516e6 −1.94319 −0.971594 0.236655i \(-0.923949\pi\)
−0.971594 + 0.236655i \(0.923949\pi\)
\(360\) 0 0
\(361\) −2.41656e6 −0.975956
\(362\) 9048.00 0.00362895
\(363\) −414490. −0.165100
\(364\) 111328. 0.0440404
\(365\) 0 0
\(366\) −2.14680e6 −0.837701
\(367\) −155048. −0.0600898 −0.0300449 0.999549i \(-0.509565\pi\)
−0.0300449 + 0.999549i \(0.509565\pi\)
\(368\) 3.29894e6 1.26986
\(369\) −2.34148e6 −0.895210
\(370\) 0 0
\(371\) −224616. −0.0847239
\(372\) 17440.0 0.00653415
\(373\) −3.89811e6 −1.45071 −0.725357 0.688373i \(-0.758325\pi\)
−0.725357 + 0.688373i \(0.758325\pi\)
\(374\) 780300. 0.288458
\(375\) 0 0
\(376\) −3.34656e6 −1.22076
\(377\) −991728. −0.359368
\(378\) 4.53936e6 1.63405
\(379\) −2.76828e6 −0.989946 −0.494973 0.868908i \(-0.664822\pi\)
−0.494973 + 0.868908i \(0.664822\pi\)
\(380\) 0 0
\(381\) 1.02848e6 0.362981
\(382\) −2.35714e6 −0.826468
\(383\) 3.51362e6 1.22393 0.611967 0.790883i \(-0.290378\pi\)
0.611967 + 0.790883i \(0.290378\pi\)
\(384\) −2.12352e6 −0.734900
\(385\) 0 0
\(386\) 2.34323e6 0.800472
\(387\) −2.74789e6 −0.932656
\(388\) −250808. −0.0845789
\(389\) 834366. 0.279565 0.139782 0.990182i \(-0.455360\pi\)
0.139782 + 0.990182i \(0.455360\pi\)
\(390\) 0 0
\(391\) −839256. −0.277621
\(392\) −3.63031e6 −1.19324
\(393\) −1.28286e6 −0.418984
\(394\) −1.23127e6 −0.399589
\(395\) 0 0
\(396\) −257400. −0.0824842
\(397\) 5.08080e6 1.61792 0.808958 0.587866i \(-0.200032\pi\)
0.808958 + 0.587866i \(0.200032\pi\)
\(398\) −2.43096e6 −0.769255
\(399\) 478240. 0.150388
\(400\) 0 0
\(401\) 649566. 0.201726 0.100863 0.994900i \(-0.467840\pi\)
0.100863 + 0.994900i \(0.467840\pi\)
\(402\) 1.39584e6 0.430795
\(403\) −61912.0 −0.0189894
\(404\) −341880. −0.104213
\(405\) 0 0
\(406\) −8.21318e6 −2.47284
\(407\) 3.85740e6 1.15427
\(408\) 485520. 0.144397
\(409\) 3.33465e6 0.985693 0.492846 0.870116i \(-0.335956\pi\)
0.492846 + 0.870116i \(0.335956\pi\)
\(410\) 0 0
\(411\) 233340. 0.0681373
\(412\) 727168. 0.211053
\(413\) 4.31357e6 1.24440
\(414\) 2.49163e6 0.714468
\(415\) 0 0
\(416\) −204480. −0.0579319
\(417\) 173380. 0.0488269
\(418\) −658800. −0.184422
\(419\) 1.72532e6 0.480103 0.240051 0.970760i \(-0.422836\pi\)
0.240051 + 0.970760i \(0.422836\pi\)
\(420\) 0 0
\(421\) 924722. 0.254276 0.127138 0.991885i \(-0.459421\pi\)
0.127138 + 0.991885i \(0.459421\pi\)
\(422\) −1.61797e6 −0.442272
\(423\) −2.84856e6 −0.774060
\(424\) 192528. 0.0520091
\(425\) 0 0
\(426\) 1.90224e6 0.507857
\(427\) 7.01288e6 1.86134
\(428\) −330552. −0.0872229
\(429\) −639000. −0.167632
\(430\) 0 0
\(431\) 4.83139e6 1.25279 0.626396 0.779505i \(-0.284529\pi\)
0.626396 + 0.779505i \(0.284529\pi\)
\(432\) −4.38496e6 −1.13046
\(433\) −5.39952e6 −1.38400 −0.691999 0.721898i \(-0.743270\pi\)
−0.691999 + 0.721898i \(0.743270\pi\)
\(434\) −512736. −0.130668
\(435\) 0 0
\(436\) 982304. 0.247474
\(437\) 708576. 0.177494
\(438\) −837960. −0.208707
\(439\) 3.78320e6 0.936910 0.468455 0.883487i \(-0.344811\pi\)
0.468455 + 0.883487i \(0.344811\pi\)
\(440\) 0 0
\(441\) −3.09009e6 −0.756614
\(442\) 246228. 0.0599490
\(443\) 4.20235e6 1.01738 0.508690 0.860950i \(-0.330130\pi\)
0.508690 + 0.860950i \(0.330130\pi\)
\(444\) −342880. −0.0825439
\(445\) 0 0
\(446\) 2.73394e6 0.650805
\(447\) −519900. −0.123070
\(448\) 5.43155e6 1.27858
\(449\) −3.72223e6 −0.871338 −0.435669 0.900107i \(-0.643488\pi\)
−0.435669 + 0.900107i \(0.643488\pi\)
\(450\) 0 0
\(451\) 7.36830e6 1.70579
\(452\) 748056. 0.172222
\(453\) −1.31504e6 −0.301088
\(454\) −4.75420e6 −1.08252
\(455\) 0 0
\(456\) −409920. −0.0923181
\(457\) −6.53743e6 −1.46426 −0.732128 0.681167i \(-0.761473\pi\)
−0.732128 + 0.681167i \(0.761473\pi\)
\(458\) −1.07876e6 −0.240305
\(459\) 1.11554e6 0.247146
\(460\) 0 0
\(461\) −2.83978e6 −0.622347 −0.311174 0.950353i \(-0.600722\pi\)
−0.311174 + 0.950353i \(0.600722\pi\)
\(462\) −5.29200e6 −1.15349
\(463\) 4.22901e6 0.916824 0.458412 0.888740i \(-0.348418\pi\)
0.458412 + 0.888740i \(0.348418\pi\)
\(464\) 7.93382e6 1.71075
\(465\) 0 0
\(466\) −1.47092e6 −0.313780
\(467\) 4.02215e6 0.853426 0.426713 0.904387i \(-0.359671\pi\)
0.426713 + 0.904387i \(0.359671\pi\)
\(468\) −81224.0 −0.0171423
\(469\) −4.55974e6 −0.957212
\(470\) 0 0
\(471\) −5.98882e6 −1.24391
\(472\) −3.69734e6 −0.763897
\(473\) 8.64720e6 1.77714
\(474\) 3.06528e6 0.626649
\(475\) 0 0
\(476\) 226576. 0.0458349
\(477\) 163878. 0.0329780
\(478\) −2.00722e6 −0.401813
\(479\) −3.68606e6 −0.734047 −0.367024 0.930212i \(-0.619623\pi\)
−0.367024 + 0.930212i \(0.619623\pi\)
\(480\) 0 0
\(481\) 1.21722e6 0.239888
\(482\) −5.29753e6 −1.03862
\(483\) 5.69184e6 1.11016
\(484\) 165796. 0.0321707
\(485\) 0 0
\(486\) −5.39682e6 −1.03645
\(487\) 2.22808e6 0.425705 0.212852 0.977084i \(-0.431725\pi\)
0.212852 + 0.977084i \(0.431725\pi\)
\(488\) −6.01104e6 −1.14262
\(489\) −3.21946e6 −0.608851
\(490\) 0 0
\(491\) 2.01546e6 0.377286 0.188643 0.982046i \(-0.439591\pi\)
0.188643 + 0.982046i \(0.439591\pi\)
\(492\) −654960. −0.121984
\(493\) −2.01838e6 −0.374011
\(494\) −207888. −0.0383276
\(495\) 0 0
\(496\) 495296. 0.0903984
\(497\) −6.21398e6 −1.12844
\(498\) −3.86064e6 −0.697567
\(499\) 1.58273e6 0.284548 0.142274 0.989827i \(-0.454559\pi\)
0.142274 + 0.989827i \(0.454559\pi\)
\(500\) 0 0
\(501\) 3.39516e6 0.604319
\(502\) −881568. −0.156134
\(503\) −1.64357e6 −0.289646 −0.144823 0.989458i \(-0.546261\pi\)
−0.144823 + 0.989458i \(0.546261\pi\)
\(504\) 4.70870e6 0.825705
\(505\) 0 0
\(506\) −7.84080e6 −1.36139
\(507\) 3.51129e6 0.606662
\(508\) −411392. −0.0707288
\(509\) 5.24456e6 0.897252 0.448626 0.893720i \(-0.351914\pi\)
0.448626 + 0.893720i \(0.351914\pi\)
\(510\) 0 0
\(511\) 2.73734e6 0.463741
\(512\) −4.47130e6 −0.753804
\(513\) −941840. −0.158010
\(514\) 4.42249e6 0.738345
\(515\) 0 0
\(516\) −768640. −0.127086
\(517\) 8.96400e6 1.47494
\(518\) 1.00807e7 1.65069
\(519\) 2.52432e6 0.411364
\(520\) 0 0
\(521\) 4.17805e6 0.674340 0.337170 0.941444i \(-0.390530\pi\)
0.337170 + 0.941444i \(0.390530\pi\)
\(522\) 5.99227e6 0.962532
\(523\) 4.38518e6 0.701024 0.350512 0.936558i \(-0.386008\pi\)
0.350512 + 0.936558i \(0.386008\pi\)
\(524\) 513144. 0.0816415
\(525\) 0 0
\(526\) 6.49282e6 1.02322
\(527\) −126004. −0.0197632
\(528\) 5.11200e6 0.798006
\(529\) 1.99687e6 0.310250
\(530\) 0 0
\(531\) −3.14714e6 −0.484373
\(532\) −191296. −0.0293040
\(533\) 2.32511e6 0.354507
\(534\) −4.23900e6 −0.643295
\(535\) 0 0
\(536\) 3.90835e6 0.587600
\(537\) 5.55108e6 0.830695
\(538\) 9.11635e6 1.35789
\(539\) 9.72405e6 1.44170
\(540\) 0 0
\(541\) −4.33056e6 −0.636138 −0.318069 0.948068i \(-0.603034\pi\)
−0.318069 + 0.948068i \(0.603034\pi\)
\(542\) 2.37374e6 0.347085
\(543\) −15080.0 −0.00219483
\(544\) −416160. −0.0602925
\(545\) 0 0
\(546\) −1.66992e6 −0.239725
\(547\) 2.70020e6 0.385858 0.192929 0.981213i \(-0.438201\pi\)
0.192929 + 0.981213i \(0.438201\pi\)
\(548\) −93336.0 −0.0132769
\(549\) −5.11654e6 −0.724512
\(550\) 0 0
\(551\) 1.70410e6 0.239120
\(552\) −4.87872e6 −0.681488
\(553\) −1.00132e7 −1.39239
\(554\) 6.91066e6 0.956632
\(555\) 0 0
\(556\) −69352.0 −0.00951419
\(557\) −9.26997e6 −1.26602 −0.633010 0.774144i \(-0.718181\pi\)
−0.633010 + 0.774144i \(0.718181\pi\)
\(558\) 374088. 0.0508614
\(559\) 2.72867e6 0.369336
\(560\) 0 0
\(561\) −1.30050e6 −0.174463
\(562\) 8.23568e6 1.09991
\(563\) −8.11546e6 −1.07905 −0.539525 0.841969i \(-0.681396\pi\)
−0.539525 + 0.841969i \(0.681396\pi\)
\(564\) −796800. −0.105475
\(565\) 0 0
\(566\) −1.37852e6 −0.180873
\(567\) −754796. −0.0985989
\(568\) 5.32627e6 0.692712
\(569\) −1.14498e7 −1.48257 −0.741286 0.671190i \(-0.765784\pi\)
−0.741286 + 0.671190i \(0.765784\pi\)
\(570\) 0 0
\(571\) −429442. −0.0551206 −0.0275603 0.999620i \(-0.508774\pi\)
−0.0275603 + 0.999620i \(0.508774\pi\)
\(572\) 255600. 0.0326641
\(573\) 3.92856e6 0.499858
\(574\) 1.92558e7 2.43940
\(575\) 0 0
\(576\) −3.96282e6 −0.497677
\(577\) 4.38411e6 0.548204 0.274102 0.961701i \(-0.411619\pi\)
0.274102 + 0.961701i \(0.411619\pi\)
\(578\) 501126. 0.0623918
\(579\) −3.90538e6 −0.484135
\(580\) 0 0
\(581\) 1.26114e7 1.54997
\(582\) 3.76212e6 0.460389
\(583\) −515700. −0.0628385
\(584\) −2.34629e6 −0.284675
\(585\) 0 0
\(586\) −4.56916e6 −0.549657
\(587\) −1.89188e6 −0.226621 −0.113310 0.993560i \(-0.536145\pi\)
−0.113310 + 0.993560i \(0.536145\pi\)
\(588\) −864360. −0.103098
\(589\) 106384. 0.0126354
\(590\) 0 0
\(591\) 2.05212e6 0.241676
\(592\) −9.73779e6 −1.14197
\(593\) 1.32588e7 1.54834 0.774171 0.632977i \(-0.218167\pi\)
0.774171 + 0.632977i \(0.218167\pi\)
\(594\) 1.04220e7 1.21195
\(595\) 0 0
\(596\) 207960. 0.0239808
\(597\) 4.05160e6 0.465255
\(598\) −2.47421e6 −0.282933
\(599\) 9.69070e6 1.10354 0.551770 0.833996i \(-0.313953\pi\)
0.551770 + 0.833996i \(0.313953\pi\)
\(600\) 0 0
\(601\) −3.95875e6 −0.447066 −0.223533 0.974696i \(-0.571759\pi\)
−0.223533 + 0.974696i \(0.571759\pi\)
\(602\) 2.25980e7 2.54144
\(603\) 3.32675e6 0.372587
\(604\) 526016. 0.0586687
\(605\) 0 0
\(606\) 5.12820e6 0.567262
\(607\) 3.92350e6 0.432217 0.216109 0.976369i \(-0.430663\pi\)
0.216109 + 0.976369i \(0.430663\pi\)
\(608\) 351360. 0.0385472
\(609\) 1.36886e7 1.49561
\(610\) 0 0
\(611\) 2.82864e6 0.306531
\(612\) −165308. −0.0178408
\(613\) −1.50137e7 −1.61375 −0.806875 0.590722i \(-0.798843\pi\)
−0.806875 + 0.590722i \(0.798843\pi\)
\(614\) −3.59609e6 −0.384954
\(615\) 0 0
\(616\) −1.48176e7 −1.57335
\(617\) −5.90027e6 −0.623964 −0.311982 0.950088i \(-0.600993\pi\)
−0.311982 + 0.950088i \(0.600993\pi\)
\(618\) −1.09075e7 −1.14883
\(619\) 1.52636e7 1.60114 0.800571 0.599238i \(-0.204530\pi\)
0.800571 + 0.599238i \(0.204530\pi\)
\(620\) 0 0
\(621\) −1.12094e7 −1.16642
\(622\) 5.08529e6 0.527035
\(623\) 1.38474e7 1.42938
\(624\) 1.61312e6 0.165846
\(625\) 0 0
\(626\) −1.20005e7 −1.22395
\(627\) 1.09800e6 0.111541
\(628\) 2.39553e6 0.242383
\(629\) 2.47731e6 0.249663
\(630\) 0 0
\(631\) 1.42765e7 1.42740 0.713702 0.700449i \(-0.247017\pi\)
0.713702 + 0.700449i \(0.247017\pi\)
\(632\) 8.58278e6 0.854743
\(633\) 2.69662e6 0.267492
\(634\) −1.16676e6 −0.115281
\(635\) 0 0
\(636\) 45840.0 0.00449368
\(637\) 3.06848e6 0.299623
\(638\) −1.88568e7 −1.83407
\(639\) 4.53367e6 0.439236
\(640\) 0 0
\(641\) −3.51957e6 −0.338333 −0.169167 0.985587i \(-0.554108\pi\)
−0.169167 + 0.985587i \(0.554108\pi\)
\(642\) 4.95828e6 0.474781
\(643\) 117478. 0.0112054 0.00560272 0.999984i \(-0.498217\pi\)
0.00560272 + 0.999984i \(0.498217\pi\)
\(644\) −2.27674e6 −0.216321
\(645\) 0 0
\(646\) −423096. −0.0398894
\(647\) −3.45269e6 −0.324262 −0.162131 0.986769i \(-0.551837\pi\)
−0.162131 + 0.986769i \(0.551837\pi\)
\(648\) 646968. 0.0605265
\(649\) 9.90360e6 0.922957
\(650\) 0 0
\(651\) 854560. 0.0790297
\(652\) 1.28778e6 0.118638
\(653\) 1.40017e7 1.28499 0.642494 0.766291i \(-0.277900\pi\)
0.642494 + 0.766291i \(0.277900\pi\)
\(654\) −1.47346e7 −1.34708
\(655\) 0 0
\(656\) −1.86009e7 −1.68762
\(657\) −1.99714e6 −0.180507
\(658\) 2.34259e7 2.10927
\(659\) 4.84952e6 0.434996 0.217498 0.976061i \(-0.430210\pi\)
0.217498 + 0.976061i \(0.430210\pi\)
\(660\) 0 0
\(661\) 1.01240e7 0.901258 0.450629 0.892711i \(-0.351200\pi\)
0.450629 + 0.892711i \(0.351200\pi\)
\(662\) −1.09405e7 −0.970269
\(663\) −410380. −0.0362579
\(664\) −1.08098e7 −0.951474
\(665\) 0 0
\(666\) −7.35478e6 −0.642516
\(667\) 2.02815e7 1.76517
\(668\) −1.35806e6 −0.117755
\(669\) −4.55656e6 −0.393615
\(670\) 0 0
\(671\) 1.61010e7 1.38053
\(672\) 2.82240e6 0.241099
\(673\) 1.40204e7 1.19322 0.596612 0.802530i \(-0.296513\pi\)
0.596612 + 0.802530i \(0.296513\pi\)
\(674\) 1.55562e7 1.31902
\(675\) 0 0
\(676\) −1.40452e6 −0.118212
\(677\) −7.67190e6 −0.643326 −0.321663 0.946854i \(-0.604242\pi\)
−0.321663 + 0.946854i \(0.604242\pi\)
\(678\) −1.12208e7 −0.937457
\(679\) −1.22896e7 −1.02297
\(680\) 0 0
\(681\) 7.92366e6 0.654724
\(682\) −1.17720e6 −0.0969146
\(683\) 5.36631e6 0.440174 0.220087 0.975480i \(-0.429366\pi\)
0.220087 + 0.975480i \(0.429366\pi\)
\(684\) 139568. 0.0114063
\(685\) 0 0
\(686\) 5.64715e6 0.458162
\(687\) 1.79794e6 0.145339
\(688\) −2.18294e7 −1.75821
\(689\) −162732. −0.0130595
\(690\) 0 0
\(691\) −1.31376e7 −1.04670 −0.523348 0.852119i \(-0.675317\pi\)
−0.523348 + 0.852119i \(0.675317\pi\)
\(692\) −1.00973e6 −0.0801566
\(693\) −1.26126e7 −0.997635
\(694\) −1.60451e7 −1.26457
\(695\) 0 0
\(696\) −1.17331e7 −0.918101
\(697\) 4.73209e6 0.368953
\(698\) 3.02473e6 0.234989
\(699\) 2.45154e6 0.189778
\(700\) 0 0
\(701\) −1.78160e6 −0.136935 −0.0684675 0.997653i \(-0.521811\pi\)
−0.0684675 + 0.997653i \(0.521811\pi\)
\(702\) 3.28872e6 0.251874
\(703\) −2.09157e6 −0.159619
\(704\) 1.24704e7 0.948307
\(705\) 0 0
\(706\) −6.04746e6 −0.456627
\(707\) −1.67521e7 −1.26044
\(708\) −880320. −0.0660020
\(709\) −1.16819e7 −0.872769 −0.436385 0.899760i \(-0.643741\pi\)
−0.436385 + 0.899760i \(0.643741\pi\)
\(710\) 0 0
\(711\) 7.30558e6 0.541977
\(712\) −1.18692e7 −0.877448
\(713\) 1.26614e6 0.0932737
\(714\) −3.39864e6 −0.249494
\(715\) 0 0
\(716\) −2.22043e6 −0.161866
\(717\) 3.34536e6 0.243022
\(718\) −2.84710e7 −2.06106
\(719\) −1.62177e7 −1.16995 −0.584976 0.811051i \(-0.698896\pi\)
−0.584976 + 0.811051i \(0.698896\pi\)
\(720\) 0 0
\(721\) 3.56312e7 2.55266
\(722\) −1.44994e7 −1.03516
\(723\) 8.82922e6 0.628169
\(724\) 6032.00 0.000427676 0
\(725\) 0 0
\(726\) −2.48694e6 −0.175115
\(727\) −1.27353e7 −0.893663 −0.446832 0.894618i \(-0.647448\pi\)
−0.446832 + 0.894618i \(0.647448\pi\)
\(728\) −4.67578e6 −0.326983
\(729\) 9.93049e6 0.692073
\(730\) 0 0
\(731\) 5.55342e6 0.384386
\(732\) −1.43120e6 −0.0987240
\(733\) −5.93825e6 −0.408224 −0.204112 0.978948i \(-0.565431\pi\)
−0.204112 + 0.978948i \(0.565431\pi\)
\(734\) −930288. −0.0637349
\(735\) 0 0
\(736\) 4.18176e6 0.284554
\(737\) −1.04688e7 −0.709951
\(738\) −1.40489e7 −0.949514
\(739\) −2.46285e7 −1.65892 −0.829462 0.558562i \(-0.811353\pi\)
−0.829462 + 0.558562i \(0.811353\pi\)
\(740\) 0 0
\(741\) 346480. 0.0231810
\(742\) −1.34770e6 −0.0898633
\(743\) 440628. 0.0292820 0.0146410 0.999893i \(-0.495339\pi\)
0.0146410 + 0.999893i \(0.495339\pi\)
\(744\) −732480. −0.0485136
\(745\) 0 0
\(746\) −2.33886e7 −1.53871
\(747\) −9.20119e6 −0.603313
\(748\) 520200. 0.0339951
\(749\) −1.61970e7 −1.05495
\(750\) 0 0
\(751\) −5.22736e6 −0.338207 −0.169103 0.985598i \(-0.554087\pi\)
−0.169103 + 0.985598i \(0.554087\pi\)
\(752\) −2.26291e7 −1.45923
\(753\) 1.46928e6 0.0944316
\(754\) −5.95037e6 −0.381167
\(755\) 0 0
\(756\) 3.02624e6 0.192575
\(757\) 1.60789e7 1.01980 0.509901 0.860233i \(-0.329682\pi\)
0.509901 + 0.860233i \(0.329682\pi\)
\(758\) −1.66097e7 −1.05000
\(759\) 1.30680e7 0.823388
\(760\) 0 0
\(761\) −1.98848e7 −1.24468 −0.622341 0.782746i \(-0.713818\pi\)
−0.622341 + 0.782746i \(0.713818\pi\)
\(762\) 6.17088e6 0.384999
\(763\) 4.81329e7 2.99316
\(764\) −1.57142e6 −0.0974002
\(765\) 0 0
\(766\) 2.10817e7 1.29818
\(767\) 3.12514e6 0.191814
\(768\) −3.87328e6 −0.236960
\(769\) −2.73915e7 −1.67032 −0.835160 0.550007i \(-0.814625\pi\)
−0.835160 + 0.550007i \(0.814625\pi\)
\(770\) 0 0
\(771\) −7.37082e6 −0.446560
\(772\) 1.56215e6 0.0943366
\(773\) −2.30626e7 −1.38822 −0.694112 0.719867i \(-0.744203\pi\)
−0.694112 + 0.719867i \(0.744203\pi\)
\(774\) −1.64873e7 −0.989231
\(775\) 0 0
\(776\) 1.05339e7 0.627966
\(777\) −1.68011e7 −0.998357
\(778\) 5.00620e6 0.296523
\(779\) −3.99526e6 −0.235885
\(780\) 0 0
\(781\) −1.42668e7 −0.836949
\(782\) −5.03554e6 −0.294462
\(783\) −2.69582e7 −1.57140
\(784\) −2.45478e7 −1.42634
\(785\) 0 0
\(786\) −7.69716e6 −0.444400
\(787\) 642682. 0.0369879 0.0184939 0.999829i \(-0.494113\pi\)
0.0184939 + 0.999829i \(0.494113\pi\)
\(788\) −820848. −0.0470920
\(789\) −1.08214e7 −0.618856
\(790\) 0 0
\(791\) 3.66547e7 2.08300
\(792\) 1.08108e7 0.612414
\(793\) 5.08076e6 0.286910
\(794\) 3.04848e7 1.71606
\(795\) 0 0
\(796\) −1.62064e6 −0.0906575
\(797\) −9.10785e6 −0.507890 −0.253945 0.967219i \(-0.581728\pi\)
−0.253945 + 0.967219i \(0.581728\pi\)
\(798\) 2.86944e6 0.159511
\(799\) 5.75688e6 0.319022
\(800\) 0 0
\(801\) −1.01030e7 −0.556374
\(802\) 3.89740e6 0.213963
\(803\) 6.28470e6 0.343950
\(804\) 930560. 0.0507697
\(805\) 0 0
\(806\) −371472. −0.0201413
\(807\) −1.51939e7 −0.821270
\(808\) 1.43590e7 0.773739
\(809\) −1.37190e7 −0.736972 −0.368486 0.929633i \(-0.620124\pi\)
−0.368486 + 0.929633i \(0.620124\pi\)
\(810\) 0 0
\(811\) 2.74959e7 1.46796 0.733982 0.679168i \(-0.237659\pi\)
0.733982 + 0.679168i \(0.237659\pi\)
\(812\) −5.47546e6 −0.291427
\(813\) −3.95624e6 −0.209921
\(814\) 2.31444e7 1.22429
\(815\) 0 0
\(816\) 3.28304e6 0.172604
\(817\) −4.68870e6 −0.245752
\(818\) 2.00079e7 1.04548
\(819\) −3.97998e6 −0.207334
\(820\) 0 0
\(821\) 2.85504e7 1.47827 0.739136 0.673556i \(-0.235234\pi\)
0.739136 + 0.673556i \(0.235234\pi\)
\(822\) 1.40004e6 0.0722705
\(823\) 58840.0 0.00302812 0.00151406 0.999999i \(-0.499518\pi\)
0.00151406 + 0.999999i \(0.499518\pi\)
\(824\) −3.05411e7 −1.56699
\(825\) 0 0
\(826\) 2.58814e7 1.31989
\(827\) 3.14197e7 1.59749 0.798745 0.601670i \(-0.205498\pi\)
0.798745 + 0.601670i \(0.205498\pi\)
\(828\) 1.66109e6 0.0842009
\(829\) 9.55809e6 0.483042 0.241521 0.970396i \(-0.422354\pi\)
0.241521 + 0.970396i \(0.422354\pi\)
\(830\) 0 0
\(831\) −1.15178e7 −0.578583
\(832\) 3.93510e6 0.197082
\(833\) 6.24500e6 0.311832
\(834\) 1.04028e6 0.0517887
\(835\) 0 0
\(836\) −439200. −0.0217343
\(837\) −1.68296e6 −0.0830348
\(838\) 1.03519e7 0.509226
\(839\) −82980.0 −0.00406976 −0.00203488 0.999998i \(-0.500648\pi\)
−0.00203488 + 0.999998i \(0.500648\pi\)
\(840\) 0 0
\(841\) 2.82651e7 1.37804
\(842\) 5.54833e6 0.269701
\(843\) −1.37261e7 −0.665242
\(844\) −1.07865e6 −0.0521223
\(845\) 0 0
\(846\) −1.70914e7 −0.821014
\(847\) 8.12400e6 0.389100
\(848\) 1.30186e6 0.0621689
\(849\) 2.29754e6 0.109394
\(850\) 0 0
\(851\) −2.48931e7 −1.17830
\(852\) 1.26816e6 0.0598515
\(853\) −2.82115e7 −1.32756 −0.663779 0.747929i \(-0.731049\pi\)
−0.663779 + 0.747929i \(0.731049\pi\)
\(854\) 4.20773e7 1.97425
\(855\) 0 0
\(856\) 1.38832e7 0.647597
\(857\) −3.64611e6 −0.169581 −0.0847906 0.996399i \(-0.527022\pi\)
−0.0847906 + 0.996399i \(0.527022\pi\)
\(858\) −3.83400e6 −0.177801
\(859\) −1.98241e7 −0.916664 −0.458332 0.888781i \(-0.651553\pi\)
−0.458332 + 0.888781i \(0.651553\pi\)
\(860\) 0 0
\(861\) −3.20930e7 −1.47538
\(862\) 2.89884e7 1.32879
\(863\) 3.96712e7 1.81321 0.906605 0.421980i \(-0.138665\pi\)
0.906605 + 0.421980i \(0.138665\pi\)
\(864\) −5.55840e6 −0.253318
\(865\) 0 0
\(866\) −3.23971e7 −1.46795
\(867\) −835210. −0.0377353
\(868\) −341824. −0.0153994
\(869\) −2.29896e7 −1.03272
\(870\) 0 0
\(871\) −3.30349e6 −0.147546
\(872\) −4.12568e7 −1.83740
\(873\) 8.96639e6 0.398182
\(874\) 4.25146e6 0.188260
\(875\) 0 0
\(876\) −558640. −0.0245964
\(877\) −3.83641e7 −1.68432 −0.842162 0.539225i \(-0.818717\pi\)
−0.842162 + 0.539225i \(0.818717\pi\)
\(878\) 2.26992e7 0.993743
\(879\) 7.61526e6 0.332439
\(880\) 0 0
\(881\) −2.64738e7 −1.14915 −0.574575 0.818452i \(-0.694833\pi\)
−0.574575 + 0.818452i \(0.694833\pi\)
\(882\) −1.85405e7 −0.802510
\(883\) −2.76564e7 −1.19370 −0.596848 0.802354i \(-0.703581\pi\)
−0.596848 + 0.802354i \(0.703581\pi\)
\(884\) 164152. 0.00706505
\(885\) 0 0
\(886\) 2.52141e7 1.07909
\(887\) −5.91883e6 −0.252596 −0.126298 0.991992i \(-0.540310\pi\)
−0.126298 + 0.991992i \(0.540310\pi\)
\(888\) 1.44010e7 0.612857
\(889\) −2.01582e7 −0.855456
\(890\) 0 0
\(891\) −1.73295e6 −0.0731294
\(892\) 1.82262e6 0.0766982
\(893\) −4.86048e6 −0.203963
\(894\) −3.11940e6 −0.130535
\(895\) 0 0
\(896\) 4.16210e7 1.73198
\(897\) 4.12368e6 0.171121
\(898\) −2.23334e7 −0.924194
\(899\) 3.04502e6 0.125658
\(900\) 0 0
\(901\) −331194. −0.0135916
\(902\) 4.42098e7 1.80927
\(903\) −3.76634e7 −1.53709
\(904\) −3.14184e7 −1.27868
\(905\) 0 0
\(906\) −7.89024e6 −0.319352
\(907\) 4.04616e7 1.63315 0.816573 0.577243i \(-0.195871\pi\)
0.816573 + 0.577243i \(0.195871\pi\)
\(908\) −3.16946e6 −0.127577
\(909\) 1.22222e7 0.490614
\(910\) 0 0
\(911\) −1.02375e7 −0.408695 −0.204347 0.978898i \(-0.565507\pi\)
−0.204347 + 0.978898i \(0.565507\pi\)
\(912\) −2.77184e6 −0.110352
\(913\) 2.89548e7 1.14959
\(914\) −3.92246e7 −1.55308
\(915\) 0 0
\(916\) −719176. −0.0283202
\(917\) 2.51441e7 0.987443
\(918\) 6.69324e6 0.262138
\(919\) −1.95081e7 −0.761948 −0.380974 0.924586i \(-0.624411\pi\)
−0.380974 + 0.924586i \(0.624411\pi\)
\(920\) 0 0
\(921\) 5.99348e6 0.232825
\(922\) −1.70387e7 −0.660099
\(923\) −4.50197e6 −0.173939
\(924\) −3.52800e6 −0.135940
\(925\) 0 0
\(926\) 2.53740e7 0.972439
\(927\) −2.59963e7 −0.993600
\(928\) 1.00570e7 0.383351
\(929\) −6.77925e6 −0.257717 −0.128858 0.991663i \(-0.541131\pi\)
−0.128858 + 0.991663i \(0.541131\pi\)
\(930\) 0 0
\(931\) −5.27260e6 −0.199366
\(932\) −980616. −0.0369793
\(933\) −8.47548e6 −0.318757
\(934\) 2.41329e7 0.905195
\(935\) 0 0
\(936\) 3.41141e6 0.127275
\(937\) −4.20612e7 −1.56507 −0.782533 0.622609i \(-0.786073\pi\)
−0.782533 + 0.622609i \(0.786073\pi\)
\(938\) −2.73585e7 −1.01528
\(939\) 2.00008e7 0.740258
\(940\) 0 0
\(941\) −4.41336e7 −1.62478 −0.812391 0.583113i \(-0.801834\pi\)
−0.812391 + 0.583113i \(0.801834\pi\)
\(942\) −3.59329e7 −1.31937
\(943\) −4.75501e7 −1.74129
\(944\) −2.50011e7 −0.913122
\(945\) 0 0
\(946\) 5.18832e7 1.88495
\(947\) −1.21508e7 −0.440282 −0.220141 0.975468i \(-0.570652\pi\)
−0.220141 + 0.975468i \(0.570652\pi\)
\(948\) 2.04352e6 0.0738513
\(949\) 1.98317e6 0.0714817
\(950\) 0 0
\(951\) 1.94460e6 0.0697235
\(952\) −9.51619e6 −0.340307
\(953\) −2.39119e7 −0.852869 −0.426435 0.904518i \(-0.640231\pi\)
−0.426435 + 0.904518i \(0.640231\pi\)
\(954\) 983268. 0.0349785
\(955\) 0 0
\(956\) −1.33814e6 −0.0473542
\(957\) 3.14280e7 1.10927
\(958\) −2.21164e7 −0.778575
\(959\) −4.57346e6 −0.160583
\(960\) 0 0
\(961\) −2.84391e7 −0.993360
\(962\) 7.30334e6 0.254439
\(963\) 1.18172e7 0.410629
\(964\) −3.53169e6 −0.122402
\(965\) 0 0
\(966\) 3.41510e7 1.17750
\(967\) 4.71653e7 1.62202 0.811011 0.585031i \(-0.198918\pi\)
0.811011 + 0.585031i \(0.198918\pi\)
\(968\) −6.96343e6 −0.238855
\(969\) 705160. 0.0241256
\(970\) 0 0
\(971\) 3.76796e7 1.28250 0.641251 0.767331i \(-0.278416\pi\)
0.641251 + 0.767331i \(0.278416\pi\)
\(972\) −3.59788e6 −0.122146
\(973\) −3.39825e6 −0.115073
\(974\) 1.33685e7 0.451528
\(975\) 0 0
\(976\) −4.06461e7 −1.36582
\(977\) 4.65997e7 1.56188 0.780938 0.624608i \(-0.214741\pi\)
0.780938 + 0.624608i \(0.214741\pi\)
\(978\) −1.93168e7 −0.645784
\(979\) 3.17925e7 1.06015
\(980\) 0 0
\(981\) −3.51174e7 −1.16506
\(982\) 1.20928e7 0.400172
\(983\) −3.55297e7 −1.17276 −0.586378 0.810038i \(-0.699447\pi\)
−0.586378 + 0.810038i \(0.699447\pi\)
\(984\) 2.75083e7 0.905683
\(985\) 0 0
\(986\) −1.21103e7 −0.396699
\(987\) −3.90432e7 −1.27571
\(988\) −138592. −0.00451696
\(989\) −5.58033e7 −1.81413
\(990\) 0 0
\(991\) 3.01289e7 0.974538 0.487269 0.873252i \(-0.337993\pi\)
0.487269 + 0.873252i \(0.337993\pi\)
\(992\) 627840. 0.0202568
\(993\) 1.82342e7 0.586830
\(994\) −3.72839e7 −1.19689
\(995\) 0 0
\(996\) −2.57376e6 −0.0822091
\(997\) 2.76127e7 0.879774 0.439887 0.898053i \(-0.355018\pi\)
0.439887 + 0.898053i \(0.355018\pi\)
\(998\) 9.49638e6 0.301809
\(999\) 3.30879e7 1.04895
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.6.a.b.1.1 1
5.4 even 2 17.6.a.a.1.1 1
15.14 odd 2 153.6.a.b.1.1 1
20.19 odd 2 272.6.a.a.1.1 1
35.34 odd 2 833.6.a.a.1.1 1
40.19 odd 2 1088.6.a.g.1.1 1
40.29 even 2 1088.6.a.d.1.1 1
85.84 even 2 289.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.6.a.a.1.1 1 5.4 even 2
153.6.a.b.1.1 1 15.14 odd 2
272.6.a.a.1.1 1 20.19 odd 2
289.6.a.a.1.1 1 85.84 even 2
425.6.a.b.1.1 1 1.1 even 1 trivial
833.6.a.a.1.1 1 35.34 odd 2
1088.6.a.d.1.1 1 40.29 even 2
1088.6.a.g.1.1 1 40.19 odd 2