Properties

Label 425.4.b.h
Level $425$
Weight $4$
Character orbit 425.b
Analytic conductor $25.076$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} + \beta_{4} + \beta_{3}) q^{2} + ( - 3 \beta_{4} - 4 \beta_{3}) q^{3} + (2 \beta_{2} + 4 \beta_1 + 1) q^{4} + ( - \beta_{2} - 4 \beta_1 + 10) q^{6} + ( - 5 \beta_{5} + 3 \beta_{4} + 14 \beta_{3}) q^{7} + ( - 3 \beta_{5} + 3 \beta_{4} - 11 \beta_{3}) q^{8} + (6 \beta_{2} - 9 \beta_1 - 25) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{5} + \beta_{4} + \beta_{3}) q^{2} + ( - 3 \beta_{4} - 4 \beta_{3}) q^{3} + (2 \beta_{2} + 4 \beta_1 + 1) q^{4} + ( - \beta_{2} - 4 \beta_1 + 10) q^{6} + ( - 5 \beta_{5} + 3 \beta_{4} + 14 \beta_{3}) q^{7} + ( - 3 \beta_{5} + 3 \beta_{4} - 11 \beta_{3}) q^{8} + (6 \beta_{2} - 9 \beta_1 - 25) q^{9} + (\beta_{2} + 9 \beta_1 + 20) q^{11} + (22 \beta_{5} - 7 \beta_{4} - 4 \beta_{3}) q^{12} + ( - 5 \beta_{5} + 20 \beta_{4} + 2 \beta_{3}) q^{13} + (\beta_{2} - \beta_1) q^{14} + ( - 4 \beta_{2} + 12 \beta_1 + 25) q^{16} - 17 \beta_{3} q^{17} + (2 \beta_{5} - \beta_{4} - \beta_{3}) q^{18} + (21 \beta_1 + 58) q^{19} + ( - 36 \beta_{2} + 44 \beta_1 + 122) q^{21} + ( - 7 \beta_{5} + 3 \beta_{4} - 18 \beta_{3}) q^{22} + ( - 13 \beta_{5} + 35 \beta_{4} - 38 \beta_{3}) q^{23} + (39 \beta_{2} + 30 \beta_1 + 10) q^{24} + ( - 28 \beta_{2} - 13 \beta_1 - 22) q^{26} + ( - 81 \beta_{5} + \cdots + 118 \beta_{3}) q^{27}+ \cdots + (269 \beta_{2} - 363 \beta_1 - 1052) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{4} + 66 q^{6} - 120 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{4} + 66 q^{6} - 120 q^{9} + 104 q^{11} + 4 q^{14} + 118 q^{16} + 306 q^{19} + 572 q^{21} + 78 q^{24} - 162 q^{26} - 90 q^{29} - 134 q^{31} + 102 q^{34} - 992 q^{36} + 1546 q^{39} + 996 q^{41} + 1080 q^{44} + 76 q^{46} - 54 q^{49} - 306 q^{51} + 1650 q^{54} - 68 q^{56} - 710 q^{59} + 2038 q^{61} + 2178 q^{64} + 40 q^{66} + 2052 q^{69} + 626 q^{71} + 2088 q^{74} + 2510 q^{76} + 184 q^{79} - 594 q^{81} + 4756 q^{84} + 2164 q^{86} - 3246 q^{89} - 2996 q^{91} + 4990 q^{94} + 386 q^{96} - 5048 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{5} + 25\nu^{4} + 10\nu^{3} - 4\nu^{2} + 323 ) / 121 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -7\nu^{5} - 27\nu^{4} - 35\nu^{3} + 14\nu^{2} - 223 ) / 121 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -25\nu^{5} - 10\nu^{4} - 4\nu^{3} + 50\nu^{2} - 605\nu + 258 ) / 242 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -65\nu^{5} - 26\nu^{4} + 38\nu^{3} + 372\nu^{2} - 1331\nu + 574 ) / 242 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 75\nu^{5} + 30\nu^{4} + 12\nu^{3} - 392\nu^{2} + 1815\nu - 774 ) / 242 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} - 3\beta_{3} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{5} + 5\beta_{4} + 4\beta_{3} - 5\beta_{2} - 5\beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{2} + 7\beta _1 - 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -29\beta_{5} - 25\beta_{4} - 32\beta_{3} - 25\beta_{2} - 29\beta _1 + 32 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
−1.75233 1.75233i
1.32001 1.32001i
0.432320 + 0.432320i
0.432320 0.432320i
1.32001 + 1.32001i
−1.75233 + 1.75233i
4.50466i 5.08998i −12.2920 0 22.9287 0.616696i 19.3340i 1.09206 0
324.2 1.64002i 5.37466i 5.31032 0 8.81456 2.20103i 21.8292i −1.88693 0
324.3 0.135359i 9.28467i 7.98168 0 1.25676 32.4157i 2.16327i −59.2051 0
324.4 0.135359i 9.28467i 7.98168 0 1.25676 32.4157i 2.16327i −59.2051 0
324.5 1.64002i 5.37466i 5.31032 0 8.81456 2.20103i 21.8292i −1.88693 0
324.6 4.50466i 5.08998i −12.2920 0 22.9287 0.616696i 19.3340i 1.09206 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 324.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.b.h 6
5.b even 2 1 inner 425.4.b.h 6
5.c odd 4 1 85.4.a.f 3
5.c odd 4 1 425.4.a.f 3
15.e even 4 1 765.4.a.k 3
20.e even 4 1 1360.4.a.p 3
85.g odd 4 1 1445.4.a.k 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.f 3 5.c odd 4 1
425.4.a.f 3 5.c odd 4 1
425.4.b.h 6 1.a even 1 1 trivial
425.4.b.h 6 5.b even 2 1 inner
765.4.a.k 3 15.e even 4 1
1360.4.a.p 3 20.e even 4 1
1445.4.a.k 3 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(425, [\chi])\):

\( T_{2}^{6} + 23T_{2}^{4} + 55T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{6} + 141T_{3}^{4} + 5472T_{3}^{2} + 64516 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 23 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + 141 T^{4} + \cdots + 64516 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 1056 T^{4} + \cdots + 1936 \) Copy content Toggle raw display
$11$ \( (T^{3} - 52 T^{2} + \cdots + 6784)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 6537 T^{4} + \cdots + 416486464 \) Copy content Toggle raw display
$17$ \( (T^{2} + 289)^{3} \) Copy content Toggle raw display
$19$ \( (T^{3} - 153 T^{2} + \cdots + 43112)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 344874307600 \) Copy content Toggle raw display
$29$ \( (T^{3} + 45 T^{2} + \cdots + 1563820)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 67 T^{2} + \cdots + 634)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 773217731584 \) Copy content Toggle raw display
$41$ \( (T^{3} - 498 T^{2} + \cdots + 948856)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 65024354357824 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 14\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 533738813372944 \) Copy content Toggle raw display
$59$ \( (T^{3} + 355 T^{2} + \cdots - 23789032)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 1019 T^{2} + \cdots - 32261500)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 5029254760000 \) Copy content Toggle raw display
$71$ \( (T^{3} - 313 T^{2} + \cdots - 104660798)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 555271333126416 \) Copy content Toggle raw display
$79$ \( (T^{3} - 92 T^{2} + \cdots - 310900832)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 56\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{3} + 1623 T^{2} + \cdots - 25616512)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 22\!\cdots\!24 \) Copy content Toggle raw display
show more
show less