Properties

Label 425.4.b.e
Level $425$
Weight $4$
Character orbit 425.b
Analytic conductor $25.076$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 2 \beta_1) q^{2} + ( - \beta_{2} - \beta_1) q^{3} + ( - 4 \beta_{3} + 1) q^{4} + (3 \beta_{3} + 5) q^{6} + ( - 9 \beta_{2} - \beta_1) q^{7} + (\beta_{2} + 6 \beta_1) q^{8} + ( - 2 \beta_{3} + 23) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} + 2 \beta_1) q^{2} + ( - \beta_{2} - \beta_1) q^{3} + ( - 4 \beta_{3} + 1) q^{4} + (3 \beta_{3} + 5) q^{6} + ( - 9 \beta_{2} - \beta_1) q^{7} + (\beta_{2} + 6 \beta_1) q^{8} + ( - 2 \beta_{3} + 23) q^{9} + ( - 13 \beta_{3} - 19) q^{11} + (3 \beta_{2} + 11 \beta_1) q^{12} + (28 \beta_{2} - 40 \beta_1) q^{13} + (19 \beta_{3} + 29) q^{14} + ( - 40 \beta_{3} - 7) q^{16} + 17 \beta_1 q^{17} + (19 \beta_{2} + 40 \beta_1) q^{18} + (6 \beta_{3} + 90) q^{19} + ( - 10 \beta_{3} - 28) q^{21} + ( - 45 \beta_{2} - 77 \beta_1) q^{22} + ( - 101 \beta_{2} - 21 \beta_1) q^{23} + (7 \beta_{3} + 9) q^{24} + ( - 16 \beta_{3} - 4) q^{26} + ( - 48 \beta_{2} - 44 \beta_1) q^{27} + ( - 5 \beta_{2} + 107 \beta_1) q^{28} + (46 \beta_{3} + 108) q^{29} + (141 \beta_{3} + 35) q^{31} + ( - 79 \beta_{2} - 86 \beta_1) q^{32} + (32 \beta_{2} + 58 \beta_1) q^{33} + ( - 17 \beta_{3} - 34) q^{34} + ( - 94 \beta_{3} + 47) q^{36} + (106 \beta_{2} - 176 \beta_1) q^{37} + (102 \beta_{2} + 198 \beta_1) q^{38} + ( - 12 \beta_{3} + 44) q^{39} + ( - 142 \beta_{3} + 172) q^{41} + ( - 48 \beta_{2} - 86 \beta_1) q^{42} + ( - 166 \beta_{2} - 44 \beta_1) q^{43} + (63 \beta_{3} + 137) q^{44} + (223 \beta_{3} + 345) q^{46} + (8 \beta_{2} + 174 \beta_1) q^{47} + (47 \beta_{2} + 127 \beta_1) q^{48} + ( - 18 \beta_{3} + 99) q^{49} + (17 \beta_{3} + 17) q^{51} + (188 \beta_{2} - 376 \beta_1) q^{52} + ( - 64 \beta_{2} - 82 \beta_1) q^{53} + (140 \beta_{3} + 232) q^{54} + (55 \beta_{3} + 33) q^{56} + ( - 96 \beta_{2} - 108 \beta_1) q^{57} + (200 \beta_{2} + 354 \beta_1) q^{58} + ( - 66 \beta_{3} + 718) q^{59} + (268 \beta_{3} - 38) q^{61} + (317 \beta_{2} + 493 \beta_1) q^{62} + ( - 205 \beta_{2} + 31 \beta_1) q^{63} + ( - 76 \beta_{3} + 353) q^{64} + ( - 122 \beta_{3} - 212) q^{66} + ( - 308 \beta_{2} + 22 \beta_1) q^{67} + ( - 68 \beta_{2} + 17 \beta_1) q^{68} + ( - 122 \beta_{3} - 324) q^{69} + (119 \beta_{3} - 755) q^{71} + (11 \beta_{2} + 132 \beta_1) q^{72} + (18 \beta_{2} + 544 \beta_1) q^{73} + ( - 36 \beta_{3} + 34) q^{74} + ( - 354 \beta_{3} + 18) q^{76} + (184 \beta_{2} + 370 \beta_1) q^{77} + (20 \beta_{2} + 52 \beta_1) q^{78} + (437 \beta_{3} + 479) q^{79} + ( - 146 \beta_{3} + 433) q^{81} + ( - 112 \beta_{2} - 82 \beta_1) q^{82} + (238 \beta_{2} + 124 \beta_1) q^{83} + (102 \beta_{3} + 92) q^{84} + (376 \beta_{3} + 586) q^{86} + ( - 154 \beta_{2} - 246 \beta_1) q^{87} + ( - 97 \beta_{2} - 153 \beta_1) q^{88} + ( - 742 \beta_{3} + 102) q^{89} + ( - 332 \beta_{3} + 716) q^{91} + ( - 17 \beta_{2} + 1191 \beta_1) q^{92} + ( - 176 \beta_{2} - 458 \beta_1) q^{93} + ( - 190 \beta_{3} - 372) q^{94} + ( - 165 \beta_{3} - 323) q^{96} + ( - 436 \beta_{2} - 506 \beta_1) q^{97} + (63 \beta_{2} + 144 \beta_1) q^{98} + ( - 261 \beta_{3} - 359) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 20 q^{6} + 92 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} + 20 q^{6} + 92 q^{9} - 76 q^{11} + 116 q^{14} - 28 q^{16} + 360 q^{19} - 112 q^{21} + 36 q^{24} - 16 q^{26} + 432 q^{29} + 140 q^{31} - 136 q^{34} + 188 q^{36} + 176 q^{39} + 688 q^{41} + 548 q^{44} + 1380 q^{46} + 396 q^{49} + 68 q^{51} + 928 q^{54} + 132 q^{56} + 2872 q^{59} - 152 q^{61} + 1412 q^{64} - 848 q^{66} - 1296 q^{69} - 3020 q^{71} + 136 q^{74} + 72 q^{76} + 1916 q^{79} + 1732 q^{81} + 368 q^{84} + 2344 q^{86} + 408 q^{89} + 2864 q^{91} - 1488 q^{94} - 1292 q^{96} - 1436 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
3.73205i 2.73205i −5.92820 0 10.1962 16.5885i 7.73205i 19.5359 0
324.2 0.267949i 0.732051i 7.92820 0 −0.196152 14.5885i 4.26795i 26.4641 0
324.3 0.267949i 0.732051i 7.92820 0 −0.196152 14.5885i 4.26795i 26.4641 0
324.4 3.73205i 2.73205i −5.92820 0 10.1962 16.5885i 7.73205i 19.5359 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.b.e 4
5.b even 2 1 inner 425.4.b.e 4
5.c odd 4 1 85.4.a.d 2
5.c odd 4 1 425.4.a.e 2
15.e even 4 1 765.4.a.i 2
20.e even 4 1 1360.4.a.m 2
85.g odd 4 1 1445.4.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.d 2 5.c odd 4 1
425.4.a.e 2 5.c odd 4 1
425.4.b.e 4 1.a even 1 1 trivial
425.4.b.e 4 5.b even 2 1 inner
765.4.a.i 2 15.e even 4 1
1360.4.a.m 2 20.e even 4 1
1445.4.a.i 2 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(425, [\chi])\):

\( T_{2}^{4} + 14T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} + 8T_{3}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 14T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 488 T^{2} + 58564 \) Copy content Toggle raw display
$11$ \( (T^{2} + 38 T - 146)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 7904 T^{2} + 565504 \) Copy content Toggle raw display
$17$ \( (T^{2} + 289)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 180 T + 7992)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 62088 T^{2} + 909746244 \) Copy content Toggle raw display
$29$ \( (T^{2} - 216 T + 5316)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 70 T - 58418)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 129368 T^{2} + 7463824 \) Copy content Toggle raw display
$41$ \( (T^{2} - 344 T - 30908)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 6517655824 \) Copy content Toggle raw display
$47$ \( T^{4} + 60936 T^{2} + 905047056 \) Copy content Toggle raw display
$53$ \( T^{4} + 38024 T^{2} + 30958096 \) Copy content Toggle raw display
$59$ \( (T^{2} - 1436 T + 502456)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 76 T - 214028)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 80717355664 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1510 T + 527542)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 87003761296 \) Copy content Toggle raw display
$79$ \( (T^{2} - 958 T - 343466)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 23887557136 \) Copy content Toggle raw display
$89$ \( (T^{2} - 204 T - 1641288)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 98754319504 \) Copy content Toggle raw display
show more
show less