Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(180\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 140 | 72 | 68 |
Cusp forms | 128 | 72 | 56 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)