Properties

Label 425.4.a.g
Level $425$
Weight $4$
Character orbit 425.a
Self dual yes
Analytic conductor $25.076$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(25.0758117524\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2636.1
Defining polynomial: \( x^{3} - 14x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1) q^{2} + ( - 2 \beta_{2} + \beta_1 - 2) q^{3} + ( - \beta_{2} - 3 \beta_1 + 8) q^{4} + (2 \beta_{2} + 6 \beta_1 - 24) q^{6} + (4 \beta_{2} + \beta_1 - 6) q^{7} + (9 \beta_{2} - 5 \beta_1 + 16) q^{8} + ( - 2 \beta_{2} - 8 \beta_1 + 19) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} - \beta_1) q^{2} + ( - 2 \beta_{2} + \beta_1 - 2) q^{3} + ( - \beta_{2} - 3 \beta_1 + 8) q^{4} + (2 \beta_{2} + 6 \beta_1 - 24) q^{6} + (4 \beta_{2} + \beta_1 - 6) q^{7} + (9 \beta_{2} - 5 \beta_1 + 16) q^{8} + ( - 2 \beta_{2} - 8 \beta_1 + 19) q^{9} + ( - 2 \beta_{2} + 11 \beta_1 - 10) q^{11} + ( - 26 \beta_{2} + 26 \beta_1 - 16) q^{12} + ( - 6 \beta_{2} - 8 \beta_1 - 12) q^{13} + ( - 20 \beta_{2} + 4 \beta_1 + 24) q^{14} + (7 \beta_{2} - 11 \beta_1 + 48) q^{16} + 17 q^{17} + (41 \beta_{2} - 33 \beta_1 + 48) q^{18} + ( - 8 \beta_{2} + 22 \beta_1 + 24) q^{19} + (30 \beta_{2} - 12 \beta_1 - 54) q^{21} + ( - 26 \beta_{2} + 34 \beta_1 - 104) q^{22} + (4 \beta_{2} + 39 \beta_1 - 46) q^{23} + ( - 6 \beta_{2} + 46 \beta_1 - 224) q^{24} + (22 \beta_{2} + 2 \beta_1 + 16) q^{26} + ( - 8 \beta_{2} + 40 \beta_1 + 4) q^{27} + (44 \beta_{2} - 4 \beta_1 - 144) q^{28} + (30 \beta_{2} - 16 \beta_1 - 142) q^{29} + (16 \beta_{2} + 39 \beta_1 + 82) q^{31} + ( - 23 \beta_{2} - 37 \beta_1 + 16) q^{32} + (34 \beta_{2} - 76 \beta_1 + 122) q^{33} + (17 \beta_{2} - 17 \beta_1) q^{34} + (7 \beta_{2} - 91 \beta_1 + 440) q^{36} + (50 \beta_{2} + 28 \beta_1 - 102) q^{37} + (4 \beta_{2} + 28 \beta_1 - 240) q^{38} + ( - 16 \beta_{2} + 36 \beta_1 + 84) q^{39} + ( - 60 \beta_{2} - 52 \beta_1 - 118) q^{41} + ( - 120 \beta_{2} + 336) q^{42} + ( - 56 \beta_{2} - 2 \beta_1 - 204) q^{43} + ( - 78 \beta_{2} + 110 \beta_1 - 400) q^{44} + ( - 136 \beta_{2} + 120 \beta_1 - 280) q^{46} + ( - 44 \beta_{2} + 48 \beta_1 - 228) q^{47} + ( - 90 \beta_{2} + 114 \beta_1 - 288) q^{48} + ( - 94 \beta_{2} + 20 \beta_1 - 121) q^{49} + ( - 34 \beta_{2} + 17 \beta_1 - 34) q^{51} + ( - 6 \beta_{2} + 30 \beta_1 + 256) q^{52} + (8 \beta_{2} - 116 \beta_1 - 98) q^{53} + ( - 52 \beta_{2} + 84 \beta_1 - 384) q^{54} + ( - 108 \beta_{2} + 60 \beta_1 + 192) q^{56} + ( - 36 \beta_{2} - 108 \beta_1 + 228) q^{57} + ( - 200 \beta_{2} + 80 \beta_1 + 368) q^{58} + ( - 130 \beta_1 + 212) q^{59} + (78 \beta_{2} - 64 \beta_1 - 2) q^{61} + ( - 44 \beta_{2} - 20 \beta_1 - 184) q^{62} + (96 \beta_{2} - 9 \beta_1 - 342) q^{63} + (103 \beta_{2} + 21 \beta_1 - 272) q^{64} + (172 \beta_{2} - 308 \beta_1 + 880) q^{66} + (132 \beta_{2} - 24 \beta_1 - 292) q^{67} + ( - 17 \beta_{2} - 51 \beta_1 + 136) q^{68} + (186 \beta_{2} - 280 \beta_1 + 254) q^{69} + (72 \beta_{2} + 185 \beta_1 - 110) q^{71} + (273 \beta_{2} - 365 \beta_1 + 400) q^{72} + (16 \beta_{2} - 16 \beta_1 - 274) q^{73} + ( - 308 \beta_{2} + 108 \beta_1 + 176) q^{74} + ( - 244 \beta_{2} + 116 \beta_1 - 384) q^{76} + (18 \beta_{2} + 174) q^{77} + (60 \beta_{2} + 4 \beta_1 - 416) q^{78} + (180 \beta_{2} - 267 \beta_1 - 138) q^{79} + (94 \beta_{2} - 20 \beta_1 - 137) q^{81} + (166 \beta_{2} + 74 \beta_1 - 64) q^{82} + ( - 128 \beta_{2} - 82 \beta_1 + 756) q^{83} + (456 \beta_{2} - 120 \beta_1 - 528) q^{84} + ( - 32 \beta_{2} + 256 \beta_1 - 432) q^{86} + (372 \beta_{2} - 46 \beta_1 - 352) q^{87} + ( - 178 \beta_{2} + 426 \beta_1 - 672) q^{88} + (110 \beta_{2} - 276 \beta_1 - 20) q^{89} + (44 \beta_{2} - 64 \beta_1 - 324) q^{91} + ( - 144 \beta_{2} + 344 \beta_1 - 1680) q^{92} + ( - 22 \beta_{2} - 152 \beta_1 - 218) q^{93} + ( - 192 \beta_{2} + 368 \beta_1 - 736) q^{94} + ( - 198 \beta_{2} + 238 \beta_1 + 160) q^{96} + ( - 120 \beta_{2} - 140 \beta_1 + 50) q^{97} + (121 \beta_{2} + 255 \beta_1 - 912) q^{98} + ( - 206 \beta_{2} + 281 \beta_1 - 1042) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 4 q^{3} + 25 q^{4} - 74 q^{6} - 22 q^{7} + 39 q^{8} + 59 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} - 4 q^{3} + 25 q^{4} - 74 q^{6} - 22 q^{7} + 39 q^{8} + 59 q^{9} - 28 q^{11} - 22 q^{12} - 30 q^{13} + 92 q^{14} + 137 q^{16} + 51 q^{17} + 103 q^{18} + 80 q^{19} - 192 q^{21} - 286 q^{22} - 142 q^{23} - 666 q^{24} + 26 q^{26} + 20 q^{27} - 476 q^{28} - 456 q^{29} + 230 q^{31} + 71 q^{32} + 332 q^{33} - 17 q^{34} + 1313 q^{36} - 356 q^{37} - 724 q^{38} + 268 q^{39} - 294 q^{41} + 1128 q^{42} - 556 q^{43} - 1122 q^{44} - 704 q^{46} - 640 q^{47} - 774 q^{48} - 269 q^{49} - 68 q^{51} + 774 q^{52} - 302 q^{53} - 1100 q^{54} + 684 q^{56} + 720 q^{57} + 1304 q^{58} + 636 q^{59} - 84 q^{61} - 508 q^{62} - 1122 q^{63} - 919 q^{64} + 2468 q^{66} - 1008 q^{67} + 425 q^{68} + 576 q^{69} - 402 q^{71} + 927 q^{72} - 838 q^{73} + 836 q^{74} - 908 q^{76} + 504 q^{77} - 1308 q^{78} - 594 q^{79} - 505 q^{81} - 358 q^{82} + 2396 q^{83} - 2040 q^{84} - 1264 q^{86} - 1428 q^{87} - 1838 q^{88} - 170 q^{89} - 1016 q^{91} - 4896 q^{92} - 632 q^{93} - 2016 q^{94} + 678 q^{96} + 270 q^{97} - 2857 q^{98} - 2920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 14x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 10 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.287410
3.87707
−3.58966
−4.67129 7.62999 13.8209 0 −35.6419 −26.1222 −27.1912 31.2167 0
1.2 −1.36122 −3.15463 −6.14708 0 4.29415 7.94049 19.2573 −17.0483 0
1.3 5.03251 −8.47535 17.3261 0 −42.6523 −3.81828 46.9339 44.8316 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \(1\)
\(17\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.a.g 3
5.b even 2 1 17.4.a.b 3
5.c odd 4 2 425.4.b.f 6
15.d odd 2 1 153.4.a.g 3
20.d odd 2 1 272.4.a.h 3
35.c odd 2 1 833.4.a.d 3
40.e odd 2 1 1088.4.a.x 3
40.f even 2 1 1088.4.a.v 3
55.d odd 2 1 2057.4.a.e 3
60.h even 2 1 2448.4.a.bi 3
85.c even 2 1 289.4.a.b 3
85.j even 4 2 289.4.b.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.4.a.b 3 5.b even 2 1
153.4.a.g 3 15.d odd 2 1
272.4.a.h 3 20.d odd 2 1
289.4.a.b 3 85.c even 2 1
289.4.b.b 6 85.j even 4 2
425.4.a.g 3 1.a even 1 1 trivial
425.4.b.f 6 5.c odd 4 2
833.4.a.d 3 35.c odd 2 1
1088.4.a.v 3 40.f even 2 1
1088.4.a.x 3 40.e odd 2 1
2057.4.a.e 3 55.d odd 2 1
2448.4.a.bi 3 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(425))\):

\( T_{2}^{3} + T_{2}^{2} - 24T_{2} - 32 \) Copy content Toggle raw display
\( T_{3}^{3} + 4T_{3}^{2} - 62T_{3} - 204 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 24 T - 32 \) Copy content Toggle raw display
$3$ \( T^{3} + 4 T^{2} - 62 T - 204 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 22 T^{2} - 138 T - 792 \) Copy content Toggle raw display
$11$ \( T^{3} + 28 T^{2} - 1366 T - 4692 \) Copy content Toggle raw display
$13$ \( T^{3} + 30 T^{2} - 1472 T + 9392 \) Copy content Toggle raw display
$17$ \( (T - 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 80 T^{2} - 4632 T + 340128 \) Copy content Toggle raw display
$23$ \( T^{3} + 142 T^{2} - 15770 T - 1600544 \) Copy content Toggle raw display
$29$ \( T^{3} + 456 T^{2} + 53908 T + 1518624 \) Copy content Toggle raw display
$31$ \( T^{3} - 230 T^{2} - 11586 T - 81608 \) Copy content Toggle raw display
$37$ \( T^{3} + 356 T^{2} - 17964 T - 6176752 \) Copy content Toggle raw display
$41$ \( T^{3} + 294 T^{2} - 86564 T - 1638744 \) Copy content Toggle raw display
$43$ \( T^{3} + 556 T^{2} + 51096 T - 7270272 \) Copy content Toggle raw display
$47$ \( T^{3} + 640 T^{2} + 85328 T + 1671168 \) Copy content Toggle raw display
$53$ \( T^{3} + 302 T^{2} + \cdots - 18162072 \) Copy content Toggle raw display
$59$ \( T^{3} - 636 T^{2} + \cdots + 49419072 \) Copy content Toggle raw display
$61$ \( T^{3} + 84 T^{2} - 124412 T - 6792784 \) Copy content Toggle raw display
$67$ \( T^{3} + 1008 T^{2} + 65040 T + 765952 \) Copy content Toggle raw display
$71$ \( T^{3} + 402 T^{2} + \cdots - 274866016 \) Copy content Toggle raw display
$73$ \( T^{3} + 838 T^{2} + \cdots + 19957512 \) Copy content Toggle raw display
$79$ \( T^{3} + 594 T^{2} + \cdots - 742135824 \) Copy content Toggle raw display
$83$ \( T^{3} - 2396 T^{2} + \cdots - 142080704 \) Copy content Toggle raw display
$89$ \( T^{3} + 170 T^{2} + \cdots - 446571376 \) Copy content Toggle raw display
$97$ \( T^{3} - 270 T^{2} + \cdots + 206623000 \) Copy content Toggle raw display
show more
show less