Properties

Label 425.4.a.d
Level $425$
Weight $4$
Character orbit 425.a
Self dual yes
Analytic conductor $25.076$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 8 q^{3} + q^{4} + 24 q^{6} + 28 q^{7} - 21 q^{8} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} + 8 q^{3} + q^{4} + 24 q^{6} + 28 q^{7} - 21 q^{8} + 37 q^{9} - 24 q^{11} + 8 q^{12} + 58 q^{13} + 84 q^{14} - 71 q^{16} - 17 q^{17} + 111 q^{18} + 116 q^{19} + 224 q^{21} - 72 q^{22} + 60 q^{23} - 168 q^{24} + 174 q^{26} + 80 q^{27} + 28 q^{28} + 30 q^{29} - 172 q^{31} - 45 q^{32} - 192 q^{33} - 51 q^{34} + 37 q^{36} + 58 q^{37} + 348 q^{38} + 464 q^{39} - 342 q^{41} + 672 q^{42} + 148 q^{43} - 24 q^{44} + 180 q^{46} - 288 q^{47} - 568 q^{48} + 441 q^{49} - 136 q^{51} + 58 q^{52} - 318 q^{53} + 240 q^{54} - 588 q^{56} + 928 q^{57} + 90 q^{58} + 252 q^{59} + 110 q^{61} - 516 q^{62} + 1036 q^{63} + 433 q^{64} - 576 q^{66} + 484 q^{67} - 17 q^{68} + 480 q^{69} - 708 q^{71} - 777 q^{72} - 362 q^{73} + 174 q^{74} + 116 q^{76} - 672 q^{77} + 1392 q^{78} - 484 q^{79} - 359 q^{81} - 1026 q^{82} - 756 q^{83} + 224 q^{84} + 444 q^{86} + 240 q^{87} + 504 q^{88} - 774 q^{89} + 1624 q^{91} + 60 q^{92} - 1376 q^{93} - 864 q^{94} - 360 q^{96} + 382 q^{97} + 1323 q^{98} - 888 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 8.00000 1.00000 0 24.0000 28.0000 −21.0000 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.a.d 1
5.b even 2 1 17.4.a.a 1
5.c odd 4 2 425.4.b.c 2
15.d odd 2 1 153.4.a.d 1
20.d odd 2 1 272.4.a.d 1
35.c odd 2 1 833.4.a.a 1
40.e odd 2 1 1088.4.a.a 1
40.f even 2 1 1088.4.a.l 1
55.d odd 2 1 2057.4.a.d 1
60.h even 2 1 2448.4.a.f 1
85.c even 2 1 289.4.a.a 1
85.j even 4 2 289.4.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.4.a.a 1 5.b even 2 1
153.4.a.d 1 15.d odd 2 1
272.4.a.d 1 20.d odd 2 1
289.4.a.a 1 85.c even 2 1
289.4.b.a 2 85.j even 4 2
425.4.a.d 1 1.a even 1 1 trivial
425.4.b.c 2 5.c odd 4 2
833.4.a.a 1 35.c odd 2 1
1088.4.a.a 1 40.e odd 2 1
1088.4.a.l 1 40.f even 2 1
2057.4.a.d 1 55.d odd 2 1
2448.4.a.f 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(425))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{3} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 28 \) Copy content Toggle raw display
$11$ \( T + 24 \) Copy content Toggle raw display
$13$ \( T - 58 \) Copy content Toggle raw display
$17$ \( T + 17 \) Copy content Toggle raw display
$19$ \( T - 116 \) Copy content Toggle raw display
$23$ \( T - 60 \) Copy content Toggle raw display
$29$ \( T - 30 \) Copy content Toggle raw display
$31$ \( T + 172 \) Copy content Toggle raw display
$37$ \( T - 58 \) Copy content Toggle raw display
$41$ \( T + 342 \) Copy content Toggle raw display
$43$ \( T - 148 \) Copy content Toggle raw display
$47$ \( T + 288 \) Copy content Toggle raw display
$53$ \( T + 318 \) Copy content Toggle raw display
$59$ \( T - 252 \) Copy content Toggle raw display
$61$ \( T - 110 \) Copy content Toggle raw display
$67$ \( T - 484 \) Copy content Toggle raw display
$71$ \( T + 708 \) Copy content Toggle raw display
$73$ \( T + 362 \) Copy content Toggle raw display
$79$ \( T + 484 \) Copy content Toggle raw display
$83$ \( T + 756 \) Copy content Toggle raw display
$89$ \( T + 774 \) Copy content Toggle raw display
$97$ \( T - 382 \) Copy content Toggle raw display
show more
show less