Properties

Label 425.2.r.a.69.8
Level $425$
Weight $2$
Character 425.69
Analytic conductor $3.394$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(69,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.8
Character \(\chi\) \(=\) 425.69
Dual form 425.2.r.a.154.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80321 + 0.585900i) q^{2} +(0.0268065 + 0.0368959i) q^{3} +(1.29027 - 0.937434i) q^{4} +(0.943879 + 2.02709i) q^{5} +(-0.0699551 - 0.0508253i) q^{6} -0.426178i q^{7} +(0.451510 - 0.621450i) q^{8} +(0.926408 - 2.85119i) q^{9} +(-2.88969 - 3.10226i) q^{10} +(-1.70752 - 5.25519i) q^{11} +(0.0691750 + 0.0224763i) q^{12} +(1.38488 + 0.449976i) q^{13} +(0.249697 + 0.768489i) q^{14} +(-0.0494893 + 0.0891644i) q^{15} +(-1.43574 + 4.41875i) q^{16} +(-0.587785 + 0.809017i) q^{17} +5.68409i q^{18} +(-4.16200 - 3.02387i) q^{19} +(3.11812 + 1.73066i) q^{20} +(0.0157242 - 0.0114243i) q^{21} +(6.15803 + 8.47580i) q^{22} +(5.87772 - 1.90979i) q^{23} +0.0350323 q^{24} +(-3.21819 + 3.82665i) q^{25} -2.76088 q^{26} +(0.260152 - 0.0845286i) q^{27} +(-0.399513 - 0.549883i) q^{28} +(8.45213 - 6.14083i) q^{29} +(0.0369984 - 0.189778i) q^{30} +(-1.97401 - 1.43420i) q^{31} -7.27283i q^{32} +(0.148123 - 0.203873i) q^{33} +(0.585900 - 1.80321i) q^{34} +(0.863900 - 0.402260i) q^{35} +(-1.47749 - 4.54724i) q^{36} +(0.364580 + 0.118459i) q^{37} +(9.27666 + 3.01417i) q^{38} +(0.0205215 + 0.0631588i) q^{39} +(1.68591 + 0.328677i) q^{40} +(1.69822 - 5.22657i) q^{41} +(-0.0216606 + 0.0298133i) q^{42} -0.400907i q^{43} +(-7.12955 - 5.17992i) q^{44} +(6.65404 - 0.813266i) q^{45} +(-9.47985 + 6.88751i) q^{46} +(1.46661 + 2.01862i) q^{47} +(-0.201521 + 0.0654781i) q^{48} +6.81837 q^{49} +(3.56104 - 8.78581i) q^{50} -0.0456059 q^{51} +(2.20869 - 0.717647i) q^{52} +(4.61335 + 6.34974i) q^{53} +(-0.419585 + 0.304846i) q^{54} +(9.04106 - 8.42155i) q^{55} +(-0.264848 - 0.192423i) q^{56} -0.234620i q^{57} +(-11.6431 + 16.0253i) q^{58} +(0.908087 - 2.79480i) q^{59} +(0.0197313 + 0.161439i) q^{60} +(2.78832 + 8.58157i) q^{61} +(4.39985 + 1.42960i) q^{62} +(-1.21511 - 0.394814i) q^{63} +(1.38967 + 4.27698i) q^{64} +(0.395020 + 3.23200i) q^{65} +(-0.147648 + 0.454412i) q^{66} +(-0.917637 + 1.26302i) q^{67} +1.59486i q^{68} +(0.228024 + 0.165669i) q^{69} +(-1.32211 + 1.23152i) q^{70} +(-10.8497 + 7.88275i) q^{71} +(-1.35359 - 1.86306i) q^{72} +(-9.32082 + 3.02852i) q^{73} -0.726820 q^{74} +(-0.227456 - 0.0161589i) q^{75} -8.20477 q^{76} +(-2.23965 + 0.727705i) q^{77} +(-0.0740094 - 0.101865i) q^{78} +(8.75922 - 6.36395i) q^{79} +(-10.3124 + 1.26039i) q^{80} +(-7.26601 - 5.27907i) q^{81} +10.4196i q^{82} +(9.10493 - 12.5319i) q^{83} +(0.00957890 - 0.0294808i) q^{84} +(-2.19475 - 0.427880i) q^{85} +(0.234891 + 0.722920i) q^{86} +(0.453143 + 0.147235i) q^{87} +(-4.03680 - 1.31164i) q^{88} +(-2.54723 - 7.83958i) q^{89} +(-11.5222 + 5.36509i) q^{90} +(0.191770 - 0.590206i) q^{91} +(5.79353 - 7.97411i) q^{92} -0.111279i q^{93} +(-3.82732 - 2.78071i) q^{94} +(2.20123 - 11.2909i) q^{95} +(0.268338 - 0.194959i) q^{96} +(6.99297 + 9.62500i) q^{97} +(-12.2950 + 3.99488i) q^{98} -16.5654 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 40 q^{4} - 8 q^{5} + 4 q^{6} - 30 q^{8} + 36 q^{9} - 6 q^{10} + 8 q^{11} - 40 q^{12} - 20 q^{14} - 40 q^{15} - 64 q^{16} + 6 q^{19} + 2 q^{20} - 50 q^{22} + 20 q^{23} + 20 q^{24} + 32 q^{25} + 20 q^{26}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80321 + 0.585900i −1.27506 + 0.414294i −0.866839 0.498588i \(-0.833852\pi\)
−0.408225 + 0.912881i \(0.633852\pi\)
\(3\) 0.0268065 + 0.0368959i 0.0154767 + 0.0213019i 0.816685 0.577083i \(-0.195809\pi\)
−0.801209 + 0.598385i \(0.795809\pi\)
\(4\) 1.29027 0.937434i 0.645133 0.468717i
\(5\) 0.943879 + 2.02709i 0.422115 + 0.906542i
\(6\) −0.0699551 0.0508253i −0.0285590 0.0207494i
\(7\) 0.426178i 0.161080i −0.996751 0.0805400i \(-0.974336\pi\)
0.996751 0.0805400i \(-0.0256645\pi\)
\(8\) 0.451510 0.621450i 0.159633 0.219716i
\(9\) 0.926408 2.85119i 0.308803 0.950397i
\(10\) −2.88969 3.10226i −0.913799 0.981020i
\(11\) −1.70752 5.25519i −0.514835 1.58450i −0.783582 0.621289i \(-0.786609\pi\)
0.268746 0.963211i \(-0.413391\pi\)
\(12\) 0.0691750 + 0.0224763i 0.0199691 + 0.00648835i
\(13\) 1.38488 + 0.449976i 0.384097 + 0.124801i 0.494700 0.869064i \(-0.335278\pi\)
−0.110602 + 0.993865i \(0.535278\pi\)
\(14\) 0.249697 + 0.768489i 0.0667344 + 0.205387i
\(15\) −0.0494893 + 0.0891644i −0.0127781 + 0.0230221i
\(16\) −1.43574 + 4.41875i −0.358934 + 1.10469i
\(17\) −0.587785 + 0.809017i −0.142559 + 0.196215i
\(18\) 5.68409i 1.33975i
\(19\) −4.16200 3.02387i −0.954828 0.693723i −0.00288426 0.999996i \(-0.500918\pi\)
−0.951944 + 0.306273i \(0.900918\pi\)
\(20\) 3.11812 + 1.73066i 0.697232 + 0.386988i
\(21\) 0.0157242 0.0114243i 0.00343131 0.00249299i
\(22\) 6.15803 + 8.47580i 1.31290 + 1.80705i
\(23\) 5.87772 1.90979i 1.22559 0.398218i 0.376475 0.926427i \(-0.377136\pi\)
0.849115 + 0.528208i \(0.177136\pi\)
\(24\) 0.0350323 0.00715095
\(25\) −3.21819 + 3.82665i −0.643637 + 0.765331i
\(26\) −2.76088 −0.541453
\(27\) 0.260152 0.0845286i 0.0500663 0.0162675i
\(28\) −0.399513 0.549883i −0.0755009 0.103918i
\(29\) 8.45213 6.14083i 1.56952 1.14032i 0.641907 0.766783i \(-0.278144\pi\)
0.927614 0.373540i \(-0.121856\pi\)
\(30\) 0.0369984 0.189778i 0.00675496 0.0346486i
\(31\) −1.97401 1.43420i −0.354542 0.257590i 0.396230 0.918151i \(-0.370318\pi\)
−0.750772 + 0.660561i \(0.770318\pi\)
\(32\) 7.27283i 1.28567i
\(33\) 0.148123 0.203873i 0.0257849 0.0354898i
\(34\) 0.585900 1.80321i 0.100481 0.309249i
\(35\) 0.863900 0.402260i 0.146026 0.0679944i
\(36\) −1.47749 4.54724i −0.246248 0.757874i
\(37\) 0.364580 + 0.118459i 0.0599365 + 0.0194746i 0.338832 0.940847i \(-0.389968\pi\)
−0.278895 + 0.960322i \(0.589968\pi\)
\(38\) 9.27666 + 3.01417i 1.50487 + 0.488963i
\(39\) 0.0205215 + 0.0631588i 0.00328608 + 0.0101135i
\(40\) 1.68591 + 0.328677i 0.266565 + 0.0519685i
\(41\) 1.69822 5.22657i 0.265217 0.816253i −0.726427 0.687244i \(-0.758820\pi\)
0.991643 0.129009i \(-0.0411797\pi\)
\(42\) −0.0216606 + 0.0298133i −0.00334231 + 0.00460029i
\(43\) 0.400907i 0.0611377i −0.999533 0.0305688i \(-0.990268\pi\)
0.999533 0.0305688i \(-0.00973188\pi\)
\(44\) −7.12955 5.17992i −1.07482 0.780902i
\(45\) 6.65404 0.813266i 0.991925 0.121235i
\(46\) −9.47985 + 6.88751i −1.39773 + 1.01551i
\(47\) 1.46661 + 2.01862i 0.213927 + 0.294445i 0.902472 0.430748i \(-0.141750\pi\)
−0.688545 + 0.725194i \(0.741750\pi\)
\(48\) −0.201521 + 0.0654781i −0.0290870 + 0.00945094i
\(49\) 6.81837 0.974053
\(50\) 3.56104 8.78581i 0.503607 1.24250i
\(51\) −0.0456059 −0.00638610
\(52\) 2.20869 0.717647i 0.306290 0.0995198i
\(53\) 4.61335 + 6.34974i 0.633693 + 0.872203i 0.998260 0.0589739i \(-0.0187829\pi\)
−0.364567 + 0.931177i \(0.618783\pi\)
\(54\) −0.419585 + 0.304846i −0.0570983 + 0.0414843i
\(55\) 9.04106 8.42155i 1.21910 1.13556i
\(56\) −0.264848 0.192423i −0.0353918 0.0257137i
\(57\) 0.234620i 0.0310762i
\(58\) −11.6431 + 16.0253i −1.52881 + 2.10423i
\(59\) 0.908087 2.79480i 0.118223 0.363852i −0.874383 0.485237i \(-0.838733\pi\)
0.992606 + 0.121384i \(0.0387334\pi\)
\(60\) 0.0197313 + 0.161439i 0.00254730 + 0.0208417i
\(61\) 2.78832 + 8.58157i 0.357008 + 1.09876i 0.954836 + 0.297133i \(0.0960304\pi\)
−0.597828 + 0.801624i \(0.703970\pi\)
\(62\) 4.39985 + 1.42960i 0.558782 + 0.181559i
\(63\) −1.21511 0.394814i −0.153090 0.0497419i
\(64\) 1.38967 + 4.27698i 0.173709 + 0.534622i
\(65\) 0.395020 + 3.23200i 0.0489962 + 0.400881i
\(66\) −0.147648 + 0.454412i −0.0181742 + 0.0559343i
\(67\) −0.917637 + 1.26302i −0.112107 + 0.154302i −0.861383 0.507955i \(-0.830402\pi\)
0.749276 + 0.662258i \(0.230402\pi\)
\(68\) 1.59486i 0.193405i
\(69\) 0.228024 + 0.165669i 0.0274509 + 0.0199443i
\(70\) −1.32211 + 1.23152i −0.158023 + 0.147195i
\(71\) −10.8497 + 7.88275i −1.28762 + 0.935511i −0.999754 0.0221599i \(-0.992946\pi\)
−0.287866 + 0.957671i \(0.592946\pi\)
\(72\) −1.35359 1.86306i −0.159522 0.219563i
\(73\) −9.32082 + 3.02852i −1.09092 + 0.354461i −0.798602 0.601860i \(-0.794427\pi\)
−0.292318 + 0.956321i \(0.594427\pi\)
\(74\) −0.726820 −0.0844912
\(75\) −0.227456 0.0161589i −0.0262644 0.00186587i
\(76\) −8.20477 −0.941151
\(77\) −2.23965 + 0.727705i −0.255231 + 0.0829297i
\(78\) −0.0740094 0.101865i −0.00837992 0.0115340i
\(79\) 8.75922 6.36395i 0.985489 0.716000i 0.0265607 0.999647i \(-0.491544\pi\)
0.958929 + 0.283647i \(0.0915445\pi\)
\(80\) −10.3124 + 1.26039i −1.15296 + 0.140916i
\(81\) −7.26601 5.27907i −0.807335 0.586563i
\(82\) 10.4196i 1.15065i
\(83\) 9.10493 12.5319i 0.999396 1.37555i 0.0737010 0.997280i \(-0.476519\pi\)
0.925695 0.378270i \(-0.123481\pi\)
\(84\) 0.00957890 0.0294808i 0.00104514 0.00321662i
\(85\) −2.19475 0.427880i −0.238054 0.0464101i
\(86\) 0.234891 + 0.722920i 0.0253290 + 0.0779545i
\(87\) 0.453143 + 0.147235i 0.0485820 + 0.0157853i
\(88\) −4.03680 1.31164i −0.430324 0.139821i
\(89\) −2.54723 7.83958i −0.270006 0.830994i −0.990498 0.137530i \(-0.956084\pi\)
0.720491 0.693464i \(-0.243916\pi\)
\(90\) −11.5222 + 5.36509i −1.21454 + 0.565530i
\(91\) 0.191770 0.590206i 0.0201029 0.0618704i
\(92\) 5.79353 7.97411i 0.604018 0.831359i
\(93\) 0.111279i 0.0115391i
\(94\) −3.82732 2.78071i −0.394758 0.286808i
\(95\) 2.20123 11.2909i 0.225842 1.15842i
\(96\) 0.268338 0.194959i 0.0273871 0.0198979i
\(97\) 6.99297 + 9.62500i 0.710028 + 0.977270i 0.999796 + 0.0201734i \(0.00642181\pi\)
−0.289768 + 0.957097i \(0.593578\pi\)
\(98\) −12.2950 + 3.99488i −1.24198 + 0.403544i
\(99\) −16.5654 −1.66489
\(100\) −0.565084 + 7.95424i −0.0565084 + 0.795424i
\(101\) −0.108179 −0.0107642 −0.00538209 0.999986i \(-0.501713\pi\)
−0.00538209 + 0.999986i \(0.501713\pi\)
\(102\) 0.0822371 0.0267205i 0.00814269 0.00264572i
\(103\) 0.924328 + 1.27223i 0.0910767 + 0.125356i 0.852124 0.523340i \(-0.175314\pi\)
−0.761047 + 0.648697i \(0.775314\pi\)
\(104\) 0.904925 0.657467i 0.0887352 0.0644699i
\(105\) 0.0379999 + 0.0210912i 0.00370841 + 0.00205829i
\(106\) −12.0392 8.74697i −1.16935 0.849581i
\(107\) 3.39280i 0.327994i 0.986461 + 0.163997i \(0.0524388\pi\)
−0.986461 + 0.163997i \(0.947561\pi\)
\(108\) 0.256426 0.352940i 0.0246746 0.0339617i
\(109\) 0.143667 0.442161i 0.0137608 0.0423513i −0.943940 0.330116i \(-0.892912\pi\)
0.957701 + 0.287765i \(0.0929121\pi\)
\(110\) −11.3688 + 20.4830i −1.08397 + 1.95298i
\(111\) 0.00540243 + 0.0166270i 0.000512776 + 0.00157816i
\(112\) 1.88317 + 0.611879i 0.177943 + 0.0578172i
\(113\) −13.0697 4.24659i −1.22949 0.399486i −0.378961 0.925413i \(-0.623719\pi\)
−0.850530 + 0.525927i \(0.823719\pi\)
\(114\) 0.137464 + 0.423070i 0.0128747 + 0.0396241i
\(115\) 9.41917 + 10.1121i 0.878342 + 0.942955i
\(116\) 5.14888 15.8466i 0.478061 1.47132i
\(117\) 2.56593 3.53170i 0.237221 0.326506i
\(118\) 5.57168i 0.512914i
\(119\) 0.344785 + 0.250501i 0.0316064 + 0.0229634i
\(120\) 0.0330663 + 0.0710137i 0.00301853 + 0.00648264i
\(121\) −15.8022 + 11.4810i −1.43657 + 1.04373i
\(122\) −10.0559 13.8407i −0.910416 1.25308i
\(123\) 0.238362 0.0774486i 0.0214924 0.00698331i
\(124\) −3.89146 −0.349464
\(125\) −10.7945 2.91165i −0.965494 0.260426i
\(126\) 2.42243 0.215807
\(127\) −18.8641 + 6.12932i −1.67392 + 0.543889i −0.983716 0.179728i \(-0.942478\pi\)
−0.690202 + 0.723617i \(0.742478\pi\)
\(128\) 3.53797 + 4.86959i 0.312715 + 0.430415i
\(129\) 0.0147918 0.0107469i 0.00130235 0.000946211i
\(130\) −2.60594 5.59655i −0.228556 0.490850i
\(131\) −2.03184 1.47622i −0.177523 0.128978i 0.495476 0.868622i \(-0.334994\pi\)
−0.672998 + 0.739644i \(0.734994\pi\)
\(132\) 0.401906i 0.0349815i
\(133\) −1.28871 + 1.77375i −0.111745 + 0.153804i
\(134\) 0.914693 2.81514i 0.0790175 0.243191i
\(135\) 0.416899 + 0.447567i 0.0358810 + 0.0385205i
\(136\) 0.237373 + 0.730558i 0.0203545 + 0.0626448i
\(137\) 2.24660 + 0.729965i 0.191940 + 0.0623651i 0.403410 0.915019i \(-0.367825\pi\)
−0.211470 + 0.977385i \(0.567825\pi\)
\(138\) −0.508242 0.165138i −0.0432645 0.0140575i
\(139\) 3.62486 + 11.1562i 0.307456 + 0.946253i 0.978749 + 0.205061i \(0.0657393\pi\)
−0.671293 + 0.741192i \(0.734261\pi\)
\(140\) 0.737570 1.32887i 0.0623360 0.112310i
\(141\) −0.0351641 + 0.108224i −0.00296135 + 0.00911409i
\(142\) 14.9458 20.5711i 1.25422 1.72629i
\(143\) 8.04616i 0.672854i
\(144\) 11.2686 + 8.18713i 0.939051 + 0.682260i
\(145\) 20.4258 + 11.3370i 1.69627 + 0.941488i
\(146\) 15.0330 10.9221i 1.24414 0.903922i
\(147\) 0.182776 + 0.251570i 0.0150751 + 0.0207492i
\(148\) 0.581453 0.188925i 0.0477951 0.0155296i
\(149\) 12.4178 1.01730 0.508651 0.860973i \(-0.330144\pi\)
0.508651 + 0.860973i \(0.330144\pi\)
\(150\) 0.419619 0.104128i 0.0342618 0.00850206i
\(151\) 5.42198 0.441235 0.220617 0.975360i \(-0.429193\pi\)
0.220617 + 0.975360i \(0.429193\pi\)
\(152\) −3.75837 + 1.22117i −0.304844 + 0.0990497i
\(153\) 1.76213 + 2.42537i 0.142460 + 0.196079i
\(154\) 3.61220 2.62441i 0.291079 0.211481i
\(155\) 1.04403 5.35520i 0.0838584 0.430140i
\(156\) 0.0856854 + 0.0622541i 0.00686033 + 0.00498432i
\(157\) 18.8030i 1.50065i −0.661072 0.750323i \(-0.729898\pi\)
0.661072 0.750323i \(-0.270102\pi\)
\(158\) −12.0661 + 16.6076i −0.959928 + 1.32123i
\(159\) −0.110612 + 0.340428i −0.00877208 + 0.0269977i
\(160\) 14.7427 6.86467i 1.16551 0.542700i
\(161\) −0.813909 2.50495i −0.0641450 0.197418i
\(162\) 16.1952 + 5.26213i 1.27241 + 0.413432i
\(163\) −10.2261 3.32266i −0.800970 0.260251i −0.120202 0.992749i \(-0.538354\pi\)
−0.680769 + 0.732498i \(0.738354\pi\)
\(164\) −2.70841 8.33564i −0.211492 0.650904i
\(165\) 0.553080 + 0.107826i 0.0430572 + 0.00839426i
\(166\) −9.07572 + 27.9322i −0.704413 + 2.16796i
\(167\) 10.1318 13.9452i 0.784019 1.07911i −0.210808 0.977528i \(-0.567609\pi\)
0.994827 0.101582i \(-0.0323905\pi\)
\(168\) 0.0149300i 0.00115187i
\(169\) −8.80180 6.39488i −0.677061 0.491914i
\(170\) 4.20829 0.514344i 0.322761 0.0394484i
\(171\) −12.4773 + 9.06532i −0.954166 + 0.693242i
\(172\) −0.375823 0.517277i −0.0286563 0.0394420i
\(173\) −11.4807 + 3.73031i −0.872863 + 0.283610i −0.710991 0.703201i \(-0.751753\pi\)
−0.161872 + 0.986812i \(0.551753\pi\)
\(174\) −0.903379 −0.0684850
\(175\) 1.63083 + 1.37152i 0.123279 + 0.103677i
\(176\) 25.6729 1.93517
\(177\) 0.127459 0.0414141i 0.00958044 0.00311287i
\(178\) 9.18641 + 12.6440i 0.688551 + 0.947709i
\(179\) −9.71924 + 7.06144i −0.726450 + 0.527797i −0.888439 0.458996i \(-0.848209\pi\)
0.161988 + 0.986793i \(0.448209\pi\)
\(180\) 7.82310 7.28705i 0.583100 0.543145i
\(181\) 10.8532 + 7.88528i 0.806709 + 0.586108i 0.912875 0.408240i \(-0.133857\pi\)
−0.106166 + 0.994348i \(0.533857\pi\)
\(182\) 1.17663i 0.0872173i
\(183\) −0.241880 + 0.332919i −0.0178803 + 0.0246101i
\(184\) 1.46701 4.51500i 0.108150 0.332850i
\(185\) 0.103992 + 0.850847i 0.00764563 + 0.0625555i
\(186\) 0.0651981 + 0.200659i 0.00478056 + 0.0147130i
\(187\) 5.25519 + 1.70752i 0.384298 + 0.124866i
\(188\) 3.78464 + 1.22970i 0.276023 + 0.0896853i
\(189\) −0.0360242 0.110871i −0.00262038 0.00806469i
\(190\) 2.64605 + 21.6496i 0.191965 + 1.57063i
\(191\) 4.22551 13.0048i 0.305747 0.940993i −0.673650 0.739050i \(-0.735275\pi\)
0.979397 0.201943i \(-0.0647254\pi\)
\(192\) −0.120551 + 0.165924i −0.00870001 + 0.0119745i
\(193\) 19.2613i 1.38646i −0.720716 0.693231i \(-0.756187\pi\)
0.720716 0.693231i \(-0.243813\pi\)
\(194\) −18.2491 13.2587i −1.31021 0.951922i
\(195\) −0.108659 + 0.101213i −0.00778121 + 0.00724803i
\(196\) 8.79752 6.39177i 0.628394 0.456555i
\(197\) 12.5753 + 17.3085i 0.895956 + 1.23318i 0.971740 + 0.236053i \(0.0758538\pi\)
−0.0757847 + 0.997124i \(0.524146\pi\)
\(198\) 29.8710 9.70567i 2.12284 0.689752i
\(199\) 1.60323 0.113650 0.0568249 0.998384i \(-0.481902\pi\)
0.0568249 + 0.998384i \(0.481902\pi\)
\(200\) 0.925031 + 3.72771i 0.0654096 + 0.263589i
\(201\) −0.0711989 −0.00502198
\(202\) 0.195069 0.0633819i 0.0137250 0.00445953i
\(203\) −2.61708 3.60211i −0.183683 0.252818i
\(204\) −0.0588438 + 0.0427525i −0.00411989 + 0.00299327i
\(205\) 12.1976 1.49081i 0.851920 0.104123i
\(206\) −2.41216 1.75254i −0.168063 0.122105i
\(207\) 18.5278i 1.28777i
\(208\) −3.97666 + 5.47340i −0.275731 + 0.379512i
\(209\) −8.78434 + 27.0354i −0.607625 + 1.87008i
\(210\) −0.0808792 0.0157679i −0.00558120 0.00108809i
\(211\) 4.24094 + 13.0523i 0.291959 + 0.898556i 0.984226 + 0.176915i \(0.0566119\pi\)
−0.692267 + 0.721641i \(0.743388\pi\)
\(212\) 11.9049 + 3.86814i 0.817633 + 0.265665i
\(213\) −0.581683 0.189000i −0.0398563 0.0129501i
\(214\) −1.98784 6.11794i −0.135886 0.418214i
\(215\) 0.812674 0.378407i 0.0554239 0.0258072i
\(216\) 0.0649310 0.199837i 0.00441800 0.0135972i
\(217\) −0.611224 + 0.841278i −0.0414926 + 0.0571097i
\(218\) 0.881485i 0.0597017i
\(219\) −0.361598 0.262716i −0.0244345 0.0177527i
\(220\) 3.77073 19.3414i 0.254223 1.30400i
\(221\) −1.17805 + 0.855905i −0.0792443 + 0.0575744i
\(222\) −0.0194835 0.0268167i −0.00130765 0.00179982i
\(223\) 20.4635 6.64900i 1.37034 0.445250i 0.470857 0.882210i \(-0.343945\pi\)
0.899481 + 0.436960i \(0.143945\pi\)
\(224\) −3.09952 −0.207095
\(225\) 7.92917 + 12.7207i 0.528611 + 0.848047i
\(226\) 26.0555 1.73319
\(227\) −23.1381 + 7.51802i −1.53573 + 0.498989i −0.950194 0.311658i \(-0.899116\pi\)
−0.585535 + 0.810647i \(0.699116\pi\)
\(228\) −0.219941 0.302723i −0.0145659 0.0200483i
\(229\) −19.9733 + 14.5115i −1.31987 + 0.958945i −0.319941 + 0.947438i \(0.603663\pi\)
−0.999934 + 0.0115074i \(0.996337\pi\)
\(230\) −22.9094 12.7155i −1.51060 0.838437i
\(231\) −0.0868863 0.0631266i −0.00571670 0.00415343i
\(232\) 8.02522i 0.526881i
\(233\) 5.79677 7.97857i 0.379759 0.522694i −0.575761 0.817618i \(-0.695294\pi\)
0.955521 + 0.294924i \(0.0952943\pi\)
\(234\) −2.55770 + 7.87180i −0.167202 + 0.514595i
\(235\) −2.70761 + 4.87828i −0.176625 + 0.318224i
\(236\) −1.44827 4.45731i −0.0942743 0.290146i
\(237\) 0.469607 + 0.152585i 0.0305043 + 0.00991144i
\(238\) −0.768489 0.249697i −0.0498138 0.0161855i
\(239\) −1.72644 5.31344i −0.111674 0.343698i 0.879565 0.475779i \(-0.157834\pi\)
−0.991239 + 0.132082i \(0.957834\pi\)
\(240\) −0.322941 0.346697i −0.0208458 0.0223792i
\(241\) 1.74534 5.37161i 0.112427 0.346016i −0.878974 0.476869i \(-0.841772\pi\)
0.991402 + 0.130853i \(0.0417716\pi\)
\(242\) 21.7681 29.9612i 1.39931 1.92598i
\(243\) 1.23022i 0.0789187i
\(244\) 11.6423 + 8.45865i 0.745324 + 0.541509i
\(245\) 6.43572 + 13.8215i 0.411163 + 0.883020i
\(246\) −0.384441 + 0.279313i −0.0245111 + 0.0178083i
\(247\) −4.40321 6.06050i −0.280170 0.385621i
\(248\) −1.78257 + 0.579191i −0.113193 + 0.0367787i
\(249\) 0.706446 0.0447692
\(250\) 21.1708 1.07419i 1.33896 0.0679376i
\(251\) 1.47791 0.0932847 0.0466424 0.998912i \(-0.485148\pi\)
0.0466424 + 0.998912i \(0.485148\pi\)
\(252\) −1.93793 + 0.629673i −0.122078 + 0.0396657i
\(253\) −20.0726 27.6276i −1.26195 1.73693i
\(254\) 30.4248 22.1049i 1.90902 1.38699i
\(255\) −0.0430464 0.0924472i −0.00269567 0.00578927i
\(256\) −16.5092 11.9947i −1.03183 0.749666i
\(257\) 12.5478i 0.782712i 0.920239 + 0.391356i \(0.127994\pi\)
−0.920239 + 0.391356i \(0.872006\pi\)
\(258\) −0.0203762 + 0.0280455i −0.00126857 + 0.00174603i
\(259\) 0.0504846 0.155376i 0.00313696 0.00965458i
\(260\) 3.53947 + 3.79984i 0.219509 + 0.235656i
\(261\) −9.67856 29.7875i −0.599088 1.84380i
\(262\) 4.52876 + 1.47148i 0.279787 + 0.0909084i
\(263\) −3.83811 1.24708i −0.236668 0.0768982i 0.188282 0.982115i \(-0.439708\pi\)
−0.424950 + 0.905217i \(0.639708\pi\)
\(264\) −0.0598183 0.184102i −0.00368156 0.0113307i
\(265\) −8.51704 + 15.3451i −0.523198 + 0.942640i
\(266\) 1.28457 3.95350i 0.0787621 0.242405i
\(267\) 0.220966 0.304134i 0.0135229 0.0186127i
\(268\) 2.48986i 0.152092i
\(269\) 20.3275 + 14.7688i 1.23939 + 0.900468i 0.997557 0.0698502i \(-0.0222521\pi\)
0.241831 + 0.970318i \(0.422252\pi\)
\(270\) −1.01399 0.562798i −0.0617094 0.0342508i
\(271\) 25.5033 18.5292i 1.54921 1.12557i 0.605005 0.796222i \(-0.293171\pi\)
0.944209 0.329348i \(-0.106829\pi\)
\(272\) −2.73094 3.75881i −0.165587 0.227911i
\(273\) 0.0269169 0.00874582i 0.00162908 0.000529321i
\(274\) −4.47879 −0.270573
\(275\) 25.6049 + 10.3781i 1.54403 + 0.625824i
\(276\) 0.449516 0.0270577
\(277\) −26.0856 + 8.47573i −1.56733 + 0.509257i −0.958754 0.284237i \(-0.908260\pi\)
−0.608578 + 0.793494i \(0.708260\pi\)
\(278\) −13.0728 17.9931i −0.784053 1.07916i
\(279\) −5.91792 + 4.29962i −0.354296 + 0.257411i
\(280\) 0.140075 0.718495i 0.00837108 0.0429383i
\(281\) 5.99562 + 4.35607i 0.357669 + 0.259862i 0.752079 0.659073i \(-0.229051\pi\)
−0.394410 + 0.918934i \(0.629051\pi\)
\(282\) 0.215753i 0.0128479i
\(283\) −2.07005 + 2.84917i −0.123051 + 0.169366i −0.866098 0.499873i \(-0.833380\pi\)
0.743047 + 0.669239i \(0.233380\pi\)
\(284\) −6.60942 + 20.3417i −0.392197 + 1.20706i
\(285\) 0.475596 0.221453i 0.0281719 0.0131177i
\(286\) 4.71424 + 14.5090i 0.278759 + 0.857932i
\(287\) −2.22745 0.723742i −0.131482 0.0427211i
\(288\) −20.7362 6.73761i −1.22189 0.397018i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) −43.4744 8.47560i −2.55291 0.497705i
\(291\) −0.167666 + 0.516024i −0.00982878 + 0.0302499i
\(292\) −9.18731 + 12.6452i −0.537647 + 0.740007i
\(293\) 8.90518i 0.520246i 0.965575 + 0.260123i \(0.0837632\pi\)
−0.965575 + 0.260123i \(0.916237\pi\)
\(294\) −0.476980 0.346546i −0.0278180 0.0202110i
\(295\) 6.52244 0.797182i 0.379751 0.0464138i
\(296\) 0.238228 0.173083i 0.0138467 0.0100602i
\(297\) −0.888428 1.22282i −0.0515518 0.0709550i
\(298\) −22.3919 + 7.27556i −1.29713 + 0.421462i
\(299\) 8.99932 0.520444
\(300\) −0.308627 + 0.192376i −0.0178186 + 0.0111068i
\(301\) −0.170857 −0.00984806
\(302\) −9.77700 + 3.17674i −0.562603 + 0.182801i
\(303\) −0.00289989 0.00399135i −0.000166594 0.000229297i
\(304\) 19.3372 14.0493i 1.10907 0.805785i
\(305\) −14.7638 + 13.7521i −0.845371 + 0.787445i
\(306\) −4.59852 3.34102i −0.262880 0.190994i
\(307\) 7.52817i 0.429655i 0.976652 + 0.214828i \(0.0689190\pi\)
−0.976652 + 0.214828i \(0.931081\pi\)
\(308\) −2.20757 + 3.03845i −0.125788 + 0.173132i
\(309\) −0.0221621 + 0.0682079i −0.00126076 + 0.00388021i
\(310\) 1.25500 + 10.2683i 0.0712794 + 0.583198i
\(311\) 7.08252 + 21.7977i 0.401613 + 1.23604i 0.923691 + 0.383139i \(0.125157\pi\)
−0.522078 + 0.852898i \(0.674843\pi\)
\(312\) 0.0485157 + 0.0157637i 0.00274666 + 0.000892444i
\(313\) 12.7194 + 4.13280i 0.718945 + 0.233599i 0.645566 0.763705i \(-0.276622\pi\)
0.0733793 + 0.997304i \(0.476622\pi\)
\(314\) 11.0167 + 33.9059i 0.621708 + 1.91342i
\(315\) −0.346596 2.83580i −0.0195285 0.159779i
\(316\) 5.33596 16.4224i 0.300171 0.923831i
\(317\) −16.2575 + 22.3766i −0.913114 + 1.25679i 0.0529780 + 0.998596i \(0.483129\pi\)
−0.966092 + 0.258198i \(0.916871\pi\)
\(318\) 0.678672i 0.0380580i
\(319\) −46.7034 33.9320i −2.61489 1.89983i
\(320\) −7.35814 + 6.85394i −0.411332 + 0.383147i
\(321\) −0.125180 + 0.0909489i −0.00698689 + 0.00507627i
\(322\) 2.93530 + 4.04010i 0.163578 + 0.225146i
\(323\) 4.89272 1.58974i 0.272238 0.0884556i
\(324\) −14.3239 −0.795771
\(325\) −6.17871 + 3.85136i −0.342733 + 0.213635i
\(326\) 20.3866 1.12911
\(327\) 0.0201651 0.00655205i 0.00111513 0.000362329i
\(328\) −2.48129 3.41520i −0.137006 0.188573i
\(329\) 0.860289 0.625036i 0.0474292 0.0344594i
\(330\) −1.06050 + 0.129615i −0.0583784 + 0.00713509i
\(331\) 2.98522 + 2.16889i 0.164083 + 0.119213i 0.666796 0.745240i \(-0.267665\pi\)
−0.502714 + 0.864453i \(0.667665\pi\)
\(332\) 24.7047i 1.35585i
\(333\) 0.675499 0.929745i 0.0370171 0.0509497i
\(334\) −10.0993 + 31.0823i −0.552607 + 1.70075i
\(335\) −3.42639 0.667996i −0.187204 0.0364965i
\(336\) 0.0279053 + 0.0858836i 0.00152236 + 0.00468534i
\(337\) 12.2629 + 3.98447i 0.668005 + 0.217048i 0.623336 0.781954i \(-0.285777\pi\)
0.0446686 + 0.999002i \(0.485777\pi\)
\(338\) 19.6183 + 6.37437i 1.06709 + 0.346720i
\(339\) −0.193670 0.596054i −0.0105187 0.0323732i
\(340\) −3.23292 + 1.50535i −0.175330 + 0.0816392i
\(341\) −4.16635 + 12.8227i −0.225620 + 0.694388i
\(342\) 17.1879 23.6572i 0.929418 1.27923i
\(343\) 5.88908i 0.317981i
\(344\) −0.249143 0.181013i −0.0134329 0.00975958i
\(345\) −0.120599 + 0.618598i −0.00649285 + 0.0333042i
\(346\) 18.5166 13.4531i 0.995459 0.723243i
\(347\) −5.04817 6.94822i −0.271000 0.373000i 0.651727 0.758454i \(-0.274045\pi\)
−0.922727 + 0.385454i \(0.874045\pi\)
\(348\) 0.722699 0.234819i 0.0387407 0.0125876i
\(349\) 1.11826 0.0598593 0.0299296 0.999552i \(-0.490472\pi\)
0.0299296 + 0.999552i \(0.490472\pi\)
\(350\) −3.74431 1.51764i −0.200142 0.0811211i
\(351\) 0.398316 0.0212606
\(352\) −38.2201 + 12.4185i −2.03714 + 0.661907i
\(353\) 12.5435 + 17.2646i 0.667623 + 0.918904i 0.999704 0.0243468i \(-0.00775059\pi\)
−0.332081 + 0.943251i \(0.607751\pi\)
\(354\) −0.205572 + 0.149357i −0.0109260 + 0.00793823i
\(355\) −26.2198 14.5529i −1.39160 0.772388i
\(356\) −10.6357 7.72729i −0.563691 0.409545i
\(357\) 0.0194362i 0.00102867i
\(358\) 13.3886 18.4278i 0.707608 0.973939i
\(359\) 9.01754 27.7531i 0.475927 1.46475i −0.368776 0.929518i \(-0.620223\pi\)
0.844703 0.535235i \(-0.179777\pi\)
\(360\) 2.49896 4.50235i 0.131707 0.237295i
\(361\) 2.30713 + 7.10061i 0.121428 + 0.373716i
\(362\) −24.1906 7.85999i −1.27143 0.413112i
\(363\) −0.847205 0.275273i −0.0444667 0.0144481i
\(364\) −0.305845 0.941295i −0.0160306 0.0493372i
\(365\) −14.9368 16.0356i −0.781828 0.839341i
\(366\) 0.241104 0.742041i 0.0126027 0.0387871i
\(367\) −20.2421 + 27.8609i −1.05663 + 1.45433i −0.173713 + 0.984796i \(0.555576\pi\)
−0.882917 + 0.469529i \(0.844424\pi\)
\(368\) 28.7141i 1.49683i
\(369\) −13.3287 9.68388i −0.693865 0.504123i
\(370\) −0.686030 1.47333i −0.0356650 0.0765948i
\(371\) 2.70612 1.96611i 0.140495 0.102075i
\(372\) −0.104316 0.143579i −0.00540855 0.00744423i
\(373\) −7.53294 + 2.44760i −0.390041 + 0.126732i −0.497471 0.867481i \(-0.665738\pi\)
0.107430 + 0.994213i \(0.465738\pi\)
\(374\) −10.4767 −0.541736
\(375\) −0.181935 0.476326i −0.00939511 0.0245974i
\(376\) 1.91666 0.0988440
\(377\) 14.4684 4.70108i 0.745162 0.242118i
\(378\) 0.129919 + 0.178818i 0.00668230 + 0.00919739i
\(379\) −7.10386 + 5.16125i −0.364901 + 0.265116i −0.755093 0.655617i \(-0.772408\pi\)
0.390193 + 0.920733i \(0.372408\pi\)
\(380\) −7.74431 16.6318i −0.397275 0.853193i
\(381\) −0.731827 0.531703i −0.0374926 0.0272400i
\(382\) 25.9261i 1.32650i
\(383\) 0.142031 0.195488i 0.00725743 0.00998899i −0.805373 0.592769i \(-0.798035\pi\)
0.812630 + 0.582780i \(0.198035\pi\)
\(384\) −0.0848278 + 0.261073i −0.00432885 + 0.0133228i
\(385\) −3.58908 3.85310i −0.182916 0.196372i
\(386\) 11.2852 + 34.7323i 0.574402 + 1.76783i
\(387\) −1.14306 0.371403i −0.0581051 0.0188795i
\(388\) 18.0456 + 5.86337i 0.916126 + 0.297667i
\(389\) 5.84234 + 17.9809i 0.296218 + 0.911666i 0.982810 + 0.184622i \(0.0591062\pi\)
−0.686591 + 0.727044i \(0.740894\pi\)
\(390\) 0.136634 0.246172i 0.00691873 0.0124654i
\(391\) −1.90979 + 5.87772i −0.0965821 + 0.297249i
\(392\) 3.07856 4.23728i 0.155491 0.214015i
\(393\) 0.114539i 0.00577772i
\(394\) −32.8170 23.8430i −1.65330 1.20119i
\(395\) 21.1679 + 11.7489i 1.06507 + 0.591153i
\(396\) −21.3738 + 15.5290i −1.07407 + 0.780361i
\(397\) 6.92263 + 9.52818i 0.347437 + 0.478206i 0.946595 0.322425i \(-0.104498\pi\)
−0.599158 + 0.800631i \(0.704498\pi\)
\(398\) −2.89096 + 0.939331i −0.144911 + 0.0470844i
\(399\) −0.0999898 −0.00500575
\(400\) −12.2885 19.7144i −0.614427 0.985721i
\(401\) −0.740335 −0.0369706 −0.0184853 0.999829i \(-0.505884\pi\)
−0.0184853 + 0.999829i \(0.505884\pi\)
\(402\) 0.128387 0.0417154i 0.00640335 0.00208057i
\(403\) −2.08841 2.87445i −0.104031 0.143187i
\(404\) −0.139579 + 0.101410i −0.00694433 + 0.00504535i
\(405\) 3.84291 19.7117i 0.190956 0.979480i
\(406\) 6.82963 + 4.96202i 0.338949 + 0.246261i
\(407\) 2.11821i 0.104996i
\(408\) −0.0205915 + 0.0283418i −0.00101943 + 0.00140313i
\(409\) 3.52775 10.8573i 0.174436 0.536859i −0.825171 0.564883i \(-0.808921\pi\)
0.999607 + 0.0280239i \(0.00892145\pi\)
\(410\) −21.1215 + 9.83485i −1.04312 + 0.485709i
\(411\) 0.0332907 + 0.102458i 0.00164211 + 0.00505389i
\(412\) 2.38526 + 0.775018i 0.117513 + 0.0381824i
\(413\) −1.19108 0.387006i −0.0586094 0.0190433i
\(414\) 10.8554 + 33.4095i 0.533514 + 1.64199i
\(415\) 33.9972 + 6.62795i 1.66886 + 0.325353i
\(416\) 3.27260 10.0720i 0.160452 0.493821i
\(417\) −0.314447 + 0.432800i −0.0153986 + 0.0211943i
\(418\) 53.8974i 2.63621i
\(419\) 8.59824 + 6.24699i 0.420052 + 0.305185i 0.777659 0.628687i \(-0.216407\pi\)
−0.357607 + 0.933872i \(0.616407\pi\)
\(420\) 0.0688016 0.00840903i 0.00335717 0.000410319i
\(421\) −17.5683 + 12.7641i −0.856228 + 0.622086i −0.926856 0.375417i \(-0.877500\pi\)
0.0706283 + 0.997503i \(0.477500\pi\)
\(422\) −15.2947 21.0513i −0.744532 1.02476i
\(423\) 7.11414 2.31152i 0.345901 0.112390i
\(424\) 6.02902 0.292795
\(425\) −1.20423 4.85282i −0.0584135 0.235396i
\(426\) 1.15963 0.0561845
\(427\) 3.65727 1.18832i 0.176988 0.0575068i
\(428\) 3.18052 + 4.37761i 0.153736 + 0.211600i
\(429\) 0.296871 0.215689i 0.0143331 0.0104136i
\(430\) −1.24372 + 1.15849i −0.0599773 + 0.0558676i
\(431\) −12.8359 9.32586i −0.618286 0.449211i 0.234037 0.972228i \(-0.424806\pi\)
−0.852322 + 0.523017i \(0.824806\pi\)
\(432\) 1.27091i 0.0611466i
\(433\) 10.8579 14.9447i 0.521800 0.718196i −0.464054 0.885807i \(-0.653605\pi\)
0.985853 + 0.167612i \(0.0536055\pi\)
\(434\) 0.609263 1.87512i 0.0292456 0.0900086i
\(435\) 0.129253 + 1.05753i 0.00619722 + 0.0507049i
\(436\) −0.229128 0.705183i −0.0109732 0.0337722i
\(437\) −30.2380 9.82493i −1.44648 0.469990i
\(438\) 0.805964 + 0.261874i 0.0385105 + 0.0125128i
\(439\) 11.4082 + 35.1108i 0.544483 + 1.67575i 0.722216 + 0.691668i \(0.243124\pi\)
−0.177733 + 0.984079i \(0.556876\pi\)
\(440\) −1.15145 9.42098i −0.0548930 0.449127i
\(441\) 6.31660 19.4405i 0.300790 0.925737i
\(442\) 1.62280 2.23360i 0.0771889 0.106241i
\(443\) 20.7162i 0.984257i 0.870523 + 0.492128i \(0.163781\pi\)
−0.870523 + 0.492128i \(0.836219\pi\)
\(444\) 0.0225573 + 0.0163888i 0.00107052 + 0.000777779i
\(445\) 13.4872 12.5631i 0.639357 0.595547i
\(446\) −33.0044 + 23.9791i −1.56280 + 1.13544i
\(447\) 0.332876 + 0.458165i 0.0157445 + 0.0216705i
\(448\) 1.82275 0.592248i 0.0861170 0.0279811i
\(449\) −8.90683 −0.420339 −0.210170 0.977665i \(-0.567402\pi\)
−0.210170 + 0.977665i \(0.567402\pi\)
\(450\) −21.7510 18.2925i −1.02535 0.862315i
\(451\) −30.3664 −1.42990
\(452\) −20.8443 + 6.77271i −0.980432 + 0.318562i
\(453\) 0.145344 + 0.200049i 0.00682887 + 0.00939913i
\(454\) 37.3181 27.1132i 1.75143 1.27249i
\(455\) 1.37741 0.168349i 0.0645739 0.00789231i
\(456\) −0.145805 0.105933i −0.00682793 0.00496078i
\(457\) 32.2881i 1.51037i 0.655510 + 0.755186i \(0.272454\pi\)
−0.655510 + 0.755186i \(0.727546\pi\)
\(458\) 27.5139 37.8696i 1.28564 1.76953i
\(459\) −0.0845286 + 0.260152i −0.00394546 + 0.0121429i
\(460\) 21.6326 + 4.21741i 1.00863 + 0.196638i
\(461\) 2.15546 + 6.63383i 0.100390 + 0.308968i 0.988621 0.150429i \(-0.0480655\pi\)
−0.888231 + 0.459397i \(0.848065\pi\)
\(462\) 0.193660 + 0.0629241i 0.00900990 + 0.00292749i
\(463\) −9.52608 3.09521i −0.442714 0.143847i 0.0791733 0.996861i \(-0.474772\pi\)
−0.521888 + 0.853014i \(0.674772\pi\)
\(464\) 14.9997 + 46.1644i 0.696345 + 2.14313i
\(465\) 0.225572 0.105034i 0.0104606 0.00487081i
\(466\) −5.77818 + 17.7834i −0.267669 + 0.823800i
\(467\) 17.3073 23.8215i 0.800887 1.10233i −0.191779 0.981438i \(-0.561426\pi\)
0.992666 0.120889i \(-0.0385744\pi\)
\(468\) 6.96223i 0.321829i
\(469\) 0.538271 + 0.391076i 0.0248550 + 0.0180582i
\(470\) 2.02422 10.3830i 0.0933704 0.478931i
\(471\) 0.693755 0.504043i 0.0319666 0.0232251i
\(472\) −1.32682 1.82621i −0.0610719 0.0840582i
\(473\) −2.10684 + 0.684554i −0.0968727 + 0.0314758i
\(474\) −0.936202 −0.0430012
\(475\) 24.9654 6.19516i 1.14549 0.284253i
\(476\) 0.679693 0.0311537
\(477\) 22.3782 7.27111i 1.02463 0.332921i
\(478\) 6.22628 + 8.56975i 0.284784 + 0.391971i
\(479\) 7.26714 5.27988i 0.332044 0.241244i −0.409253 0.912421i \(-0.634211\pi\)
0.741297 + 0.671177i \(0.234211\pi\)
\(480\) 0.648478 + 0.359927i 0.0295988 + 0.0164284i
\(481\) 0.451596 + 0.328104i 0.0205910 + 0.0149603i
\(482\) 10.7088i 0.487771i
\(483\) 0.0706046 0.0971789i 0.00321262 0.00442179i
\(484\) −9.62644 + 29.6271i −0.437565 + 1.34669i
\(485\) −12.9102 + 23.2602i −0.586223 + 1.05619i
\(486\) 0.720786 + 2.21835i 0.0326955 + 0.100626i
\(487\) −10.4419 3.39277i −0.473167 0.153741i 0.0627198 0.998031i \(-0.480023\pi\)
−0.535887 + 0.844290i \(0.680023\pi\)
\(488\) 6.59197 + 2.14186i 0.298404 + 0.0969574i
\(489\) −0.151533 0.466370i −0.00685256 0.0210900i
\(490\) −19.7030 21.1523i −0.890089 0.955566i
\(491\) 10.1893 31.3594i 0.459836 1.41523i −0.405525 0.914084i \(-0.632911\pi\)
0.865362 0.501147i \(-0.167089\pi\)
\(492\) 0.234948 0.323378i 0.0105923 0.0145790i
\(493\) 10.4474i 0.470527i
\(494\) 11.4908 + 8.34854i 0.516995 + 0.375619i
\(495\) −15.6357 33.5796i −0.702774 1.50929i
\(496\) 9.17152 6.66350i 0.411814 0.299200i
\(497\) 3.35945 + 4.62389i 0.150692 + 0.207410i
\(498\) −1.27387 + 0.413906i −0.0570836 + 0.0185476i
\(499\) 35.2034 1.57592 0.787961 0.615725i \(-0.211137\pi\)
0.787961 + 0.615725i \(0.211137\pi\)
\(500\) −16.6573 + 6.36236i −0.744939 + 0.284534i
\(501\) 0.786117 0.0351211
\(502\) −2.66498 + 0.865906i −0.118944 + 0.0386473i
\(503\) 8.69872 + 11.9728i 0.387857 + 0.533839i 0.957645 0.287953i \(-0.0929747\pi\)
−0.569788 + 0.821792i \(0.692975\pi\)
\(504\) −0.793993 + 0.576870i −0.0353673 + 0.0256958i
\(505\) −0.102108 0.219288i −0.00454373 0.00975818i
\(506\) 52.3822 + 38.0579i 2.32867 + 1.69188i
\(507\) 0.496175i 0.0220359i
\(508\) −18.5939 + 25.5923i −0.824971 + 1.13547i
\(509\) −7.39683 + 22.7651i −0.327859 + 1.00905i 0.642275 + 0.766475i \(0.277991\pi\)
−0.970134 + 0.242571i \(0.922009\pi\)
\(510\) 0.131787 + 0.141481i 0.00583561 + 0.00626489i
\(511\) 1.29069 + 3.97233i 0.0570966 + 0.175725i
\(512\) 25.3482 + 8.23614i 1.12024 + 0.363990i
\(513\) −1.33836 0.434859i −0.0590899 0.0191995i
\(514\) −7.35177 22.6264i −0.324273 0.998009i
\(515\) −1.70647 + 3.07452i −0.0751959 + 0.135480i
\(516\) 0.00901090 0.0277327i 0.000396683 0.00122086i
\(517\) 8.10395 11.1541i 0.356411 0.490558i
\(518\) 0.309755i 0.0136098i
\(519\) −0.445391 0.323595i −0.0195505 0.0142043i
\(520\) 2.18688 + 1.21380i 0.0959012 + 0.0532285i
\(521\) 7.56225 5.49430i 0.331308 0.240710i −0.409677 0.912231i \(-0.634359\pi\)
0.740986 + 0.671521i \(0.234359\pi\)
\(522\) 34.9050 + 48.0426i 1.52775 + 2.10277i
\(523\) 15.3996 5.00363i 0.673378 0.218794i 0.0476839 0.998862i \(-0.484816\pi\)
0.625694 + 0.780069i \(0.284816\pi\)
\(524\) −4.00547 −0.174980
\(525\) −0.00688656 + 0.0969367i −0.000300554 + 0.00423066i
\(526\) 7.65160 0.333626
\(527\) 2.32058 0.754004i 0.101086 0.0328449i
\(528\) 0.688200 + 0.947226i 0.0299500 + 0.0412227i
\(529\) 12.2929 8.93135i 0.534476 0.388320i
\(530\) 6.36737 32.6606i 0.276581 1.41868i
\(531\) −7.12726 5.17826i −0.309297 0.224717i
\(532\) 3.49669i 0.151601i
\(533\) 4.70366 6.47403i 0.203738 0.280422i
\(534\) −0.220257 + 0.677882i −0.00953147 + 0.0293348i
\(535\) −6.87751 + 3.20239i −0.297340 + 0.138451i
\(536\) 0.370581 + 1.14053i 0.0160067 + 0.0492634i
\(537\) −0.521077 0.169308i −0.0224861 0.00730619i
\(538\) −45.3078 14.7214i −1.95336 0.634685i
\(539\) −11.6425 35.8319i −0.501477 1.54339i
\(540\) 0.957476 + 0.186666i 0.0412032 + 0.00803282i
\(541\) 2.06383 6.35182i 0.0887310 0.273086i −0.896838 0.442359i \(-0.854142\pi\)
0.985569 + 0.169273i \(0.0541418\pi\)
\(542\) −35.1316 + 48.3545i −1.50903 + 2.07700i
\(543\) 0.611814i 0.0262555i
\(544\) 5.88384 + 4.27486i 0.252268 + 0.183283i
\(545\) 1.03190 0.126121i 0.0442019 0.00540242i
\(546\) −0.0434127 + 0.0315412i −0.00185789 + 0.00134984i
\(547\) 11.7148 + 16.1240i 0.500888 + 0.689413i 0.982350 0.187054i \(-0.0598939\pi\)
−0.481462 + 0.876467i \(0.659894\pi\)
\(548\) 3.58301 1.16419i 0.153059 0.0497317i
\(549\) 27.0508 1.15450
\(550\) −52.2516 3.71205i −2.22802 0.158283i
\(551\) −53.7468 −2.28969
\(552\) 0.205910 0.0669044i 0.00876413 0.00284764i
\(553\) −2.71217 3.73298i −0.115333 0.158743i
\(554\) 42.0720 30.5671i 1.78747 1.29867i
\(555\) −0.0286051 + 0.0266451i −0.00121422 + 0.00113102i
\(556\) 15.1352 + 10.9964i 0.641875 + 0.466350i
\(557\) 6.89094i 0.291978i 0.989286 + 0.145989i \(0.0466365\pi\)
−0.989286 + 0.145989i \(0.953364\pi\)
\(558\) 8.15212 11.2204i 0.345107 0.474999i
\(559\) 0.180398 0.555209i 0.00763003 0.0234828i
\(560\) 0.537151 + 4.39490i 0.0226988 + 0.185718i
\(561\) 0.0778727 + 0.239668i 0.00328779 + 0.0101188i
\(562\) −13.3636 4.34210i −0.563710 0.183160i
\(563\) 15.7070 + 5.10353i 0.661973 + 0.215088i 0.620686 0.784059i \(-0.286854\pi\)
0.0412871 + 0.999147i \(0.486854\pi\)
\(564\) 0.0560817 + 0.172602i 0.00236146 + 0.00726784i
\(565\) −3.72796 30.5017i −0.156836 1.28321i
\(566\) 2.06340 6.35051i 0.0867314 0.266932i
\(567\) −2.24982 + 3.09661i −0.0944836 + 0.130045i
\(568\) 10.3017i 0.432249i
\(569\) 21.3121 + 15.4841i 0.893448 + 0.649128i 0.936775 0.349933i \(-0.113796\pi\)
−0.0433269 + 0.999061i \(0.513796\pi\)
\(570\) −0.727852 + 0.677978i −0.0304864 + 0.0283974i
\(571\) −19.0782 + 13.8612i −0.798400 + 0.580071i −0.910444 0.413632i \(-0.864260\pi\)
0.112045 + 0.993703i \(0.464260\pi\)
\(572\) −7.54275 10.3817i −0.315378 0.434081i
\(573\) 0.593094 0.192708i 0.0247769 0.00805049i
\(574\) 4.44060 0.185347
\(575\) −11.6075 + 28.6381i −0.484067 + 1.19429i
\(576\) 13.4819 0.561745
\(577\) −26.4263 + 8.58643i −1.10014 + 0.357458i −0.802157 0.597113i \(-0.796314\pi\)
−0.297985 + 0.954571i \(0.596314\pi\)
\(578\) 1.11445 + 1.53391i 0.0463549 + 0.0638020i
\(579\) 0.710665 0.516328i 0.0295342 0.0214579i
\(580\) 36.9824 4.52005i 1.53561 0.187685i
\(581\) −5.34080 3.88032i −0.221574 0.160983i
\(582\) 1.02874i 0.0426425i
\(583\) 25.4917 35.0863i 1.05576 1.45313i
\(584\) −2.32637 + 7.15983i −0.0962658 + 0.296276i
\(585\) 9.58101 + 1.86788i 0.396126 + 0.0772272i
\(586\) −5.21754 16.0579i −0.215535 0.663348i
\(587\) 40.5073 + 13.1616i 1.67192 + 0.543238i 0.983316 0.181904i \(-0.0582261\pi\)
0.688599 + 0.725142i \(0.258226\pi\)
\(588\) 0.471661 + 0.153252i 0.0194510 + 0.00632000i
\(589\) 3.87898 + 11.9383i 0.159831 + 0.491908i
\(590\) −11.2943 + 5.25899i −0.464978 + 0.216509i
\(591\) −0.301512 + 0.927957i −0.0124025 + 0.0381711i
\(592\) −1.04688 + 1.44091i −0.0430266 + 0.0592210i
\(593\) 26.3286i 1.08119i −0.841284 0.540593i \(-0.818200\pi\)
0.841284 0.540593i \(-0.181800\pi\)
\(594\) 2.31847 + 1.68447i 0.0951281 + 0.0691146i
\(595\) −0.182353 + 0.935353i −0.00747573 + 0.0383457i
\(596\) 16.0222 11.6408i 0.656296 0.476827i
\(597\) 0.0429769 + 0.0591526i 0.00175893 + 0.00242095i
\(598\) −16.2277 + 5.27270i −0.663600 + 0.215617i
\(599\) −46.7588 −1.91051 −0.955256 0.295779i \(-0.904421\pi\)
−0.955256 + 0.295779i \(0.904421\pi\)
\(600\) −0.112741 + 0.134057i −0.00460262 + 0.00547284i
\(601\) 25.1034 1.02399 0.511995 0.858989i \(-0.328907\pi\)
0.511995 + 0.858989i \(0.328907\pi\)
\(602\) 0.308092 0.100105i 0.0125569 0.00407999i
\(603\) 2.75100 + 3.78643i 0.112030 + 0.154195i
\(604\) 6.99581 5.08275i 0.284655 0.206814i
\(605\) −38.1884 21.1959i −1.55258 0.861736i
\(606\) 0.00756765 + 0.00549822i 0.000307415 + 0.000223350i
\(607\) 25.3934i 1.03068i 0.856984 + 0.515342i \(0.172335\pi\)
−0.856984 + 0.515342i \(0.827665\pi\)
\(608\) −21.9921 + 30.2695i −0.891897 + 1.22759i
\(609\) 0.0627483 0.193119i 0.00254269 0.00782560i
\(610\) 18.5649 33.4481i 0.751669 1.35427i
\(611\) 1.12275 + 3.45548i 0.0454218 + 0.139794i
\(612\) 4.54724 + 1.47749i 0.183811 + 0.0597240i
\(613\) −8.38685 2.72505i −0.338742 0.110064i 0.134707 0.990886i \(-0.456991\pi\)
−0.473448 + 0.880822i \(0.656991\pi\)
\(614\) −4.41075 13.5749i −0.178003 0.547838i
\(615\) 0.381981 + 0.410080i 0.0154029 + 0.0165360i
\(616\) −0.558990 + 1.72039i −0.0225223 + 0.0693166i
\(617\) −17.7967 + 24.4950i −0.716467 + 0.986132i 0.283167 + 0.959071i \(0.408615\pi\)
−0.999634 + 0.0270616i \(0.991385\pi\)
\(618\) 0.135978i 0.00546984i
\(619\) −17.5631 12.7604i −0.705923 0.512883i 0.175933 0.984402i \(-0.443706\pi\)
−0.881856 + 0.471519i \(0.843706\pi\)
\(620\) −3.67307 7.88835i −0.147514 0.316804i
\(621\) 1.36767 0.993672i 0.0548828 0.0398747i
\(622\) −25.5426 35.1563i −1.02416 1.40964i
\(623\) −3.34105 + 1.08557i −0.133856 + 0.0434926i
\(624\) −0.308546 −0.0123517
\(625\) −4.28656 24.6298i −0.171462 0.985191i
\(626\) −25.3573 −1.01348
\(627\) −1.23297 + 0.400617i −0.0492402 + 0.0159991i
\(628\) −17.6266 24.2609i −0.703378 0.968117i
\(629\) −0.310130 + 0.225323i −0.0123657 + 0.00898420i
\(630\) 2.28648 + 4.91049i 0.0910956 + 0.195638i
\(631\) −15.6672 11.3829i −0.623703 0.453147i 0.230510 0.973070i \(-0.425961\pi\)
−0.854213 + 0.519923i \(0.825961\pi\)
\(632\) 8.31680i 0.330825i
\(633\) −0.367891 + 0.506359i −0.0146224 + 0.0201260i
\(634\) 16.2054 49.8750i 0.643598 1.98079i
\(635\) −30.2301 32.4539i −1.19964 1.28789i
\(636\) 0.176410 + 0.542934i 0.00699511 + 0.0215287i
\(637\) 9.44265 + 3.06810i 0.374131 + 0.121563i
\(638\) 104.097 + 33.8231i 4.12124 + 1.33907i
\(639\) 12.4240 + 38.2372i 0.491486 + 1.51264i
\(640\) −6.53169 + 11.7681i −0.258188 + 0.465174i
\(641\) 5.19865 15.9998i 0.205334 0.631954i −0.794365 0.607441i \(-0.792196\pi\)
0.999699 0.0245136i \(-0.00780370\pi\)
\(642\) 0.172440 0.237343i 0.00680567 0.00936720i
\(643\) 6.52107i 0.257166i 0.991699 + 0.128583i \(0.0410429\pi\)
−0.991699 + 0.128583i \(0.958957\pi\)
\(644\) −3.39839 2.46907i −0.133915 0.0972951i
\(645\) 0.0357466 + 0.0198406i 0.00140752 + 0.000781222i
\(646\) −7.89120 + 5.73329i −0.310475 + 0.225573i
\(647\) −16.4701 22.6691i −0.647505 0.891214i 0.351483 0.936194i \(-0.385677\pi\)
−0.998988 + 0.0449806i \(0.985677\pi\)
\(648\) −6.56135 + 2.13191i −0.257754 + 0.0837494i
\(649\) −16.2378 −0.637390
\(650\) 8.88502 10.5649i 0.348499 0.414391i
\(651\) −0.0474245 −0.00185871
\(652\) −16.3092 + 5.29917i −0.638717 + 0.207532i
\(653\) −1.80990 2.49111i −0.0708269 0.0974848i 0.772134 0.635460i \(-0.219189\pi\)
−0.842961 + 0.537975i \(0.819189\pi\)
\(654\) −0.0325232 + 0.0236295i −0.00127176 + 0.000923986i
\(655\) 1.07462 5.51209i 0.0419887 0.215375i
\(656\) 20.6567 + 15.0080i 0.806509 + 0.585963i
\(657\) 29.3811i 1.14627i
\(658\) −1.18508 + 1.63112i −0.0461991 + 0.0635876i
\(659\) −3.26168 + 10.0384i −0.127057 + 0.391041i −0.994270 0.106896i \(-0.965909\pi\)
0.867213 + 0.497937i \(0.165909\pi\)
\(660\) 0.814700 0.379351i 0.0317122 0.0147662i
\(661\) 12.1553 + 37.4100i 0.472784 + 1.45508i 0.848922 + 0.528517i \(0.177252\pi\)
−0.376138 + 0.926564i \(0.622748\pi\)
\(662\) −6.65375 2.16193i −0.258605 0.0840259i
\(663\) −0.0631588 0.0205215i −0.00245288 0.000796990i
\(664\) −3.67696 11.3165i −0.142694 0.439166i
\(665\) −4.81193 0.938116i −0.186599 0.0363786i
\(666\) −0.673332 + 2.07230i −0.0260911 + 0.0803001i
\(667\) 37.9516 52.2359i 1.46949 2.02258i
\(668\) 27.4909i 1.06365i
\(669\) 0.793875 + 0.576784i 0.0306930 + 0.0222998i
\(670\) 6.56990 0.802982i 0.253817 0.0310219i
\(671\) 40.3367 29.3063i 1.55718 1.13136i
\(672\) −0.0830871 0.114360i −0.00320516 0.00441152i
\(673\) 38.5391 12.5221i 1.48558 0.482693i 0.549802 0.835295i \(-0.314703\pi\)
0.935773 + 0.352603i \(0.114703\pi\)
\(674\) −24.4472 −0.941671
\(675\) −0.513757 + 1.26754i −0.0197745 + 0.0487877i
\(676\) −17.3514 −0.667363
\(677\) −11.2100 + 3.64234i −0.430834 + 0.139986i −0.516403 0.856346i \(-0.672729\pi\)
0.0855690 + 0.996332i \(0.472729\pi\)
\(678\) 0.698455 + 0.961341i 0.0268240 + 0.0369201i
\(679\) 4.10196 2.98025i 0.157419 0.114371i
\(680\) −1.25686 + 1.17073i −0.0481982 + 0.0448956i
\(681\) −0.897635 0.652170i −0.0343974 0.0249912i
\(682\) 25.5631i 0.978863i
\(683\) −18.0811 + 24.8866i −0.691856 + 0.952258i 0.308144 + 0.951340i \(0.400292\pi\)
−1.00000 0.000917923i \(0.999708\pi\)
\(684\) −7.60096 + 23.3934i −0.290630 + 0.894468i
\(685\) 0.640814 + 5.24306i 0.0244843 + 0.200327i
\(686\) 3.45041 + 10.6193i 0.131737 + 0.405446i
\(687\) −1.07083 0.347933i −0.0408546 0.0132745i
\(688\) 1.77150 + 0.575597i 0.0675380 + 0.0219444i
\(689\) 3.53173 + 10.8695i 0.134548 + 0.414096i
\(690\) −0.144970 1.18612i −0.00551890 0.0451549i
\(691\) −7.06214 + 21.7350i −0.268656 + 0.826839i 0.722172 + 0.691714i \(0.243144\pi\)
−0.990828 + 0.135126i \(0.956856\pi\)
\(692\) −11.3163 + 15.5755i −0.430180 + 0.592092i
\(693\) 7.05981i 0.268180i
\(694\) 13.1739 + 9.57139i 0.500074 + 0.363325i
\(695\) −19.1931 + 17.8780i −0.728036 + 0.678150i
\(696\) 0.296098 0.215128i 0.0112236 0.00815439i
\(697\) 3.23020 + 4.44599i 0.122353 + 0.168404i
\(698\) −2.01647 + 0.655190i −0.0763245 + 0.0247993i
\(699\) 0.449768 0.0170118
\(700\) 3.38992 + 0.240826i 0.128127 + 0.00910237i
\(701\) −19.7061 −0.744288 −0.372144 0.928175i \(-0.621377\pi\)
−0.372144 + 0.928175i \(0.621377\pi\)
\(702\) −0.718249 + 0.233373i −0.0271086 + 0.00880811i
\(703\) −1.15918 1.59547i −0.0437191 0.0601742i
\(704\) 20.1035 14.6060i 0.757677 0.550485i
\(705\) −0.252570 + 0.0308695i −0.00951234 + 0.00116261i
\(706\) −32.7340 23.7826i −1.23196 0.895070i
\(707\) 0.0461033i 0.00173389i
\(708\) 0.125634 0.172920i 0.00472161 0.00649873i
\(709\) −2.85263 + 8.77949i −0.107133 + 0.329721i −0.990225 0.139478i \(-0.955457\pi\)
0.883092 + 0.469199i \(0.155457\pi\)
\(710\) 55.8065 + 10.8798i 2.09438 + 0.408312i
\(711\) −10.0302 30.8698i −0.376162 1.15771i
\(712\) −6.02201 1.95667i −0.225684 0.0733292i
\(713\) −14.3417 4.65990i −0.537100 0.174514i
\(714\) −0.0113877 0.0350476i −0.000426173 0.00131162i
\(715\) 16.3103 7.59460i 0.609971 0.284022i
\(716\) −5.92078 + 18.2223i −0.221270 + 0.680999i
\(717\) 0.149765 0.206133i 0.00559306 0.00769818i
\(718\) 55.3282i 2.06483i
\(719\) 1.67590 + 1.21761i 0.0625004 + 0.0454092i 0.618597 0.785709i \(-0.287701\pi\)
−0.556096 + 0.831118i \(0.687701\pi\)
\(720\) −5.95984 + 30.5701i −0.222110 + 1.13928i
\(721\) 0.542195 0.393928i 0.0201924 0.0146706i
\(722\) −8.32049 11.4522i −0.309657 0.426206i
\(723\) 0.244977 0.0795979i 0.00911080 0.00296028i
\(724\) 21.3954 0.795154
\(725\) −3.70168 + 52.1057i −0.137477 + 1.93516i
\(726\) 1.68897 0.0626837
\(727\) −0.447090 + 0.145268i −0.0165816 + 0.00538770i −0.317296 0.948327i \(-0.602775\pi\)
0.300714 + 0.953714i \(0.402775\pi\)
\(728\) −0.280198 0.385659i −0.0103848 0.0142935i
\(729\) −21.7526 + 15.8042i −0.805654 + 0.585342i
\(730\) 36.3295 + 20.1641i 1.34461 + 0.746308i
\(731\) 0.324340 + 0.235647i 0.0119962 + 0.00871572i
\(732\) 0.656301i 0.0242576i
\(733\) 18.5643 25.5515i 0.685686 0.943766i −0.314298 0.949324i \(-0.601769\pi\)
0.999985 + 0.00555791i \(0.00176915\pi\)
\(734\) 20.1772 62.0990i 0.744753 2.29211i
\(735\) −0.337437 + 0.607956i −0.0124465 + 0.0224248i
\(736\) −13.8896 42.7477i −0.511976 1.57570i
\(737\) 8.20429 + 2.66574i 0.302209 + 0.0981936i
\(738\) 29.7083 + 9.65281i 1.09358 + 0.355325i
\(739\) −1.12536 3.46351i −0.0413971 0.127407i 0.928222 0.372027i \(-0.121337\pi\)
−0.969619 + 0.244619i \(0.921337\pi\)
\(740\) 0.931790 + 1.00033i 0.0342533 + 0.0367730i
\(741\) 0.105573 0.324921i 0.00387833 0.0119363i
\(742\) −3.72776 + 5.13082i −0.136850 + 0.188359i
\(743\) 11.3829i 0.417599i 0.977958 + 0.208800i \(0.0669557\pi\)
−0.977958 + 0.208800i \(0.933044\pi\)
\(744\) −0.0691541 0.0502434i −0.00253531 0.00184201i
\(745\) 11.7209 + 25.1719i 0.429419 + 0.922228i
\(746\) 12.1495 8.82709i 0.444823 0.323183i
\(747\) −27.2959 37.5695i −0.998703 1.37460i
\(748\) 8.38128 2.72324i 0.306450 0.0995717i
\(749\) 1.44593 0.0528333
\(750\) 0.607148 + 0.752322i 0.0221699 + 0.0274709i
\(751\) −8.13759 −0.296945 −0.148472 0.988917i \(-0.547436\pi\)
−0.148472 + 0.988917i \(0.547436\pi\)
\(752\) −11.0254 + 3.58237i −0.402055 + 0.130636i
\(753\) 0.0396175 + 0.0545288i 0.00144374 + 0.00198714i
\(754\) −23.3353 + 16.9541i −0.849822 + 0.617432i
\(755\) 5.11770 + 10.9908i 0.186252 + 0.399998i
\(756\) −0.150415 0.109283i −0.00547055 0.00397459i
\(757\) 7.32686i 0.266299i 0.991096 + 0.133150i \(0.0425091\pi\)
−0.991096 + 0.133150i \(0.957491\pi\)
\(758\) 9.78579 13.4690i 0.355436 0.489216i
\(759\) 0.481269 1.48119i 0.0174690 0.0537640i
\(760\) −6.02286 6.46591i −0.218472 0.234543i
\(761\) −12.6527 38.9411i −0.458661 1.41161i −0.866782 0.498687i \(-0.833816\pi\)
0.408121 0.912928i \(-0.366184\pi\)
\(762\) 1.63116 + 0.529997i 0.0590909 + 0.0191998i
\(763\) −0.188439 0.0612275i −0.00682195 0.00221659i
\(764\) −6.73909 20.7408i −0.243812 0.750375i
\(765\) −3.25320 + 5.86126i −0.117620 + 0.211914i
\(766\) −0.141575 + 0.435723i −0.00511531 + 0.0157433i
\(767\) 2.51519 3.46186i 0.0908182 0.125000i
\(768\) 0.930658i 0.0335822i
\(769\) −24.3436 17.6866i −0.877851 0.637796i 0.0548310 0.998496i \(-0.482538\pi\)
−0.932682 + 0.360699i \(0.882538\pi\)
\(770\) 8.72940 + 4.84512i 0.314586 + 0.174606i