Properties

Label 425.2.r.a.69.20
Level $425$
Weight $2$
Character 425.69
Analytic conductor $3.394$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(69,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.20
Character \(\chi\) \(=\) 425.69
Dual form 425.2.r.a.154.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.248853 + 0.0808572i) q^{2} +(-0.408373 - 0.562077i) q^{3} +(-1.56264 + 1.13533i) q^{4} +(-1.61719 - 1.54424i) q^{5} +(0.147073 + 0.106855i) q^{6} +1.76904i q^{7} +(0.604668 - 0.832255i) q^{8} +(0.777889 - 2.39410i) q^{9} +(0.527307 + 0.253527i) q^{10} +(1.20206 + 3.69957i) q^{11} +(1.27628 + 0.414689i) q^{12} +(2.08164 + 0.676366i) q^{13} +(-0.143040 - 0.440231i) q^{14} +(-0.207564 + 1.53961i) q^{15} +(1.11057 - 3.41800i) q^{16} +(-0.587785 + 0.809017i) q^{17} +0.658676i q^{18} +(4.31151 + 3.13249i) q^{19} +(4.28032 + 0.577055i) q^{20} +(0.994337 - 0.722428i) q^{21} +(-0.598274 - 0.823454i) q^{22} +(7.61793 - 2.47521i) q^{23} -0.714721 q^{24} +(0.230636 + 4.99468i) q^{25} -0.572712 q^{26} +(-3.64562 + 1.18453i) q^{27} +(-2.00844 - 2.76438i) q^{28} +(-1.72717 + 1.25486i) q^{29} +(-0.0728359 - 0.399920i) q^{30} +(8.32975 + 6.05192i) q^{31} +2.99782i q^{32} +(1.58855 - 2.18646i) q^{33} +(0.0808572 - 0.248853i) q^{34} +(2.73183 - 2.86089i) q^{35} +(1.50252 + 4.62428i) q^{36} +(-3.86926 - 1.25720i) q^{37} +(-1.32622 - 0.430914i) q^{38} +(-0.469916 - 1.44625i) q^{39} +(-2.26307 + 0.412163i) q^{40} +(2.36700 - 7.28488i) q^{41} +(-0.189030 + 0.260178i) q^{42} +4.18236i q^{43} +(-6.07862 - 4.41638i) q^{44} +(-4.95506 + 2.67047i) q^{45} +(-1.69560 + 1.23193i) q^{46} +(-5.92954 - 8.16131i) q^{47} +(-2.37470 + 0.771588i) q^{48} +3.87049 q^{49} +(-0.461250 - 1.22429i) q^{50} +0.694765 q^{51} +(-4.02076 + 1.30642i) q^{52} +(1.99138 + 2.74089i) q^{53} +(0.811444 - 0.589549i) q^{54} +(3.76906 - 7.83920i) q^{55} +(1.47229 + 1.06968i) q^{56} -3.70262i q^{57} +(0.328346 - 0.451930i) q^{58} +(-2.93943 + 9.04665i) q^{59} +(-1.42362 - 2.64152i) q^{60} +(1.67435 + 5.15313i) q^{61} +(-2.56222 - 0.832517i) q^{62} +(4.23526 + 1.37612i) q^{63} +(1.97875 + 6.08997i) q^{64} +(-2.32195 - 4.30837i) q^{65} +(-0.218525 + 0.672552i) q^{66} +(5.25041 - 7.22656i) q^{67} -1.93153i q^{68} +(-4.50221 - 3.27105i) q^{69} +(-0.448500 + 0.932828i) q^{70} +(0.990731 - 0.719808i) q^{71} +(-1.52213 - 2.09504i) q^{72} +(-8.89853 + 2.89131i) q^{73} +1.06453 q^{74} +(2.71321 - 2.16932i) q^{75} -10.2938 q^{76} +(-6.54470 + 2.12650i) q^{77} +(0.233880 + 0.321908i) q^{78} +(-7.05538 + 5.12603i) q^{79} +(-7.07423 + 3.81257i) q^{80} +(-3.95505 - 2.87351i) q^{81} +2.00425i q^{82} +(9.22003 - 12.6903i) q^{83} +(-0.733603 + 2.25780i) q^{84} +(2.19988 - 0.400655i) q^{85} +(-0.338174 - 1.04079i) q^{86} +(1.41066 + 0.458350i) q^{87} +(3.80583 + 1.23659i) q^{88} +(2.92596 + 9.00518i) q^{89} +(1.01715 - 1.06521i) q^{90} +(-1.19652 + 3.68251i) q^{91} +(-9.09393 + 12.5167i) q^{92} -7.15340i q^{93} +(2.13548 + 1.55152i) q^{94} +(-2.13522 - 11.7239i) q^{95} +(1.68501 - 1.22423i) q^{96} +(-0.0568680 - 0.0782721i) q^{97} +(-0.963183 + 0.312957i) q^{98} +9.79220 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 40 q^{4} - 8 q^{5} + 4 q^{6} - 30 q^{8} + 36 q^{9} - 6 q^{10} + 8 q^{11} - 40 q^{12} - 20 q^{14} - 40 q^{15} - 64 q^{16} + 6 q^{19} + 2 q^{20} - 50 q^{22} + 20 q^{23} + 20 q^{24} + 32 q^{25} + 20 q^{26}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.248853 + 0.0808572i −0.175966 + 0.0571747i −0.395675 0.918391i \(-0.629489\pi\)
0.219709 + 0.975565i \(0.429489\pi\)
\(3\) −0.408373 0.562077i −0.235774 0.324515i 0.674692 0.738100i \(-0.264277\pi\)
−0.910466 + 0.413585i \(0.864277\pi\)
\(4\) −1.56264 + 1.13533i −0.781322 + 0.567664i
\(5\) −1.61719 1.54424i −0.723231 0.690606i
\(6\) 0.147073 + 0.106855i 0.0600422 + 0.0436232i
\(7\) 1.76904i 0.668635i 0.942460 + 0.334318i \(0.108506\pi\)
−0.942460 + 0.334318i \(0.891494\pi\)
\(8\) 0.604668 0.832255i 0.213783 0.294246i
\(9\) 0.777889 2.39410i 0.259296 0.798032i
\(10\) 0.527307 + 0.253527i 0.166749 + 0.0801723i
\(11\) 1.20206 + 3.69957i 0.362436 + 1.11546i 0.951571 + 0.307428i \(0.0994684\pi\)
−0.589135 + 0.808034i \(0.700532\pi\)
\(12\) 1.27628 + 0.414689i 0.368431 + 0.119710i
\(13\) 2.08164 + 0.676366i 0.577343 + 0.187590i 0.583110 0.812393i \(-0.301836\pi\)
−0.00576673 + 0.999983i \(0.501836\pi\)
\(14\) −0.143040 0.440231i −0.0382290 0.117657i
\(15\) −0.207564 + 1.53961i −0.0535929 + 0.397526i
\(16\) 1.11057 3.41800i 0.277644 0.854499i
\(17\) −0.587785 + 0.809017i −0.142559 + 0.196215i
\(18\) 0.658676i 0.155251i
\(19\) 4.31151 + 3.13249i 0.989128 + 0.718643i 0.959730 0.280925i \(-0.0906411\pi\)
0.0293977 + 0.999568i \(0.490641\pi\)
\(20\) 4.28032 + 0.577055i 0.957108 + 0.129033i
\(21\) 0.994337 0.722428i 0.216982 0.157647i
\(22\) −0.598274 0.823454i −0.127552 0.175561i
\(23\) 7.61793 2.47521i 1.58845 0.516118i 0.624233 0.781239i \(-0.285412\pi\)
0.964215 + 0.265121i \(0.0854118\pi\)
\(24\) −0.714721 −0.145892
\(25\) 0.230636 + 4.99468i 0.0461272 + 0.998936i
\(26\) −0.572712 −0.112318
\(27\) −3.64562 + 1.18453i −0.701599 + 0.227963i
\(28\) −2.00844 2.76438i −0.379560 0.522419i
\(29\) −1.72717 + 1.25486i −0.320727 + 0.233022i −0.736486 0.676453i \(-0.763516\pi\)
0.415758 + 0.909475i \(0.363516\pi\)
\(30\) −0.0728359 0.399920i −0.0132980 0.0730151i
\(31\) 8.32975 + 6.05192i 1.49607 + 1.08696i 0.971915 + 0.235332i \(0.0756178\pi\)
0.524152 + 0.851624i \(0.324382\pi\)
\(32\) 2.99782i 0.529945i
\(33\) 1.58855 2.18646i 0.276532 0.380613i
\(34\) 0.0808572 0.248853i 0.0138669 0.0426779i
\(35\) 2.73183 2.86089i 0.461763 0.483578i
\(36\) 1.50252 + 4.62428i 0.250420 + 0.770713i
\(37\) −3.86926 1.25720i −0.636103 0.206682i −0.0268261 0.999640i \(-0.508540\pi\)
−0.609277 + 0.792958i \(0.708540\pi\)
\(38\) −1.32622 0.430914i −0.215141 0.0699034i
\(39\) −0.469916 1.44625i −0.0752467 0.231586i
\(40\) −2.26307 + 0.412163i −0.357823 + 0.0651688i
\(41\) 2.36700 7.28488i 0.369663 1.13771i −0.577346 0.816500i \(-0.695912\pi\)
0.947009 0.321207i \(-0.104088\pi\)
\(42\) −0.189030 + 0.260178i −0.0291680 + 0.0401463i
\(43\) 4.18236i 0.637805i 0.947788 + 0.318902i \(0.103314\pi\)
−0.947788 + 0.318902i \(0.896686\pi\)
\(44\) −6.07862 4.41638i −0.916387 0.665794i
\(45\) −4.95506 + 2.67047i −0.738657 + 0.398090i
\(46\) −1.69560 + 1.23193i −0.250003 + 0.181638i
\(47\) −5.92954 8.16131i −0.864912 1.19045i −0.980376 0.197137i \(-0.936835\pi\)
0.115464 0.993312i \(-0.463165\pi\)
\(48\) −2.37470 + 0.771588i −0.342759 + 0.111369i
\(49\) 3.87049 0.552927
\(50\) −0.461250 1.22429i −0.0652306 0.173141i
\(51\) 0.694765 0.0972866
\(52\) −4.02076 + 1.30642i −0.557579 + 0.181168i
\(53\) 1.99138 + 2.74089i 0.273536 + 0.376491i 0.923580 0.383407i \(-0.125249\pi\)
−0.650043 + 0.759897i \(0.725249\pi\)
\(54\) 0.811444 0.589549i 0.110424 0.0802274i
\(55\) 3.76906 7.83920i 0.508220 1.05704i
\(56\) 1.47229 + 1.06968i 0.196743 + 0.142942i
\(57\) 3.70262i 0.490424i
\(58\) 0.328346 0.451930i 0.0431140 0.0593413i
\(59\) −2.93943 + 9.04665i −0.382682 + 1.17777i 0.555466 + 0.831539i \(0.312540\pi\)
−0.938148 + 0.346234i \(0.887460\pi\)
\(60\) −1.42362 2.64152i −0.183788 0.341019i
\(61\) 1.67435 + 5.15313i 0.214379 + 0.659791i 0.999197 + 0.0400646i \(0.0127564\pi\)
−0.784818 + 0.619726i \(0.787244\pi\)
\(62\) −2.56222 0.832517i −0.325403 0.105730i
\(63\) 4.23526 + 1.37612i 0.533592 + 0.173375i
\(64\) 1.97875 + 6.08997i 0.247344 + 0.761247i
\(65\) −2.32195 4.30837i −0.288002 0.534388i
\(66\) −0.218525 + 0.672552i −0.0268986 + 0.0827854i
\(67\) 5.25041 7.22656i 0.641439 0.882865i −0.357252 0.934008i \(-0.616286\pi\)
0.998691 + 0.0511428i \(0.0162864\pi\)
\(68\) 1.93153i 0.234233i
\(69\) −4.50221 3.27105i −0.542003 0.393788i
\(70\) −0.448500 + 0.932828i −0.0536060 + 0.111494i
\(71\) 0.990731 0.719808i 0.117578 0.0854255i −0.527442 0.849591i \(-0.676849\pi\)
0.645020 + 0.764165i \(0.276849\pi\)
\(72\) −1.52213 2.09504i −0.179385 0.246902i
\(73\) −8.89853 + 2.89131i −1.04149 + 0.338402i −0.779325 0.626620i \(-0.784438\pi\)
−0.262169 + 0.965022i \(0.584438\pi\)
\(74\) 1.06453 0.123749
\(75\) 2.71321 2.16932i 0.313294 0.250492i
\(76\) −10.2938 −1.18077
\(77\) −6.54470 + 2.12650i −0.745837 + 0.242337i
\(78\) 0.233880 + 0.321908i 0.0264817 + 0.0364489i
\(79\) −7.05538 + 5.12603i −0.793792 + 0.576724i −0.909086 0.416608i \(-0.863219\pi\)
0.115294 + 0.993331i \(0.463219\pi\)
\(80\) −7.07423 + 3.81257i −0.790922 + 0.426258i
\(81\) −3.95505 2.87351i −0.439450 0.319279i
\(82\) 2.00425i 0.221333i
\(83\) 9.22003 12.6903i 1.01203 1.39294i 0.0943865 0.995536i \(-0.469911\pi\)
0.917644 0.397404i \(-0.130089\pi\)
\(84\) −0.733603 + 2.25780i −0.0800426 + 0.246346i
\(85\) 2.19988 0.400655i 0.238611 0.0434572i
\(86\) −0.338174 1.04079i −0.0364663 0.112232i
\(87\) 1.41066 + 0.458350i 0.151238 + 0.0491403i
\(88\) 3.80583 + 1.23659i 0.405703 + 0.131821i
\(89\) 2.92596 + 9.00518i 0.310151 + 0.954547i 0.977705 + 0.209985i \(0.0673415\pi\)
−0.667554 + 0.744562i \(0.732658\pi\)
\(90\) 1.01715 1.06521i 0.107217 0.112283i
\(91\) −1.19652 + 3.68251i −0.125429 + 0.386032i
\(92\) −9.09393 + 12.5167i −0.948108 + 1.30496i
\(93\) 7.15340i 0.741773i
\(94\) 2.13548 + 1.55152i 0.220258 + 0.160027i
\(95\) −2.13522 11.7239i −0.219069 1.20284i
\(96\) 1.68501 1.22423i 0.171975 0.124947i
\(97\) −0.0568680 0.0782721i −0.00577407 0.00794733i 0.806120 0.591752i \(-0.201563\pi\)
−0.811894 + 0.583804i \(0.801563\pi\)
\(98\) −0.963183 + 0.312957i −0.0972962 + 0.0316134i
\(99\) 9.79220 0.984153
\(100\) −6.03100 7.54306i −0.603100 0.754306i
\(101\) 17.4908 1.74040 0.870200 0.492699i \(-0.163990\pi\)
0.870200 + 0.492699i \(0.163990\pi\)
\(102\) −0.172894 + 0.0561768i −0.0171191 + 0.00556233i
\(103\) −8.09807 11.1460i −0.797927 1.09825i −0.993075 0.117478i \(-0.962519\pi\)
0.195149 0.980774i \(-0.437481\pi\)
\(104\) 1.82161 1.32348i 0.178624 0.129778i
\(105\) −2.72364 0.367190i −0.265800 0.0358341i
\(106\) −0.717181 0.521062i −0.0696587 0.0506100i
\(107\) 7.79549i 0.753618i 0.926291 + 0.376809i \(0.122979\pi\)
−0.926291 + 0.376809i \(0.877021\pi\)
\(108\) 4.35197 5.98997i 0.418768 0.576385i
\(109\) −2.65064 + 8.15785i −0.253886 + 0.781380i 0.740161 + 0.672429i \(0.234749\pi\)
−0.994047 + 0.108951i \(0.965251\pi\)
\(110\) −0.304086 + 2.25556i −0.0289934 + 0.215060i
\(111\) 0.873458 + 2.68823i 0.0829050 + 0.255155i
\(112\) 6.04658 + 1.96465i 0.571348 + 0.185642i
\(113\) −3.07440 0.998933i −0.289215 0.0939717i 0.160816 0.986984i \(-0.448587\pi\)
−0.450032 + 0.893013i \(0.648587\pi\)
\(114\) 0.299384 + 0.921408i 0.0280399 + 0.0862978i
\(115\) −16.1420 7.76102i −1.50525 0.723719i
\(116\) 1.27427 3.92180i 0.118313 0.364130i
\(117\) 3.23857 4.45751i 0.299406 0.412097i
\(118\) 2.48896i 0.229127i
\(119\) −1.43119 1.03982i −0.131197 0.0953199i
\(120\) 1.15584 + 1.10370i 0.105514 + 0.100754i
\(121\) −3.34268 + 2.42860i −0.303880 + 0.220782i
\(122\) −0.833336 1.14699i −0.0754467 0.103843i
\(123\) −5.06128 + 1.64451i −0.456360 + 0.148280i
\(124\) −19.8873 −1.78594
\(125\) 7.34001 8.43352i 0.656510 0.754317i
\(126\) −1.16523 −0.103807
\(127\) −2.69660 + 0.876179i −0.239285 + 0.0777483i −0.426204 0.904627i \(-0.640150\pi\)
0.186920 + 0.982375i \(0.440150\pi\)
\(128\) −4.50899 6.20609i −0.398542 0.548546i
\(129\) 2.35081 1.70796i 0.206977 0.150378i
\(130\) 0.926186 + 0.884405i 0.0812319 + 0.0775675i
\(131\) −5.66636 4.11685i −0.495072 0.359691i 0.312060 0.950063i \(-0.398981\pi\)
−0.807131 + 0.590372i \(0.798981\pi\)
\(132\) 5.22018i 0.454358i
\(133\) −5.54151 + 7.62724i −0.480510 + 0.661365i
\(134\) −0.722259 + 2.22288i −0.0623937 + 0.192028i
\(135\) 7.72488 + 3.71409i 0.664851 + 0.319658i
\(136\) 0.317893 + 0.978374i 0.0272591 + 0.0838949i
\(137\) 4.25940 + 1.38396i 0.363905 + 0.118240i 0.485262 0.874369i \(-0.338724\pi\)
−0.121356 + 0.992609i \(0.538724\pi\)
\(138\) 1.38488 + 0.449974i 0.117889 + 0.0383043i
\(139\) 5.31946 + 16.3716i 0.451190 + 1.38862i 0.875550 + 0.483127i \(0.160499\pi\)
−0.424360 + 0.905494i \(0.639501\pi\)
\(140\) −1.02083 + 7.57206i −0.0862762 + 0.639956i
\(141\) −2.16582 + 6.66571i −0.182395 + 0.561354i
\(142\) −0.188345 + 0.259234i −0.0158055 + 0.0217545i
\(143\) 8.51421i 0.711994i
\(144\) −7.31911 5.31764i −0.609926 0.443137i
\(145\) 4.73098 + 0.637811i 0.392886 + 0.0529673i
\(146\) 1.98064 1.43902i 0.163919 0.119094i
\(147\) −1.58060 2.17551i −0.130366 0.179433i
\(148\) 7.47361 2.42832i 0.614327 0.199607i
\(149\) −1.20858 −0.0990107 −0.0495053 0.998774i \(-0.515764\pi\)
−0.0495053 + 0.998774i \(0.515764\pi\)
\(150\) −0.499784 + 0.759225i −0.0408072 + 0.0619905i
\(151\) −18.4900 −1.50470 −0.752349 0.658765i \(-0.771079\pi\)
−0.752349 + 0.658765i \(0.771079\pi\)
\(152\) 5.21406 1.69415i 0.422916 0.137414i
\(153\) 1.47963 + 2.03654i 0.119621 + 0.164644i
\(154\) 1.45672 1.05837i 0.117386 0.0852860i
\(155\) −4.12520 22.6503i −0.331344 1.81931i
\(156\) 2.37628 + 1.72647i 0.190255 + 0.138228i
\(157\) 10.8964i 0.869629i −0.900520 0.434814i \(-0.856814\pi\)
0.900520 0.434814i \(-0.143186\pi\)
\(158\) 1.34127 1.84611i 0.106706 0.146868i
\(159\) 0.727369 2.23861i 0.0576841 0.177533i
\(160\) 4.62936 4.84806i 0.365983 0.383273i
\(161\) 4.37876 + 13.4764i 0.345095 + 1.06209i
\(162\) 1.21657 + 0.395288i 0.0955828 + 0.0310567i
\(163\) 2.08101 + 0.676162i 0.162998 + 0.0529611i 0.389379 0.921078i \(-0.372690\pi\)
−0.226382 + 0.974039i \(0.572690\pi\)
\(164\) 4.57194 + 14.0710i 0.357009 + 1.09876i
\(165\) −5.94541 + 1.08281i −0.462850 + 0.0842970i
\(166\) −1.26833 + 3.90352i −0.0984416 + 0.302972i
\(167\) 1.98166 2.72752i 0.153346 0.211062i −0.725432 0.688294i \(-0.758360\pi\)
0.878777 + 0.477232i \(0.158360\pi\)
\(168\) 1.26437i 0.0975484i
\(169\) −6.64146 4.82530i −0.510882 0.371177i
\(170\) −0.515051 + 0.277581i −0.0395026 + 0.0212895i
\(171\) 10.8534 7.88543i 0.829977 0.603014i
\(172\) −4.74835 6.53555i −0.362059 0.498331i
\(173\) 8.47569 2.75392i 0.644395 0.209377i 0.0314538 0.999505i \(-0.489986\pi\)
0.612941 + 0.790129i \(0.289986\pi\)
\(174\) −0.388107 −0.0294223
\(175\) −8.83580 + 0.408005i −0.667923 + 0.0308423i
\(176\) 13.9801 1.05379
\(177\) 6.28529 2.04222i 0.472432 0.153502i
\(178\) −1.45627 2.00438i −0.109152 0.150235i
\(179\) 14.8930 10.8204i 1.11315 0.808753i 0.129996 0.991515i \(-0.458504\pi\)
0.983157 + 0.182762i \(0.0585037\pi\)
\(180\) 4.71114 9.79861i 0.351147 0.730345i
\(181\) 8.77133 + 6.37274i 0.651968 + 0.473682i 0.863941 0.503593i \(-0.167989\pi\)
−0.211973 + 0.977275i \(0.567989\pi\)
\(182\) 1.01315i 0.0750997i
\(183\) 2.21269 3.04551i 0.163567 0.225131i
\(184\) 2.54631 7.83674i 0.187717 0.577732i
\(185\) 4.31593 + 8.00821i 0.317313 + 0.588775i
\(186\) 0.578404 + 1.78014i 0.0424106 + 0.130526i
\(187\) −3.69957 1.20206i −0.270539 0.0879036i
\(188\) 18.5315 + 6.02125i 1.35155 + 0.439145i
\(189\) −2.09549 6.44925i −0.152424 0.469114i
\(190\) 1.47931 + 2.74487i 0.107321 + 0.199134i
\(191\) 2.82238 8.68639i 0.204220 0.628525i −0.795524 0.605922i \(-0.792805\pi\)
0.999745 0.0226033i \(-0.00719548\pi\)
\(192\) 2.61496 3.59919i 0.188719 0.259749i
\(193\) 13.9103i 1.00128i 0.865654 + 0.500642i \(0.166903\pi\)
−0.865654 + 0.500642i \(0.833097\pi\)
\(194\) 0.0204806 + 0.0148801i 0.00147042 + 0.00106833i
\(195\) −1.47342 + 3.06453i −0.105514 + 0.219456i
\(196\) −6.04820 + 4.39427i −0.432014 + 0.313877i
\(197\) 11.4710 + 15.7884i 0.817273 + 1.12488i 0.990160 + 0.139938i \(0.0446905\pi\)
−0.172887 + 0.984942i \(0.555310\pi\)
\(198\) −2.43682 + 0.791770i −0.173177 + 0.0562687i
\(199\) 4.57777 0.324510 0.162255 0.986749i \(-0.448123\pi\)
0.162255 + 0.986749i \(0.448123\pi\)
\(200\) 4.29630 + 2.82818i 0.303794 + 0.199982i
\(201\) −6.20600 −0.437738
\(202\) −4.35264 + 1.41426i −0.306250 + 0.0995068i
\(203\) −2.21990 3.05544i −0.155807 0.214449i
\(204\) −1.08567 + 0.788786i −0.0760121 + 0.0552260i
\(205\) −15.0775 + 8.12584i −1.05306 + 0.567533i
\(206\) 2.91647 + 2.11894i 0.203200 + 0.147633i
\(207\) 20.1635i 1.40146i
\(208\) 4.62363 6.36389i 0.320591 0.441256i
\(209\) −6.40618 + 19.7162i −0.443124 + 1.36380i
\(210\) 0.707476 0.128850i 0.0488205 0.00889148i
\(211\) 2.91290 + 8.96498i 0.200532 + 0.617175i 0.999867 + 0.0162893i \(0.00518529\pi\)
−0.799335 + 0.600886i \(0.794815\pi\)
\(212\) −6.22362 2.02218i −0.427440 0.138884i
\(213\) −0.809175 0.262917i −0.0554438 0.0180148i
\(214\) −0.630321 1.93993i −0.0430879 0.132611i
\(215\) 6.45858 6.76370i 0.440472 0.461280i
\(216\) −1.21856 + 3.75033i −0.0829122 + 0.255178i
\(217\) −10.7061 + 14.7357i −0.726777 + 1.00032i
\(218\) 2.24443i 0.152012i
\(219\) 5.25905 + 3.82093i 0.355374 + 0.258194i
\(220\) 3.01036 + 16.5290i 0.202958 + 1.11439i
\(221\) −1.77075 + 1.28652i −0.119114 + 0.0865410i
\(222\) −0.434725 0.598348i −0.0291768 0.0401585i
\(223\) 22.1596 7.20010i 1.48392 0.482154i 0.548638 0.836060i \(-0.315147\pi\)
0.935281 + 0.353906i \(0.115147\pi\)
\(224\) −5.30327 −0.354340
\(225\) 12.1371 + 3.33314i 0.809143 + 0.222209i
\(226\) 0.845844 0.0562647
\(227\) −7.83482 + 2.54569i −0.520015 + 0.168963i −0.557252 0.830343i \(-0.688144\pi\)
0.0372371 + 0.999306i \(0.488144\pi\)
\(228\) 4.20369 + 5.78588i 0.278396 + 0.383179i
\(229\) 14.6013 10.6085i 0.964881 0.701027i 0.0106017 0.999944i \(-0.496625\pi\)
0.954279 + 0.298917i \(0.0966253\pi\)
\(230\) 4.64452 + 0.626155i 0.306250 + 0.0412874i
\(231\) 3.86793 + 2.81022i 0.254491 + 0.184899i
\(232\) 2.19622i 0.144189i
\(233\) −12.2724 + 16.8915i −0.803990 + 1.10660i 0.188233 + 0.982124i \(0.439724\pi\)
−0.992223 + 0.124473i \(0.960276\pi\)
\(234\) −0.445506 + 1.37113i −0.0291236 + 0.0896333i
\(235\) −3.01382 + 22.3551i −0.196600 + 1.45828i
\(236\) −5.67762 17.4739i −0.369581 1.13745i
\(237\) 5.76245 + 1.87233i 0.374311 + 0.121621i
\(238\) 0.440231 + 0.143040i 0.0285360 + 0.00927189i
\(239\) 3.52008 + 10.8337i 0.227695 + 0.700773i 0.998007 + 0.0631055i \(0.0201005\pi\)
−0.770312 + 0.637667i \(0.779900\pi\)
\(240\) 5.03188 + 2.41931i 0.324806 + 0.156166i
\(241\) 3.99934 12.3087i 0.257620 0.792873i −0.735682 0.677327i \(-0.763138\pi\)
0.993302 0.115546i \(-0.0368618\pi\)
\(242\) 0.635466 0.874645i 0.0408493 0.0562243i
\(243\) 14.8962i 0.955591i
\(244\) −8.46691 6.15157i −0.542038 0.393814i
\(245\) −6.25934 5.97697i −0.399894 0.381855i
\(246\) 1.12654 0.818481i 0.0718258 0.0521845i
\(247\) 6.85630 + 9.43688i 0.436256 + 0.600455i
\(248\) 10.0735 3.27307i 0.639666 0.207840i
\(249\) −10.8981 −0.690641
\(250\) −1.14467 + 2.69220i −0.0723953 + 0.170270i
\(251\) −0.618916 −0.0390657 −0.0195328 0.999809i \(-0.506218\pi\)
−0.0195328 + 0.999809i \(0.506218\pi\)
\(252\) −8.18054 + 2.65802i −0.515326 + 0.167440i
\(253\) 18.3145 + 25.2077i 1.15142 + 1.58479i
\(254\) 0.600212 0.436079i 0.0376606 0.0273620i
\(255\) −1.12357 1.07288i −0.0703607 0.0671867i
\(256\) −8.73700 6.34780i −0.546063 0.396738i
\(257\) 17.1392i 1.06912i 0.845132 + 0.534558i \(0.179522\pi\)
−0.845132 + 0.534558i \(0.820478\pi\)
\(258\) −0.446905 + 0.615112i −0.0278231 + 0.0382952i
\(259\) 2.22404 6.84489i 0.138195 0.425321i
\(260\) 8.51979 + 4.09628i 0.528375 + 0.254041i
\(261\) 1.66071 + 5.11115i 0.102796 + 0.316372i
\(262\) 1.74297 + 0.566324i 0.107681 + 0.0349876i
\(263\) −29.7603 9.66972i −1.83510 0.596261i −0.998852 0.0479126i \(-0.984743\pi\)
−0.836250 0.548348i \(-0.815257\pi\)
\(264\) −0.859140 2.64416i −0.0528764 0.162737i
\(265\) 1.01216 7.50772i 0.0621765 0.461196i
\(266\) 0.762304 2.34613i 0.0467399 0.143851i
\(267\) 3.86672 5.32208i 0.236639 0.325706i
\(268\) 17.2535i 1.05392i
\(269\) −12.9135 9.38223i −0.787352 0.572044i 0.119825 0.992795i \(-0.461767\pi\)
−0.907176 + 0.420751i \(0.861767\pi\)
\(270\) −2.22267 0.299651i −0.135267 0.0182362i
\(271\) 20.4457 14.8547i 1.24199 0.902358i 0.244260 0.969710i \(-0.421455\pi\)
0.997729 + 0.0673513i \(0.0214548\pi\)
\(272\) 2.11244 + 2.90752i 0.128085 + 0.176294i
\(273\) 2.55848 0.831300i 0.154846 0.0503126i
\(274\) −1.17187 −0.0707951
\(275\) −18.2009 + 6.85717i −1.09756 + 0.413503i
\(276\) 10.7491 0.647018
\(277\) −23.1202 + 7.51222i −1.38916 + 0.451365i −0.905670 0.423984i \(-0.860631\pi\)
−0.483490 + 0.875350i \(0.660631\pi\)
\(278\) −2.64752 3.64400i −0.158788 0.218553i
\(279\) 20.9685 15.2345i 1.25535 0.912066i
\(280\) −0.729135 4.00346i −0.0435741 0.239253i
\(281\) −12.3212 8.95187i −0.735021 0.534024i 0.156127 0.987737i \(-0.450099\pi\)
−0.891148 + 0.453713i \(0.850099\pi\)
\(282\) 1.83390i 0.109207i
\(283\) −9.72607 + 13.3868i −0.578155 + 0.795762i −0.993492 0.113906i \(-0.963664\pi\)
0.415337 + 0.909668i \(0.363664\pi\)
\(284\) −0.730942 + 2.24961i −0.0433734 + 0.133490i
\(285\) −5.71774 + 5.98786i −0.338690 + 0.354690i
\(286\) −0.688436 2.11879i −0.0407081 0.125287i
\(287\) 12.8873 + 4.18732i 0.760710 + 0.247170i
\(288\) 7.17708 + 2.33197i 0.422913 + 0.137413i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) −1.22889 + 0.223813i −0.0721629 + 0.0131427i
\(291\) −0.0207716 + 0.0639284i −0.00121765 + 0.00374755i
\(292\) 10.6227 14.6208i 0.621644 0.855620i
\(293\) 30.8808i 1.80408i −0.431655 0.902039i \(-0.642070\pi\)
0.431655 0.902039i \(-0.357930\pi\)
\(294\) 0.569243 + 0.413580i 0.0331989 + 0.0241204i
\(295\) 18.7238 10.0910i 1.09014 0.587520i
\(296\) −3.38593 + 2.46002i −0.196803 + 0.142986i
\(297\) −8.76453 12.0633i −0.508569 0.699986i
\(298\) 0.300758 0.0977223i 0.0174225 0.00566090i
\(299\) 17.5319 1.01390
\(300\) −1.77688 + 6.47026i −0.102588 + 0.373561i
\(301\) −7.39878 −0.426459
\(302\) 4.60130 1.49505i 0.264775 0.0860306i
\(303\) −7.14276 9.83117i −0.410341 0.564786i
\(304\) 15.4951 11.2578i 0.888705 0.645682i
\(305\) 5.24992 10.9192i 0.300610 0.625233i
\(306\) −0.532880 0.387160i −0.0304627 0.0221325i
\(307\) 13.9036i 0.793520i 0.917922 + 0.396760i \(0.129865\pi\)
−0.917922 + 0.396760i \(0.870135\pi\)
\(308\) 7.81276 10.7533i 0.445173 0.612728i
\(309\) −2.95790 + 9.10347i −0.168269 + 0.517879i
\(310\) 2.85801 + 5.30304i 0.162324 + 0.301192i
\(311\) −6.70274 20.6289i −0.380078 1.16976i −0.939988 0.341206i \(-0.889165\pi\)
0.559911 0.828553i \(-0.310835\pi\)
\(312\) −1.48779 0.483413i −0.0842297 0.0273679i
\(313\) −22.4900 7.30745i −1.27121 0.413042i −0.405735 0.913991i \(-0.632984\pi\)
−0.865477 + 0.500949i \(0.832984\pi\)
\(314\) 0.881054 + 2.71160i 0.0497207 + 0.153025i
\(315\) −4.72417 8.76571i −0.266177 0.493892i
\(316\) 5.20532 16.0203i 0.292822 0.901214i
\(317\) 11.5775 15.9351i 0.650258 0.895004i −0.348852 0.937178i \(-0.613428\pi\)
0.999110 + 0.0421739i \(0.0134284\pi\)
\(318\) 0.615898i 0.0345378i
\(319\) −6.71862 4.88136i −0.376170 0.273304i
\(320\) 6.20436 12.9043i 0.346834 0.721375i
\(321\) 4.38166 3.18346i 0.244560 0.177684i
\(322\) −2.17933 2.99960i −0.121450 0.167161i
\(323\) −5.06848 + 1.64685i −0.282018 + 0.0916331i
\(324\) 9.44272 0.524595
\(325\) −2.89813 + 10.5531i −0.160759 + 0.585382i
\(326\) −0.572539 −0.0317100
\(327\) 5.66779 1.84158i 0.313429 0.101839i
\(328\) −4.63162 6.37488i −0.255738 0.351994i
\(329\) 14.4377 10.4896i 0.795976 0.578310i
\(330\) 1.39198 0.750191i 0.0766260 0.0412967i
\(331\) 7.53231 + 5.47254i 0.414013 + 0.300798i 0.775225 0.631686i \(-0.217637\pi\)
−0.361211 + 0.932484i \(0.617637\pi\)
\(332\) 30.2982i 1.66283i
\(333\) −6.01971 + 8.28542i −0.329878 + 0.454038i
\(334\) −0.272602 + 0.838984i −0.0149161 + 0.0459071i
\(335\) −19.6505 + 3.57886i −1.07362 + 0.195534i
\(336\) −1.36497 4.20095i −0.0744653 0.229181i
\(337\) −18.8848 6.13605i −1.02872 0.334252i −0.254437 0.967089i \(-0.581890\pi\)
−0.774285 + 0.632837i \(0.781890\pi\)
\(338\) 2.04291 + 0.663781i 0.111120 + 0.0361049i
\(339\) 0.694024 + 2.13598i 0.0376942 + 0.116011i
\(340\) −2.98276 + 3.12367i −0.161763 + 0.169405i
\(341\) −12.3766 + 38.0913i −0.670231 + 2.06276i
\(342\) −2.06330 + 2.83989i −0.111570 + 0.153563i
\(343\) 19.2304i 1.03834i
\(344\) 3.48079 + 2.52894i 0.187672 + 0.136351i
\(345\) 2.22966 + 12.2424i 0.120041 + 0.659110i
\(346\) −1.88653 + 1.37064i −0.101420 + 0.0736861i
\(347\) −9.46684 13.0300i −0.508207 0.699487i 0.475409 0.879765i \(-0.342300\pi\)
−0.983616 + 0.180278i \(0.942300\pi\)
\(348\) −2.72473 + 0.885319i −0.146061 + 0.0474581i
\(349\) −15.3305 −0.820623 −0.410312 0.911945i \(-0.634580\pi\)
−0.410312 + 0.911945i \(0.634580\pi\)
\(350\) 2.16582 0.815971i 0.115768 0.0436155i
\(351\) −8.39004 −0.447827
\(352\) −11.0907 + 3.60357i −0.591134 + 0.192071i
\(353\) 0.0340891 + 0.0469196i 0.00181438 + 0.00249728i 0.809923 0.586536i \(-0.199509\pi\)
−0.808109 + 0.589033i \(0.799509\pi\)
\(354\) −1.39899 + 1.01642i −0.0743553 + 0.0540223i
\(355\) −2.71376 0.365858i −0.144032 0.0194177i
\(356\) −14.7961 10.7500i −0.784189 0.569747i
\(357\) 1.22907i 0.0650492i
\(358\) −2.83125 + 3.89689i −0.149636 + 0.205957i
\(359\) 5.74049 17.6674i 0.302971 0.932450i −0.677455 0.735564i \(-0.736917\pi\)
0.980426 0.196886i \(-0.0630828\pi\)
\(360\) −0.773657 + 5.73862i −0.0407753 + 0.302452i
\(361\) 2.90526 + 8.94146i 0.152908 + 0.470603i
\(362\) −2.69805 0.876651i −0.141807 0.0460757i
\(363\) 2.73012 + 0.887070i 0.143294 + 0.0465591i
\(364\) −2.31112 7.11290i −0.121136 0.372817i
\(365\) 18.8555 + 9.06568i 0.986944 + 0.474519i
\(366\) −0.304384 + 0.936797i −0.0159104 + 0.0489672i
\(367\) 21.1524 29.1138i 1.10415 1.51973i 0.274377 0.961622i \(-0.411529\pi\)
0.829770 0.558105i \(-0.188471\pi\)
\(368\) 28.7870i 1.50062i
\(369\) −15.5994 11.3336i −0.812074 0.590006i
\(370\) −1.72155 1.64389i −0.0894993 0.0854619i
\(371\) −4.84875 + 3.52283i −0.251735 + 0.182896i
\(372\) 8.12145 + 11.1782i 0.421077 + 0.579563i
\(373\) −22.2606 + 7.23290i −1.15261 + 0.374505i −0.822125 0.569306i \(-0.807212\pi\)
−0.330484 + 0.943812i \(0.607212\pi\)
\(374\) 1.01784 0.0526315
\(375\) −7.73774 0.681626i −0.399575 0.0351990i
\(376\) −10.3777 −0.535188
\(377\) −4.44409 + 1.44397i −0.228882 + 0.0743684i
\(378\) 1.04294 + 1.43548i 0.0536429 + 0.0738331i
\(379\) −7.05230 + 5.12380i −0.362252 + 0.263192i −0.753991 0.656885i \(-0.771874\pi\)
0.391739 + 0.920077i \(0.371874\pi\)
\(380\) 16.6470 + 15.8960i 0.853973 + 0.815450i
\(381\) 1.59370 + 1.15789i 0.0816476 + 0.0593204i
\(382\) 2.38984i 0.122275i
\(383\) 6.81187 9.37574i 0.348070 0.479078i −0.598706 0.800969i \(-0.704318\pi\)
0.946777 + 0.321891i \(0.104318\pi\)
\(384\) −1.64695 + 5.06879i −0.0840456 + 0.258666i
\(385\) 13.8679 + 6.66763i 0.706773 + 0.339814i
\(386\) −1.12475 3.46161i −0.0572481 0.176192i
\(387\) 10.0130 + 3.25342i 0.508989 + 0.165380i
\(388\) 0.177729 + 0.0577476i 0.00902282 + 0.00293169i
\(389\) −3.68404 11.3383i −0.186788 0.574875i 0.813186 0.582003i \(-0.197731\pi\)
−0.999975 + 0.00712836i \(0.997731\pi\)
\(390\) 0.118874 0.881754i 0.00601944 0.0446494i
\(391\) −2.47521 + 7.61793i −0.125177 + 0.385255i
\(392\) 2.34036 3.22123i 0.118206 0.162697i
\(393\) 4.86613i 0.245464i
\(394\) −4.13120 3.00149i −0.208127 0.151213i
\(395\) 19.3258 + 2.60542i 0.972384 + 0.131093i
\(396\) −15.3017 + 11.1174i −0.768941 + 0.558668i
\(397\) −13.3611 18.3899i −0.670572 0.922963i 0.329201 0.944260i \(-0.393221\pi\)
−0.999773 + 0.0212965i \(0.993221\pi\)
\(398\) −1.13919 + 0.370146i −0.0571025 + 0.0185537i
\(399\) 6.55009 0.327915
\(400\) 17.3279 + 4.75865i 0.866396 + 0.237932i
\(401\) −22.9853 −1.14783 −0.573916 0.818914i \(-0.694576\pi\)
−0.573916 + 0.818914i \(0.694576\pi\)
\(402\) 1.54438 0.501800i 0.0770268 0.0250275i
\(403\) 13.2462 + 18.2319i 0.659842 + 0.908195i
\(404\) −27.3319 + 19.8578i −1.35981 + 0.987961i
\(405\) 1.95869 + 10.7546i 0.0973280 + 0.534400i
\(406\) 0.799483 + 0.580859i 0.0396777 + 0.0288275i
\(407\) 15.8258i 0.784458i
\(408\) 0.420102 0.578221i 0.0207982 0.0286262i
\(409\) 5.84501 17.9891i 0.289017 0.889503i −0.696149 0.717898i \(-0.745105\pi\)
0.985166 0.171605i \(-0.0548954\pi\)
\(410\) 3.09505 3.24126i 0.152854 0.160075i
\(411\) −0.961529 2.95928i −0.0474288 0.145971i
\(412\) 25.3088 + 8.22333i 1.24688 + 0.405134i
\(413\) −16.0039 5.19998i −0.787500 0.255874i
\(414\) 1.63036 + 5.01774i 0.0801280 + 0.246609i
\(415\) −34.5075 + 6.28470i −1.69390 + 0.308504i
\(416\) −2.02763 + 6.24039i −0.0994125 + 0.305960i
\(417\) 7.02977 9.67565i 0.344250 0.473819i
\(418\) 5.42442i 0.265317i
\(419\) −23.8802 17.3500i −1.16662 0.847602i −0.176023 0.984386i \(-0.556323\pi\)
−0.990601 + 0.136784i \(0.956323\pi\)
\(420\) 4.67296 2.51844i 0.228017 0.122887i
\(421\) −19.8702 + 14.4365i −0.968412 + 0.703593i −0.955089 0.296319i \(-0.904241\pi\)
−0.0133230 + 0.999911i \(0.504241\pi\)
\(422\) −1.44977 1.99543i −0.0705736 0.0971362i
\(423\) −24.1515 + 7.84729i −1.17428 + 0.381548i
\(424\) 3.48524 0.169258
\(425\) −4.17634 2.74921i −0.202582 0.133356i
\(426\) 0.222624 0.0107862
\(427\) −9.11611 + 2.96200i −0.441159 + 0.143341i
\(428\) −8.85043 12.1816i −0.427802 0.588818i
\(429\) 4.78564 3.47697i 0.231053 0.167870i
\(430\) −1.06034 + 2.20539i −0.0511343 + 0.106353i
\(431\) −8.27343 6.01100i −0.398517 0.289540i 0.370420 0.928865i \(-0.379214\pi\)
−0.768937 + 0.639325i \(0.779214\pi\)
\(432\) 13.7762i 0.662808i
\(433\) −16.4225 + 22.6036i −0.789215 + 1.08626i 0.204991 + 0.978764i \(0.434284\pi\)
−0.994205 + 0.107497i \(0.965716\pi\)
\(434\) 1.47276 4.53268i 0.0706946 0.217576i
\(435\) −1.57350 2.91964i −0.0754437 0.139986i
\(436\) −5.11981 15.7572i −0.245194 0.754631i
\(437\) 40.5983 + 13.1912i 1.94208 + 0.631021i
\(438\) −1.61768 0.525616i −0.0772958 0.0251149i
\(439\) −3.26488 10.0483i −0.155824 0.479577i 0.842419 0.538823i \(-0.181131\pi\)
−0.998243 + 0.0592451i \(0.981131\pi\)
\(440\) −4.24518 7.87694i −0.202381 0.375518i
\(441\) 3.01081 9.26632i 0.143372 0.441254i
\(442\) 0.336631 0.463333i 0.0160119 0.0220385i
\(443\) 4.10520i 0.195044i −0.995233 0.0975219i \(-0.968908\pi\)
0.995233 0.0975219i \(-0.0310916\pi\)
\(444\) −4.41692 3.20908i −0.209618 0.152296i
\(445\) 9.17432 19.0815i 0.434905 0.904550i
\(446\) −4.93231 + 3.58353i −0.233552 + 0.169685i
\(447\) 0.493551 + 0.679314i 0.0233441 + 0.0321305i
\(448\) −10.7734 + 3.50050i −0.508996 + 0.165383i
\(449\) −24.3079 −1.14716 −0.573580 0.819149i \(-0.694446\pi\)
−0.573580 + 0.819149i \(0.694446\pi\)
\(450\) −3.28987 + 0.151914i −0.155086 + 0.00716131i
\(451\) 29.7962 1.40305
\(452\) 5.93831 1.92947i 0.279314 0.0907548i
\(453\) 7.55082 + 10.3928i 0.354769 + 0.488297i
\(454\) 1.74388 1.26700i 0.0818444 0.0594634i
\(455\) 7.62169 4.10762i 0.357310 0.192568i
\(456\) −3.08152 2.23886i −0.144306 0.104844i
\(457\) 0.0269860i 0.00126235i −1.00000 0.000631177i \(-0.999799\pi\)
1.00000 0.000631177i \(-0.000200910\pi\)
\(458\) −2.77580 + 3.82057i −0.129705 + 0.178523i
\(459\) 1.18453 3.64562i 0.0552892 0.170163i
\(460\) 34.0355 6.19875i 1.58691 0.289018i
\(461\) −0.782321 2.40774i −0.0364363 0.112139i 0.931184 0.364549i \(-0.118777\pi\)
−0.967620 + 0.252410i \(0.918777\pi\)
\(462\) −1.18977 0.386581i −0.0553532 0.0179854i
\(463\) −9.85254 3.20128i −0.457886 0.148776i 0.0709866 0.997477i \(-0.477385\pi\)
−0.528873 + 0.848701i \(0.677385\pi\)
\(464\) 2.37096 + 7.29707i 0.110069 + 0.338758i
\(465\) −11.0466 + 11.5684i −0.512273 + 0.536473i
\(466\) 1.68822 5.19581i 0.0782053 0.240691i
\(467\) −14.1348 + 19.4549i −0.654080 + 0.900263i −0.999267 0.0382703i \(-0.987815\pi\)
0.345188 + 0.938534i \(0.387815\pi\)
\(468\) 10.6423i 0.491942i
\(469\) 12.7841 + 9.28819i 0.590315 + 0.428889i
\(470\) −1.05757 5.80681i −0.0487821 0.267848i
\(471\) −6.12462 + 4.44980i −0.282208 + 0.205036i
\(472\) 5.75173 + 7.91658i 0.264745 + 0.364390i
\(473\) −15.4730 + 5.02747i −0.711447 + 0.231163i
\(474\) −1.58539 −0.0728195
\(475\) −14.6514 + 22.2571i −0.672253 + 1.02122i
\(476\) 3.41697 0.156616
\(477\) 8.11103 2.63543i 0.371379 0.120668i
\(478\) −1.75196 2.41137i −0.0801329 0.110293i
\(479\) 0.649375 0.471799i 0.0296707 0.0215570i −0.572851 0.819659i \(-0.694163\pi\)
0.602522 + 0.798102i \(0.294163\pi\)
\(480\) −4.61549 0.622241i −0.210667 0.0284013i
\(481\) −7.20409 5.23408i −0.328478 0.238653i
\(482\) 3.38643i 0.154248i
\(483\) 5.78662 7.96461i 0.263301 0.362402i
\(484\) 2.46617 7.59008i 0.112098 0.345004i
\(485\) −0.0289044 + 0.214399i −0.00131248 + 0.00973536i
\(486\) −1.20446 3.70696i −0.0546356 0.168151i
\(487\) 11.3312 + 3.68172i 0.513464 + 0.166835i 0.554277 0.832332i \(-0.312995\pi\)
−0.0408128 + 0.999167i \(0.512995\pi\)
\(488\) 5.30115 + 1.72245i 0.239972 + 0.0779715i
\(489\) −0.469774 1.44582i −0.0212439 0.0653820i
\(490\) 2.04094 + 0.981274i 0.0922001 + 0.0443295i
\(491\) −3.85177 + 11.8545i −0.173828 + 0.534988i −0.999578 0.0290484i \(-0.990752\pi\)
0.825750 + 0.564037i \(0.190752\pi\)
\(492\) 6.04192 8.31599i 0.272391 0.374914i
\(493\) 2.13490i 0.0961510i
\(494\) −2.46925 1.79402i −0.111097 0.0807166i
\(495\) −15.8359 15.1215i −0.711770 0.679662i
\(496\) 29.9362 21.7499i 1.34418 0.976602i
\(497\) 1.27337 + 1.75265i 0.0571185 + 0.0786169i
\(498\) 2.71203 0.881192i 0.121529 0.0394872i
\(499\) 21.1115 0.945080 0.472540 0.881309i \(-0.343337\pi\)
0.472540 + 0.881309i \(0.343337\pi\)
\(500\) −1.89501 + 21.5119i −0.0847473 + 0.962042i
\(501\) −2.34233 −0.104648
\(502\) 0.154019 0.0500439i 0.00687421 0.00223357i
\(503\) 12.7079 + 17.4909i 0.566617 + 0.779881i 0.992149 0.125062i \(-0.0399130\pi\)
−0.425532 + 0.904943i \(0.639913\pi\)
\(504\) 3.70621 2.69272i 0.165088 0.119943i
\(505\) −28.2860 27.0100i −1.25871 1.20193i
\(506\) −6.59583 4.79215i −0.293221 0.213037i
\(507\) 5.70353i 0.253303i
\(508\) 3.21908 4.43068i 0.142823 0.196580i
\(509\) −3.33666 + 10.2692i −0.147895 + 0.455174i −0.997372 0.0724520i \(-0.976918\pi\)
0.849477 + 0.527626i \(0.176918\pi\)
\(510\) 0.366354 + 0.176142i 0.0162224 + 0.00779969i
\(511\) −5.11485 15.7419i −0.226268 0.696380i
\(512\) 17.2789 + 5.61425i 0.763626 + 0.248117i
\(513\) −19.4286 6.31275i −0.857796 0.278715i
\(514\) −1.38583 4.26514i −0.0611263 0.188127i
\(515\) −4.11602 + 30.5307i −0.181374 + 1.34534i
\(516\) −1.73438 + 5.33788i −0.0763519 + 0.234987i
\(517\) 23.0657 31.7472i 1.01443 1.39624i
\(518\) 1.88320i 0.0827430i
\(519\) −5.00915 3.63936i −0.219877 0.159750i
\(520\) −4.98967 0.672686i −0.218811 0.0294992i
\(521\) −14.8221 + 10.7689i −0.649369 + 0.471794i −0.863056 0.505108i \(-0.831453\pi\)
0.213687 + 0.976902i \(0.431453\pi\)
\(522\) −0.826547 1.13764i −0.0361770 0.0497933i
\(523\) 24.8110 8.06159i 1.08491 0.352509i 0.288632 0.957440i \(-0.406800\pi\)
0.796278 + 0.604932i \(0.206800\pi\)
\(524\) 13.5285 0.590994
\(525\) 3.83763 + 4.79978i 0.167488 + 0.209479i
\(526\) 8.18782 0.357006
\(527\) −9.79221 + 3.18168i −0.426555 + 0.138596i
\(528\) −5.70909 7.85789i −0.248456 0.341971i
\(529\) 33.2987 24.1930i 1.44777 1.05187i
\(530\) 0.355175 + 1.95016i 0.0154278 + 0.0847095i
\(531\) 19.3720 + 14.0746i 0.840673 + 0.610784i
\(532\) 18.2101i 0.789507i
\(533\) 9.85449 13.5635i 0.426845 0.587502i
\(534\) −0.531916 + 1.63707i −0.0230182 + 0.0708428i
\(535\) 12.0381 12.6068i 0.520453 0.545040i
\(536\) −2.83959 8.73935i −0.122651 0.377482i
\(537\) −12.1638 3.95225i −0.524905 0.170552i
\(538\) 3.97219 + 1.29064i 0.171253 + 0.0556436i
\(539\) 4.65257 + 14.3192i 0.200401 + 0.616770i
\(540\) −16.2879 + 2.96646i −0.700921 + 0.127656i
\(541\) −4.71642 + 14.5157i −0.202775 + 0.624077i 0.797023 + 0.603949i \(0.206407\pi\)
−0.999797 + 0.0201273i \(0.993593\pi\)
\(542\) −3.88687 + 5.34982i −0.166955 + 0.229794i
\(543\) 7.53261i 0.323255i
\(544\) −2.42529 1.76208i −0.103983 0.0755484i
\(545\) 16.8843 9.09959i 0.723244 0.389783i
\(546\) −0.569469 + 0.413743i −0.0243710 + 0.0177066i
\(547\) 13.5726 + 18.6811i 0.580323 + 0.798747i 0.993731 0.111800i \(-0.0356615\pi\)
−0.413407 + 0.910546i \(0.635661\pi\)
\(548\) −8.22718 + 2.67317i −0.351448 + 0.114192i
\(549\) 13.6396 0.582122
\(550\) 3.97490 3.17810i 0.169490 0.135515i
\(551\) −11.3775 −0.484700
\(552\) −5.44469 + 1.76909i −0.231741 + 0.0752974i
\(553\) −9.06817 12.4813i −0.385618 0.530757i
\(554\) 5.14612 3.73888i 0.218638 0.158850i
\(555\) 2.73872 5.69622i 0.116252 0.241791i
\(556\) −26.8995 19.5437i −1.14079 0.828836i
\(557\) 6.96026i 0.294916i −0.989068 0.147458i \(-0.952891\pi\)
0.989068 0.147458i \(-0.0471091\pi\)
\(558\) −3.98625 + 5.48661i −0.168751 + 0.232267i
\(559\) −2.82881 + 8.70618i −0.119646 + 0.368232i
\(560\) −6.74460 12.5146i −0.285011 0.528839i
\(561\) 0.835152 + 2.57033i 0.0352601 + 0.108520i
\(562\) 3.78999 + 1.23144i 0.159871 + 0.0519452i
\(563\) 11.9467 + 3.88170i 0.503491 + 0.163594i 0.549740 0.835336i \(-0.314727\pi\)
−0.0462488 + 0.998930i \(0.514727\pi\)
\(564\) −4.18336 12.8750i −0.176151 0.542137i
\(565\) 3.42931 + 6.36308i 0.144272 + 0.267697i
\(566\) 1.33794 4.11776i 0.0562379 0.173083i
\(567\) 5.08337 6.99665i 0.213481 0.293832i
\(568\) 1.25979i 0.0528594i
\(569\) −5.58962 4.06110i −0.234329 0.170250i 0.464424 0.885613i \(-0.346261\pi\)
−0.698753 + 0.715363i \(0.746261\pi\)
\(570\) 0.938715 1.95242i 0.0393185 0.0817778i
\(571\) −10.4440 + 7.58804i −0.437069 + 0.317549i −0.784469 0.620168i \(-0.787065\pi\)
0.347400 + 0.937717i \(0.387065\pi\)
\(572\) −9.66642 13.3047i −0.404173 0.556297i
\(573\) −6.03500 + 1.96089i −0.252116 + 0.0819173i
\(574\) −3.54561 −0.147991
\(575\) 14.1199 + 37.4782i 0.588839 + 1.56295i
\(576\) 16.1192 0.671635
\(577\) 31.6933 10.2978i 1.31941 0.428703i 0.437119 0.899404i \(-0.355999\pi\)
0.882293 + 0.470701i \(0.155999\pi\)
\(578\) 0.153800 + 0.211687i 0.00639722 + 0.00880502i
\(579\) 7.81865 5.68058i 0.324932 0.236077i
\(580\) −8.11696 + 4.37454i −0.337038 + 0.181643i
\(581\) 22.4497 + 16.3106i 0.931369 + 0.676679i
\(582\) 0.0175883i 0.000729058i
\(583\) −7.74637 + 10.6620i −0.320822 + 0.441573i
\(584\) −2.97436 + 9.15413i −0.123080 + 0.378800i
\(585\) −12.1209 + 2.20753i −0.501136 + 0.0912700i
\(586\) 2.49694 + 7.68478i 0.103148 + 0.317456i
\(587\) 0.0929701 + 0.0302078i 0.00383729 + 0.00124681i 0.310935 0.950431i \(-0.399358\pi\)
−0.307098 + 0.951678i \(0.599358\pi\)
\(588\) 4.93984 + 1.60505i 0.203715 + 0.0661912i
\(589\) 16.9562 + 52.1858i 0.698668 + 2.15028i
\(590\) −3.84355 + 4.02513i −0.158237 + 0.165712i
\(591\) 4.18988 12.8951i 0.172349 0.530435i
\(592\) −8.59420 + 11.8289i −0.353220 + 0.486165i
\(593\) 15.4663i 0.635124i 0.948237 + 0.317562i \(0.102864\pi\)
−0.948237 + 0.317562i \(0.897136\pi\)
\(594\) 3.15649 + 2.29332i 0.129512 + 0.0940961i
\(595\) 0.708776 + 3.89168i 0.0290570 + 0.159543i
\(596\) 1.88858 1.37213i 0.0773592 0.0562048i
\(597\) −1.86944 2.57306i −0.0765109 0.105308i
\(598\) −4.36288 + 1.41758i −0.178411 + 0.0579693i
\(599\) 16.3238 0.666974 0.333487 0.942755i \(-0.391775\pi\)
0.333487 + 0.942755i \(0.391775\pi\)
\(600\) −0.164840 3.56980i −0.00672958 0.145736i
\(601\) 5.47691 0.223408 0.111704 0.993742i \(-0.464369\pi\)
0.111704 + 0.993742i \(0.464369\pi\)
\(602\) 1.84121 0.598245i 0.0750420 0.0243826i
\(603\) −13.2169 18.1914i −0.538232 0.740813i
\(604\) 28.8933 20.9922i 1.17565 0.854162i
\(605\) 9.15611 + 1.23439i 0.372249 + 0.0501851i
\(606\) 2.57242 + 1.86897i 0.104497 + 0.0759218i
\(607\) 1.92569i 0.0781613i 0.999236 + 0.0390807i \(0.0124429\pi\)
−0.999236 + 0.0390807i \(0.987557\pi\)
\(608\) −9.39066 + 12.9251i −0.380842 + 0.524183i
\(609\) −0.810841 + 2.49551i −0.0328569 + 0.101123i
\(610\) −0.423561 + 3.14177i −0.0171495 + 0.127207i
\(611\) −6.82314 20.9995i −0.276035 0.849547i
\(612\) −4.62428 1.50252i −0.186925 0.0607357i
\(613\) −11.7845 3.82902i −0.475972 0.154653i 0.0611998 0.998126i \(-0.480507\pi\)
−0.537172 + 0.843473i \(0.680507\pi\)
\(614\) −1.12421 3.45995i −0.0453693 0.139632i
\(615\) 10.7246 + 5.15634i 0.432457 + 0.207924i
\(616\) −2.18758 + 6.73268i −0.0881401 + 0.271267i
\(617\) 22.6540 31.1805i 0.912015 1.25528i −0.0544591 0.998516i \(-0.517343\pi\)
0.966474 0.256765i \(-0.0826565\pi\)
\(618\) 2.50459i 0.100750i
\(619\) 18.7144 + 13.5968i 0.752194 + 0.546501i 0.896506 0.443031i \(-0.146097\pi\)
−0.144312 + 0.989532i \(0.546097\pi\)
\(620\) 32.1617 + 30.7109i 1.29165 + 1.23338i
\(621\) −24.8401 + 18.0474i −0.996798 + 0.724216i
\(622\) 3.33600 + 4.59160i 0.133761 + 0.184107i
\(623\) −15.9305 + 5.17615i −0.638244 + 0.207378i
\(624\) −5.46516 −0.218781
\(625\) −24.8936 + 2.30390i −0.995745 + 0.0921562i
\(626\) 6.18757 0.247305
\(627\) 13.6981 4.45079i 0.547050 0.177747i
\(628\) 12.3710 + 17.0272i 0.493657 + 0.679460i
\(629\) 3.29139 2.39134i 0.131236 0.0953488i
\(630\) 1.88440 + 1.79939i 0.0750761 + 0.0716894i
\(631\) −1.05428 0.765983i −0.0419704 0.0304933i 0.566602 0.823991i \(-0.308258\pi\)
−0.608573 + 0.793498i \(0.708258\pi\)
\(632\) 8.97142i 0.356864i
\(633\) 3.84946 5.29833i 0.153002 0.210590i
\(634\) −1.59263 + 4.90162i −0.0632515 + 0.194668i
\(635\) 5.71396 + 2.74725i 0.226752 + 0.109021i
\(636\) 1.40494 + 4.32395i 0.0557094 + 0.171456i
\(637\) 8.05697 + 2.61787i 0.319229 + 0.103724i
\(638\) 2.06664 + 0.671492i 0.0818191 + 0.0265846i
\(639\) −0.952612 2.93184i −0.0376847 0.115982i
\(640\) −2.29179 + 16.9994i −0.0905910 + 0.671961i
\(641\) 12.2024 37.5552i 0.481967 1.48334i −0.354358 0.935110i \(-0.615301\pi\)
0.836326 0.548233i \(-0.184699\pi\)
\(642\) −0.832983 + 1.14650i −0.0328752 + 0.0452489i
\(643\) 18.2810i 0.720934i −0.932772 0.360467i \(-0.882617\pi\)
0.932772 0.360467i \(-0.117383\pi\)
\(644\) −22.1426 16.0875i −0.872541 0.633938i
\(645\) −6.43922 0.868109i −0.253544 0.0341818i
\(646\) 1.12815 0.819647i 0.0443863 0.0322486i
\(647\) 1.50536 + 2.07195i 0.0591818 + 0.0814567i 0.837582 0.546312i \(-0.183969\pi\)
−0.778400 + 0.627768i \(0.783969\pi\)
\(648\) −4.78299 + 1.55409i −0.187894 + 0.0610503i
\(649\) −37.0021 −1.45246
\(650\) −0.132088 2.86051i −0.00518091 0.112198i
\(651\) 12.6547 0.495975
\(652\) −4.01955 + 1.30603i −0.157418 + 0.0511481i
\(653\) 12.1606 + 16.7377i 0.475882 + 0.654996i 0.977707 0.209974i \(-0.0673378\pi\)
−0.501825 + 0.864969i \(0.667338\pi\)
\(654\) −1.26154 + 0.916563i −0.0493301 + 0.0358404i
\(655\) 2.80619 + 15.4080i 0.109647 + 0.602039i
\(656\) −22.2709 16.1808i −0.869534 0.631754i
\(657\) 23.5531i 0.918892i
\(658\) −2.74470 + 3.77776i −0.107000 + 0.147272i
\(659\) −11.9913 + 36.9054i −0.467115 + 1.43763i 0.389189 + 0.921158i \(0.372755\pi\)
−0.856303 + 0.516473i \(0.827245\pi\)
\(660\) 8.06122 8.44205i 0.313782 0.328606i
\(661\) −1.46535 4.50990i −0.0569957 0.175415i 0.918506 0.395407i \(-0.129397\pi\)
−0.975501 + 0.219993i \(0.929397\pi\)
\(662\) −2.31693 0.752817i −0.0900501 0.0292591i
\(663\) 1.44625 + 0.469916i 0.0561677 + 0.0182500i
\(664\) −4.98649 15.3468i −0.193513 0.595572i
\(665\) 20.7400 3.77729i 0.804263 0.146477i
\(666\) 0.828087 2.54859i 0.0320877 0.0987558i
\(667\) −10.0514 + 13.8346i −0.389192 + 0.535676i
\(668\) 6.51198i 0.251956i
\(669\) −13.0964 9.51509i −0.506336 0.367875i
\(670\) 4.60070 2.47949i 0.177741 0.0957912i
\(671\) −17.0517 + 12.3888i −0.658273 + 0.478264i
\(672\) 2.16571 + 2.98085i 0.0835442 + 0.114989i
\(673\) 39.8480 12.9474i 1.53603 0.499086i 0.585751 0.810491i \(-0.300800\pi\)
0.950277 + 0.311405i \(0.100800\pi\)
\(674\) 5.19569 0.200131
\(675\) −6.75717 17.9355i −0.260084 0.690337i
\(676\) 15.8565 0.609867
\(677\) −26.6690 + 8.66530i −1.02497 + 0.333034i −0.772802 0.634648i \(-0.781145\pi\)
−0.252173 + 0.967682i \(0.581145\pi\)
\(678\) −0.345420 0.475429i −0.0132658 0.0182588i
\(679\) 0.138467 0.100602i 0.00531386 0.00386075i
\(680\) 0.996751 2.07312i 0.0382237 0.0795007i
\(681\) 4.63040 + 3.36418i 0.177437 + 0.128916i
\(682\) 10.4799i 0.401295i
\(683\) −6.64883 + 9.15133i −0.254410 + 0.350166i −0.917050 0.398773i \(-0.869436\pi\)
0.662639 + 0.748939i \(0.269436\pi\)
\(684\) −8.00740 + 24.6442i −0.306171 + 0.942296i
\(685\) −4.75111 8.81568i −0.181530 0.336830i
\(686\) −1.55491 4.78553i −0.0593669 0.182712i
\(687\) −11.9255 3.87484i −0.454988 0.147834i
\(688\) 14.2953 + 4.64483i 0.545003 + 0.177082i
\(689\) 2.29148 + 7.05245i 0.0872985 + 0.268677i
\(690\) −1.54475 2.86628i −0.0588075 0.109117i
\(691\) 7.83568 24.1157i 0.298083 0.917406i −0.684085 0.729402i \(-0.739798\pi\)
0.982168 0.188004i \(-0.0602016\pi\)
\(692\) −10.1179 + 13.9261i −0.384624 + 0.529390i
\(693\) 17.3228i 0.658039i
\(694\) 3.40942 + 2.47709i 0.129420 + 0.0940290i
\(695\) 16.6791 34.6906i 0.632675 1.31589i
\(696\) 1.23444 0.896876i 0.0467915 0.0339960i
\(697\) 4.50230 + 6.19689i 0.170537 + 0.234724i
\(698\) 3.81504 1.23958i 0.144401 0.0469189i
\(699\) 14.5060 0.548668
\(700\) 13.3440 10.6691i 0.504355 0.403254i
\(701\) −8.54625 −0.322787 −0.161394 0.986890i \(-0.551599\pi\)
−0.161394 + 0.986890i \(0.551599\pi\)
\(702\) 2.08789 0.678396i 0.0788022 0.0256044i
\(703\) −12.7442 17.5409i −0.480656 0.661566i
\(704\) −20.1517 + 14.6411i −0.759496 + 0.551806i
\(705\) 13.7960 7.43520i 0.519588 0.280026i
\(706\) −0.0122770 0.00891974i −0.000462050 0.000335699i
\(707\) 30.9420i 1.16369i
\(708\) −7.50309 + 10.3271i −0.281984 + 0.388117i
\(709\) 0.911087 2.80404i 0.0342166 0.105308i −0.932490 0.361197i \(-0.882368\pi\)
0.966706 + 0.255889i \(0.0823682\pi\)
\(710\) 0.704910 0.128382i 0.0264548 0.00481811i
\(711\) 6.78391 + 20.8787i 0.254417 + 0.783014i
\(712\) 9.26383 + 3.01000i 0.347177 + 0.112805i
\(713\) 78.4352 + 25.4852i 2.93742 + 0.954427i
\(714\) −0.0993791 0.305857i −0.00371917 0.0114464i
\(715\) 13.1480 13.7691i 0.491707 0.514937i
\(716\) −10.9877 + 33.8168i −0.410631 + 1.26379i
\(717\) 4.65186 6.40273i 0.173727 0.239114i
\(718\) 4.86074i 0.181401i
\(719\) −0.930260 0.675874i −0.0346929 0.0252058i 0.570304 0.821434i \(-0.306826\pi\)
−0.604997 + 0.796228i \(0.706826\pi\)
\(720\) 3.62469 + 19.9021i 0.135084 + 0.741709i
\(721\) 19.7178 14.3258i 0.734330 0.533522i
\(722\) −1.44596 1.99020i −0.0538132 0.0740675i
\(723\) −8.55165 + 2.77860i −0.318039 + 0.103337i
\(724\) −20.9416 −0.778289
\(725\) −6.66598 8.33724i −0.247568 0.309637i
\(726\) −0.751124 −0.0278768
\(727\) 43.4907 14.1310i 1.61298 0.524090i 0.642711 0.766109i \(-0.277810\pi\)
0.970271 + 0.242019i \(0.0778097\pi\)
\(728\) 2.34129 + 3.22251i 0.0867739 + 0.119434i
\(729\) −3.49235 + 2.53734i −0.129346 + 0.0939756i
\(730\) −5.42528 0.731414i −0.200799 0.0270708i
\(731\) −3.38360 2.45833i −0.125147 0.0909247i
\(732\) 7.27119i 0.268751i
\(733\) −12.9906 + 17.8801i −0.479820 + 0.660415i −0.978470 0.206388i \(-0.933829\pi\)
0.498651 + 0.866803i \(0.333829\pi\)
\(734\) −2.90978 + 8.95538i −0.107402 + 0.330549i
\(735\) −0.803375 + 5.95906i −0.0296329 + 0.219803i
\(736\) 7.42025 + 22.8372i 0.273514 + 0.841790i
\(737\) 33.0465 + 10.7375i 1.21728 + 0.395519i
\(738\) 4.79837 + 1.55909i 0.176630 + 0.0573907i
\(739\) −9.77634 30.0885i −0.359629 1.10682i −0.953277 0.302098i \(-0.902313\pi\)
0.593648 0.804725i \(-0.297687\pi\)
\(740\) −15.8362 7.61399i −0.582150 0.279896i
\(741\) 2.50433 7.70753i 0.0919988 0.283143i
\(742\) 0.921781 1.26872i 0.0338396 0.0465763i
\(743\) 29.5982i 1.08585i −0.839780 0.542927i \(-0.817316\pi\)
0.839780 0.542927i \(-0.182684\pi\)
\(744\) −5.95345 4.32543i −0.218264 0.158578i
\(745\) 1.95451 + 1.86634i 0.0716076 + 0.0683773i
\(746\) 4.95478 3.59986i 0.181407 0.131800i
\(747\) −23.2096 31.9453i −0.849195 1.16882i
\(748\) 7.14585 2.32183i 0.261278 0.0848944i
\(749\) −13.7905 −0.503895
\(750\) 1.98067 0.456028i 0.0723240 0.0166518i
\(751\) 1.92870 0.0703791 0.0351896 0.999381i \(-0.488796\pi\)
0.0351896 + 0.999381i \(0.488796\pi\)
\(752\) −34.4805 + 11.2034i −1.25737 + 0.408546i
\(753\) 0.252749 + 0.347879i 0.00921067 + 0.0126774i
\(754\) 0.989170 0.718674i 0.0360234 0.0261726i
\(755\) 29.9020 + 28.5531i 1.08824 + 1.03915i
\(756\) 10.5965 + 7.69882i 0.385391 + 0.280003i
\(757\) 40.7460i 1.48094i −0.672089 0.740470i \(-0.734603\pi\)
0.672089 0.740470i \(-0.265397\pi\)
\(758\) 1.34069 1.84530i 0.0486961 0.0670244i
\(759\) 6.68953 20.5883i 0.242815 0.747307i
\(760\) −11.0483 5.31200i −0.400765 0.192687i
\(761\) −11.4943 35.3758i −0.416668 1.28237i −0.910750 0.412958i \(-0.864496\pi\)
0.494082 0.869415i \(-0.335504\pi\)
\(762\) −0.490220 0.159282i −0.0177588 0.00577018i
\(763\) −14.4316 4.68910i −0.522458 0.169757i
\(764\) 5.45152 + 16.7781i 0.197229 + 0.607009i
\(765\) 0.752055 5.57839i 0.0271906 0.201687i
\(766\) −0.937058 + 2.88397i −0.0338573 + 0.104202i
\(767\) −12.2377 + 16.8437i −0.441877 + 0.608192i
\(768\) 7.50313i 0.270746i
\(769\) −15.0402 10.9273i −0.542363 0.394050i 0.282599 0.959238i \(-0.408803\pi\)
−0.824962 + 0.565188i \(0.808803\pi\)
\(770\) −3.99019 0.537941i −0.143796 0.0193860i
\(771\) 9.63356 6.99919i