Properties

Label 425.2.r.a.69.16
Level $425$
Weight $2$
Character 425.69
Analytic conductor $3.394$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(69,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.16
Character \(\chi\) \(=\) 425.69
Dual form 425.2.r.a.154.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.628349 + 0.204163i) q^{2} +(0.482449 + 0.664034i) q^{3} +(-1.26489 + 0.918999i) q^{4} +(2.18757 - 0.463165i) q^{5} +(-0.438718 - 0.318747i) q^{6} -4.33633i q^{7} +(1.38385 - 1.90471i) q^{8} +(0.718867 - 2.21244i) q^{9} +(-1.28000 + 0.737651i) q^{10} +(0.471027 + 1.44967i) q^{11} +(-1.22049 - 0.396562i) q^{12} +(-6.34940 - 2.06304i) q^{13} +(0.885318 + 2.72473i) q^{14} +(1.36295 + 1.22917i) q^{15} +(0.485622 - 1.49459i) q^{16} +(0.587785 - 0.809017i) q^{17} +1.53695i q^{18} +(-3.52786 - 2.56314i) q^{19} +(-2.34140 + 2.59623i) q^{20} +(2.87947 - 2.09206i) q^{21} +(-0.591939 - 0.814734i) q^{22} +(5.09722 - 1.65619i) q^{23} +1.93243 q^{24} +(4.57096 - 2.02641i) q^{25} +4.41084 q^{26} +(4.15781 - 1.35095i) q^{27} +(3.98508 + 5.48499i) q^{28} +(-0.798778 + 0.580346i) q^{29} +(-1.10736 - 0.494084i) q^{30} +(5.66269 + 4.11419i) q^{31} +5.74697i q^{32} +(-0.735385 + 1.01217i) q^{33} +(-0.204163 + 0.628349i) q^{34} +(-2.00843 - 9.48604i) q^{35} +(1.12394 + 3.45915i) q^{36} +(1.72441 + 0.560296i) q^{37} +(2.74003 + 0.890289i) q^{38} +(-1.69333 - 5.21153i) q^{39} +(2.14508 - 4.80764i) q^{40} +(-1.09444 + 3.36833i) q^{41} +(-1.38219 + 1.90242i) q^{42} +0.221105i q^{43} +(-1.92805 - 1.40081i) q^{44} +(0.547848 - 5.17284i) q^{45} +(-2.86470 + 2.08133i) q^{46} +(-5.50531 - 7.57741i) q^{47} +(1.22675 - 0.398594i) q^{48} -11.8037 q^{49} +(-2.45844 + 2.20652i) q^{50} +0.820791 q^{51} +(9.92725 - 3.22556i) q^{52} +(7.56730 + 10.4155i) q^{53} +(-2.33674 + 1.69774i) q^{54} +(1.70184 + 2.95310i) q^{55} +(-8.25944 - 6.00083i) q^{56} -3.57920i q^{57} +(0.383426 - 0.527741i) q^{58} +(1.66288 - 5.11782i) q^{59} +(-2.85359 - 0.302220i) q^{60} +(2.40931 + 7.41510i) q^{61} +(-4.39811 - 1.42903i) q^{62} +(-9.59388 - 3.11724i) q^{63} +(-0.202075 - 0.621922i) q^{64} +(-14.8453 - 1.57224i) q^{65} +(0.255431 - 0.786135i) q^{66} +(-4.91621 + 6.76658i) q^{67} +1.56349i q^{68} +(3.55891 + 2.58570i) q^{69} +(3.19870 + 5.55050i) q^{70} +(-9.83939 + 7.14874i) q^{71} +(-3.21926 - 4.43093i) q^{72} +(13.1344 - 4.26763i) q^{73} -1.19793 q^{74} +(3.55086 + 2.05763i) q^{75} +6.81789 q^{76} +(6.28625 - 2.04253i) q^{77} +(2.12800 + 2.92895i) q^{78} +(-4.36847 + 3.17388i) q^{79} +(0.370092 - 3.49445i) q^{80} +(-2.74304 - 1.99294i) q^{81} -2.33993i q^{82} +(10.0350 - 13.8120i) q^{83} +(-1.71962 + 5.29246i) q^{84} +(0.911115 - 2.04203i) q^{85} +(-0.0451415 - 0.138931i) q^{86} +(-0.770740 - 0.250429i) q^{87} +(3.41303 + 1.10896i) q^{88} +(1.41713 + 4.36148i) q^{89} +(0.711863 + 3.36220i) q^{90} +(-8.94604 + 27.5331i) q^{91} +(-4.92540 + 6.77924i) q^{92} +5.74511i q^{93} +(5.00629 + 3.63728i) q^{94} +(-8.90461 - 3.97308i) q^{95} +(-3.81618 + 2.77262i) q^{96} +(2.68545 + 3.69620i) q^{97} +(7.41687 - 2.40989i) q^{98} +3.54592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 40 q^{4} - 8 q^{5} + 4 q^{6} - 30 q^{8} + 36 q^{9} - 6 q^{10} + 8 q^{11} - 40 q^{12} - 20 q^{14} - 40 q^{15} - 64 q^{16} + 6 q^{19} + 2 q^{20} - 50 q^{22} + 20 q^{23} + 20 q^{24} + 32 q^{25} + 20 q^{26}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.628349 + 0.204163i −0.444310 + 0.144365i −0.522623 0.852564i \(-0.675047\pi\)
0.0783133 + 0.996929i \(0.475047\pi\)
\(3\) 0.482449 + 0.664034i 0.278542 + 0.383380i 0.925250 0.379357i \(-0.123855\pi\)
−0.646708 + 0.762737i \(0.723855\pi\)
\(4\) −1.26489 + 0.918999i −0.632447 + 0.459500i
\(5\) 2.18757 0.463165i 0.978313 0.207134i
\(6\) −0.438718 0.318747i −0.179106 0.130128i
\(7\) 4.33633i 1.63898i −0.573095 0.819489i \(-0.694257\pi\)
0.573095 0.819489i \(-0.305743\pi\)
\(8\) 1.38385 1.90471i 0.489265 0.673416i
\(9\) 0.718867 2.21244i 0.239622 0.737481i
\(10\) −1.28000 + 0.737651i −0.404771 + 0.233266i
\(11\) 0.471027 + 1.44967i 0.142020 + 0.437092i 0.996616 0.0822014i \(-0.0261951\pi\)
−0.854596 + 0.519294i \(0.826195\pi\)
\(12\) −1.22049 0.396562i −0.352326 0.114478i
\(13\) −6.34940 2.06304i −1.76101 0.572185i −0.763702 0.645569i \(-0.776620\pi\)
−0.997304 + 0.0733836i \(0.976620\pi\)
\(14\) 0.885318 + 2.72473i 0.236611 + 0.728214i
\(15\) 1.36295 + 1.22917i 0.351912 + 0.317370i
\(16\) 0.485622 1.49459i 0.121405 0.373648i
\(17\) 0.587785 0.809017i 0.142559 0.196215i
\(18\) 1.53695i 0.362263i
\(19\) −3.52786 2.56314i −0.809347 0.588025i 0.104295 0.994546i \(-0.466742\pi\)
−0.913641 + 0.406522i \(0.866742\pi\)
\(20\) −2.34140 + 2.59623i −0.523553 + 0.580535i
\(21\) 2.87947 2.09206i 0.628352 0.456524i
\(22\) −0.591939 0.814734i −0.126202 0.173702i
\(23\) 5.09722 1.65619i 1.06284 0.345339i 0.275147 0.961402i \(-0.411274\pi\)
0.787696 + 0.616064i \(0.211274\pi\)
\(24\) 1.93243 0.394455
\(25\) 4.57096 2.02641i 0.914191 0.405283i
\(26\) 4.41084 0.865036
\(27\) 4.15781 1.35095i 0.800171 0.259991i
\(28\) 3.98508 + 5.48499i 0.753110 + 1.03657i
\(29\) −0.798778 + 0.580346i −0.148329 + 0.107768i −0.659475 0.751727i \(-0.729221\pi\)
0.511145 + 0.859494i \(0.329221\pi\)
\(30\) −1.10736 0.494084i −0.202175 0.0902070i
\(31\) 5.66269 + 4.11419i 1.01705 + 0.738930i 0.965676 0.259750i \(-0.0836400\pi\)
0.0513738 + 0.998679i \(0.483640\pi\)
\(32\) 5.74697i 1.01593i
\(33\) −0.735385 + 1.01217i −0.128014 + 0.176196i
\(34\) −0.204163 + 0.628349i −0.0350137 + 0.107761i
\(35\) −2.00843 9.48604i −0.339487 1.60343i
\(36\) 1.12394 + 3.45915i 0.187324 + 0.576524i
\(37\) 1.72441 + 0.560296i 0.283492 + 0.0921121i 0.447312 0.894378i \(-0.352382\pi\)
−0.163820 + 0.986490i \(0.552382\pi\)
\(38\) 2.74003 + 0.890289i 0.444491 + 0.144424i
\(39\) −1.69333 5.21153i −0.271150 0.834513i
\(40\) 2.14508 4.80764i 0.339168 0.760155i
\(41\) −1.09444 + 3.36833i −0.170922 + 0.526044i −0.999424 0.0339422i \(-0.989194\pi\)
0.828502 + 0.559987i \(0.189194\pi\)
\(42\) −1.38219 + 1.90242i −0.213277 + 0.293550i
\(43\) 0.221105i 0.0337182i 0.999858 + 0.0168591i \(0.00536668\pi\)
−0.999858 + 0.0168591i \(0.994633\pi\)
\(44\) −1.92805 1.40081i −0.290664 0.211180i
\(45\) 0.547848 5.17284i 0.0816684 0.771121i
\(46\) −2.86470 + 2.08133i −0.422377 + 0.306875i
\(47\) −5.50531 7.57741i −0.803032 1.10528i −0.992361 0.123366i \(-0.960631\pi\)
0.189329 0.981914i \(-0.439369\pi\)
\(48\) 1.22675 0.398594i 0.177066 0.0575321i
\(49\) −11.8037 −1.68625
\(50\) −2.45844 + 2.20652i −0.347676 + 0.312048i
\(51\) 0.820791 0.114934
\(52\) 9.92725 3.22556i 1.37666 0.447304i
\(53\) 7.56730 + 10.4155i 1.03945 + 1.43068i 0.897611 + 0.440788i \(0.145301\pi\)
0.141837 + 0.989890i \(0.454699\pi\)
\(54\) −2.33674 + 1.69774i −0.317990 + 0.231034i
\(55\) 1.70184 + 2.95310i 0.229476 + 0.398196i
\(56\) −8.25944 6.00083i −1.10371 0.801895i
\(57\) 3.57920i 0.474077i
\(58\) 0.383426 0.527741i 0.0503464 0.0692958i
\(59\) 1.66288 5.11782i 0.216489 0.666284i −0.782556 0.622580i \(-0.786084\pi\)
0.999045 0.0437033i \(-0.0139156\pi\)
\(60\) −2.85359 0.302220i −0.368397 0.0390164i
\(61\) 2.40931 + 7.41510i 0.308481 + 0.949407i 0.978355 + 0.206932i \(0.0663480\pi\)
−0.669874 + 0.742475i \(0.733652\pi\)
\(62\) −4.39811 1.42903i −0.558561 0.181487i
\(63\) −9.59388 3.11724i −1.20872 0.392736i
\(64\) −0.202075 0.621922i −0.0252594 0.0777403i
\(65\) −14.8453 1.57224i −1.84133 0.195013i
\(66\) 0.255431 0.786135i 0.0314413 0.0967665i
\(67\) −4.91621 + 6.76658i −0.600610 + 0.826669i −0.995764 0.0919460i \(-0.970691\pi\)
0.395154 + 0.918615i \(0.370691\pi\)
\(68\) 1.56349i 0.189602i
\(69\) 3.55891 + 2.58570i 0.428443 + 0.311282i
\(70\) 3.19870 + 5.55050i 0.382317 + 0.663411i
\(71\) −9.83939 + 7.14874i −1.16772 + 0.848399i −0.990734 0.135815i \(-0.956635\pi\)
−0.176986 + 0.984213i \(0.556635\pi\)
\(72\) −3.21926 4.43093i −0.379393 0.522190i
\(73\) 13.1344 4.26763i 1.53727 0.499488i 0.586645 0.809844i \(-0.300448\pi\)
0.950620 + 0.310356i \(0.100448\pi\)
\(74\) −1.19793 −0.139256
\(75\) 3.55086 + 2.05763i 0.410018 + 0.237595i
\(76\) 6.81789 0.782066
\(77\) 6.28625 2.04253i 0.716385 0.232768i
\(78\) 2.12800 + 2.92895i 0.240949 + 0.331638i
\(79\) −4.36847 + 3.17388i −0.491491 + 0.357089i −0.805757 0.592246i \(-0.798241\pi\)
0.314267 + 0.949335i \(0.398241\pi\)
\(80\) 0.370092 3.49445i 0.0413776 0.390691i
\(81\) −2.74304 1.99294i −0.304782 0.221437i
\(82\) 2.33993i 0.258402i
\(83\) 10.0350 13.8120i 1.10149 1.51606i 0.268084 0.963396i \(-0.413610\pi\)
0.833401 0.552669i \(-0.186390\pi\)
\(84\) −1.71962 + 5.29246i −0.187626 + 0.577455i
\(85\) 0.911115 2.04203i 0.0988243 0.221489i
\(86\) −0.0451415 0.138931i −0.00486773 0.0149813i
\(87\) −0.770740 0.250429i −0.0826320 0.0268488i
\(88\) 3.41303 + 1.10896i 0.363831 + 0.118216i
\(89\) 1.41713 + 4.36148i 0.150216 + 0.462316i 0.997645 0.0685923i \(-0.0218508\pi\)
−0.847429 + 0.530909i \(0.821851\pi\)
\(90\) 0.711863 + 3.36220i 0.0750369 + 0.354407i
\(91\) −8.94604 + 27.5331i −0.937799 + 2.88625i
\(92\) −4.92540 + 6.77924i −0.513509 + 0.706784i
\(93\) 5.74511i 0.595740i
\(94\) 5.00629 + 3.63728i 0.516359 + 0.375157i
\(95\) −8.90461 3.97308i −0.913594 0.407629i
\(96\) −3.81618 + 2.77262i −0.389488 + 0.282979i
\(97\) 2.68545 + 3.69620i 0.272666 + 0.375292i 0.923287 0.384110i \(-0.125492\pi\)
−0.650622 + 0.759402i \(0.725492\pi\)
\(98\) 7.41687 2.40989i 0.749217 0.243435i
\(99\) 3.54592 0.356379
\(100\) −3.91950 + 6.76390i −0.391950 + 0.676390i
\(101\) −5.49909 −0.547180 −0.273590 0.961846i \(-0.588211\pi\)
−0.273590 + 0.961846i \(0.588211\pi\)
\(102\) −0.515744 + 0.167575i −0.0510662 + 0.0165924i
\(103\) −10.9162 15.0248i −1.07560 1.48044i −0.864273 0.503022i \(-0.832221\pi\)
−0.211327 0.977415i \(-0.567779\pi\)
\(104\) −12.7161 + 9.23880i −1.24692 + 0.905939i
\(105\) 5.33009 5.91020i 0.520163 0.576776i
\(106\) −6.88136 4.99960i −0.668377 0.485604i
\(107\) 6.89809i 0.666864i −0.942774 0.333432i \(-0.891793\pi\)
0.942774 0.333432i \(-0.108207\pi\)
\(108\) −4.01766 + 5.52984i −0.386600 + 0.532109i
\(109\) −3.02006 + 9.29480i −0.289270 + 0.890280i 0.695817 + 0.718219i \(0.255043\pi\)
−0.985086 + 0.172061i \(0.944957\pi\)
\(110\) −1.67227 1.50812i −0.159444 0.143794i
\(111\) 0.459886 + 1.41538i 0.0436504 + 0.134342i
\(112\) −6.48103 2.10582i −0.612400 0.198981i
\(113\) 8.69640 + 2.82563i 0.818089 + 0.265813i 0.688020 0.725692i \(-0.258480\pi\)
0.130069 + 0.991505i \(0.458480\pi\)
\(114\) 0.730741 + 2.24899i 0.0684402 + 0.210637i
\(115\) 10.3835 5.98388i 0.968262 0.558000i
\(116\) 0.477032 1.46815i 0.0442913 0.136315i
\(117\) −9.12874 + 12.5646i −0.843952 + 1.16160i
\(118\) 3.55528i 0.327290i
\(119\) −3.50816 2.54883i −0.321593 0.233651i
\(120\) 4.22733 0.895033i 0.385901 0.0817050i
\(121\) 7.01951 5.09997i 0.638137 0.463634i
\(122\) −3.02778 4.16738i −0.274122 0.377297i
\(123\) −2.76469 + 0.898304i −0.249284 + 0.0809973i
\(124\) −10.9436 −0.982768
\(125\) 9.06074 6.55003i 0.810417 0.585853i
\(126\) 6.66474 0.593742
\(127\) −0.544100 + 0.176789i −0.0482811 + 0.0156875i −0.333058 0.942906i \(-0.608080\pi\)
0.284777 + 0.958594i \(0.408080\pi\)
\(128\) −6.50202 8.94926i −0.574703 0.791011i
\(129\) −0.146821 + 0.106672i −0.0129269 + 0.00939194i
\(130\) 9.64903 2.04294i 0.846276 0.179178i
\(131\) 8.80643 + 6.39825i 0.769422 + 0.559018i 0.901786 0.432184i \(-0.142257\pi\)
−0.132364 + 0.991201i \(0.542257\pi\)
\(132\) 1.95611i 0.170257i
\(133\) −11.1146 + 15.2980i −0.963759 + 1.32650i
\(134\) 1.70761 5.25548i 0.147515 0.454004i
\(135\) 8.46980 4.88106i 0.728965 0.420095i
\(136\) −0.727534 2.23912i −0.0623855 0.192003i
\(137\) −1.67535 0.544353i −0.143134 0.0465072i 0.236574 0.971614i \(-0.423976\pi\)
−0.379708 + 0.925106i \(0.623976\pi\)
\(138\) −2.76414 0.898125i −0.235300 0.0764534i
\(139\) −3.49967 10.7709i −0.296839 0.913575i −0.982598 0.185747i \(-0.940530\pi\)
0.685759 0.727829i \(-0.259470\pi\)
\(140\) 11.2581 + 10.1531i 0.951484 + 0.858092i
\(141\) 2.37563 7.31143i 0.200064 0.615734i
\(142\) 4.72307 6.50074i 0.396351 0.545530i
\(143\) 10.1763i 0.850984i
\(144\) −2.95760 2.14882i −0.246467 0.179069i
\(145\) −1.47859 + 1.63952i −0.122790 + 0.136154i
\(146\) −7.38170 + 5.36312i −0.610914 + 0.443855i
\(147\) −5.69470 7.83809i −0.469691 0.646474i
\(148\) −2.69611 + 0.876020i −0.221619 + 0.0720084i
\(149\) −8.06190 −0.660456 −0.330228 0.943901i \(-0.607126\pi\)
−0.330228 + 0.943901i \(0.607126\pi\)
\(150\) −2.65127 0.567956i −0.216476 0.0463734i
\(151\) 6.90619 0.562018 0.281009 0.959705i \(-0.409331\pi\)
0.281009 + 0.959705i \(0.409331\pi\)
\(152\) −9.76407 + 3.17254i −0.791971 + 0.257327i
\(153\) −1.36737 1.88202i −0.110545 0.152152i
\(154\) −3.53295 + 2.56684i −0.284693 + 0.206842i
\(155\) 14.2931 + 6.37733i 1.14805 + 0.512239i
\(156\) 6.93127 + 5.03586i 0.554946 + 0.403192i
\(157\) 20.4112i 1.62899i 0.580167 + 0.814497i \(0.302987\pi\)
−0.580167 + 0.814497i \(0.697013\pi\)
\(158\) 2.09693 2.88618i 0.166823 0.229612i
\(159\) −3.26541 + 10.0499i −0.258964 + 0.797008i
\(160\) 2.66179 + 12.5719i 0.210433 + 0.993897i
\(161\) −7.18177 22.1032i −0.566002 1.74198i
\(162\) 2.13047 + 0.692232i 0.167386 + 0.0543869i
\(163\) 6.55802 + 2.13083i 0.513663 + 0.166899i 0.554368 0.832272i \(-0.312960\pi\)
−0.0407042 + 0.999171i \(0.512960\pi\)
\(164\) −1.71115 5.26636i −0.133618 0.411234i
\(165\) −1.13991 + 2.55480i −0.0887416 + 0.198891i
\(166\) −3.48559 + 10.7275i −0.270534 + 0.832618i
\(167\) −1.43941 + 1.98117i −0.111385 + 0.153308i −0.861070 0.508487i \(-0.830205\pi\)
0.749685 + 0.661795i \(0.230205\pi\)
\(168\) 8.37965i 0.646504i
\(169\) 25.5415 + 18.5570i 1.96473 + 1.42746i
\(170\) −0.155593 + 1.46912i −0.0119334 + 0.112676i
\(171\) −8.20687 + 5.96264i −0.627595 + 0.455974i
\(172\) −0.203195 0.279675i −0.0154935 0.0213250i
\(173\) 0.00838935 0.00272587i 0.000637831 0.000207244i −0.308698 0.951160i \(-0.599893\pi\)
0.309336 + 0.950953i \(0.399893\pi\)
\(174\) 0.535422 0.0405902
\(175\) −8.78719 19.8212i −0.664249 1.49834i
\(176\) 2.39541 0.180561
\(177\) 4.20066 1.36488i 0.315741 0.102591i
\(178\) −1.78091 2.45121i −0.133485 0.183726i
\(179\) −9.78547 + 7.10956i −0.731400 + 0.531393i −0.890006 0.455949i \(-0.849300\pi\)
0.158606 + 0.987342i \(0.449300\pi\)
\(180\) 4.06086 + 7.04656i 0.302679 + 0.525220i
\(181\) 1.90208 + 1.38194i 0.141381 + 0.102719i 0.656227 0.754563i \(-0.272151\pi\)
−0.514847 + 0.857282i \(0.672151\pi\)
\(182\) 19.1268i 1.41777i
\(183\) −3.76151 + 5.17728i −0.278059 + 0.382715i
\(184\) 3.89924 12.0006i 0.287456 0.884698i
\(185\) 4.03179 + 0.427001i 0.296423 + 0.0313938i
\(186\) −1.17294 3.60993i −0.0860040 0.264693i
\(187\) 1.44967 + 0.471027i 0.106010 + 0.0344449i
\(188\) 13.9273 + 4.52525i 1.01575 + 0.330037i
\(189\) −5.85818 18.0296i −0.426120 1.31146i
\(190\) 6.40636 + 0.678488i 0.464766 + 0.0492227i
\(191\) 2.08491 6.41668i 0.150858 0.464295i −0.846859 0.531817i \(-0.821509\pi\)
0.997718 + 0.0675224i \(0.0215094\pi\)
\(192\) 0.315487 0.434230i 0.0227683 0.0313379i
\(193\) 26.0320i 1.87382i 0.349565 + 0.936912i \(0.386329\pi\)
−0.349565 + 0.936912i \(0.613671\pi\)
\(194\) −2.44202 1.77423i −0.175327 0.127383i
\(195\) −6.11808 10.6163i −0.438125 0.760250i
\(196\) 14.9305 10.8476i 1.06646 0.774831i
\(197\) −3.99857 5.50356i −0.284886 0.392112i 0.642459 0.766320i \(-0.277914\pi\)
−0.927345 + 0.374208i \(0.877914\pi\)
\(198\) −2.22808 + 0.723946i −0.158343 + 0.0514486i
\(199\) 23.9541 1.69806 0.849029 0.528346i \(-0.177188\pi\)
0.849029 + 0.528346i \(0.177188\pi\)
\(200\) 2.46580 11.5106i 0.174358 0.813922i
\(201\) −6.86506 −0.484224
\(202\) 3.45535 1.12271i 0.243117 0.0789936i
\(203\) 2.51657 + 3.46377i 0.176629 + 0.243109i
\(204\) −1.03821 + 0.754307i −0.0726895 + 0.0528120i
\(205\) −0.834069 + 7.87537i −0.0582539 + 0.550040i
\(206\) 9.92667 + 7.21215i 0.691624 + 0.502494i
\(207\) 12.4679i 0.866578i
\(208\) −6.16681 + 8.48789i −0.427591 + 0.588529i
\(209\) 2.05399 6.32155i 0.142078 0.437270i
\(210\) −2.14251 + 4.80187i −0.147847 + 0.331361i
\(211\) −5.50737 16.9500i −0.379143 1.16688i −0.940641 0.339404i \(-0.889774\pi\)
0.561497 0.827479i \(-0.310226\pi\)
\(212\) −19.1437 6.22015i −1.31479 0.427202i
\(213\) −9.49401 3.08479i −0.650519 0.211366i
\(214\) 1.40834 + 4.33441i 0.0962718 + 0.296294i
\(215\) 0.102408 + 0.483684i 0.00698417 + 0.0329870i
\(216\) 3.18062 9.78894i 0.216414 0.666053i
\(217\) 17.8405 24.5553i 1.21109 1.66692i
\(218\) 6.45696i 0.437321i
\(219\) 9.17053 + 6.66278i 0.619687 + 0.450229i
\(220\) −4.86655 2.17137i −0.328102 0.146393i
\(221\) −5.40112 + 3.92414i −0.363319 + 0.263966i
\(222\) −0.577938 0.795463i −0.0387887 0.0533880i
\(223\) 5.83604 1.89625i 0.390810 0.126982i −0.107019 0.994257i \(-0.534131\pi\)
0.497829 + 0.867275i \(0.334131\pi\)
\(224\) 24.9207 1.66509
\(225\) −1.19742 11.5697i −0.0798279 0.771314i
\(226\) −6.04127 −0.401859
\(227\) 7.29029 2.36876i 0.483873 0.157220i −0.0569143 0.998379i \(-0.518126\pi\)
0.540788 + 0.841159i \(0.318126\pi\)
\(228\) 3.28929 + 4.52731i 0.217838 + 0.299829i
\(229\) −4.15973 + 3.02222i −0.274883 + 0.199714i −0.716682 0.697400i \(-0.754340\pi\)
0.441800 + 0.897114i \(0.354340\pi\)
\(230\) −5.30275 + 5.87988i −0.349653 + 0.387708i
\(231\) 4.38910 + 3.18887i 0.288782 + 0.209812i
\(232\) 2.32455i 0.152614i
\(233\) 9.42748 12.9758i 0.617615 0.850074i −0.379562 0.925166i \(-0.623925\pi\)
0.997177 + 0.0750924i \(0.0239252\pi\)
\(234\) 3.17080 9.75873i 0.207282 0.637948i
\(235\) −15.5529 14.0263i −1.01456 0.914974i
\(236\) 2.59991 + 8.00169i 0.169239 + 0.520865i
\(237\) −4.21512 1.36958i −0.273802 0.0889636i
\(238\) 2.72473 + 0.885318i 0.176618 + 0.0573866i
\(239\) 4.46483 + 13.7413i 0.288806 + 0.888852i 0.985232 + 0.171224i \(0.0547722\pi\)
−0.696427 + 0.717628i \(0.745228\pi\)
\(240\) 2.49898 1.44014i 0.161309 0.0929606i
\(241\) −3.28979 + 10.1249i −0.211914 + 0.652204i 0.787444 + 0.616386i \(0.211404\pi\)
−0.999358 + 0.0358185i \(0.988596\pi\)
\(242\) −3.36948 + 4.63769i −0.216598 + 0.298122i
\(243\) 15.8983i 1.01988i
\(244\) −9.86200 7.16516i −0.631350 0.458703i
\(245\) −25.8216 + 5.46708i −1.64968 + 0.349279i
\(246\) 1.55379 1.12890i 0.0990662 0.0719758i
\(247\) 17.1119 + 23.5525i 1.08880 + 1.49861i
\(248\) 15.6727 5.09235i 0.995215 0.323365i
\(249\) 14.0130 0.888039
\(250\) −4.35603 + 5.96558i −0.275500 + 0.377296i
\(251\) −6.33159 −0.399647 −0.199823 0.979832i \(-0.564037\pi\)
−0.199823 + 0.979832i \(0.564037\pi\)
\(252\) 15.0000 4.87379i 0.944910 0.307020i
\(253\) 4.80185 + 6.60918i 0.301890 + 0.415516i
\(254\) 0.305791 0.222170i 0.0191870 0.0139402i
\(255\) 1.79554 0.380162i 0.112441 0.0238066i
\(256\) 6.97072 + 5.06453i 0.435670 + 0.316533i
\(257\) 22.3079i 1.39153i −0.718269 0.695765i \(-0.755065\pi\)
0.718269 0.695765i \(-0.244935\pi\)
\(258\) 0.0704766 0.0970027i 0.00438768 0.00603913i
\(259\) 2.42963 7.47762i 0.150970 0.464637i
\(260\) 20.2226 11.6541i 1.25415 0.722756i
\(261\) 0.709769 + 2.18444i 0.0439336 + 0.135214i
\(262\) −6.83980 2.22239i −0.422564 0.137299i
\(263\) 0.897902 + 0.291746i 0.0553670 + 0.0179898i 0.336570 0.941659i \(-0.390733\pi\)
−0.281203 + 0.959648i \(0.590733\pi\)
\(264\) 0.910226 + 2.80139i 0.0560205 + 0.172413i
\(265\) 21.3781 + 19.2797i 1.31325 + 1.18435i
\(266\) 3.86058 11.8817i 0.236708 0.728511i
\(267\) −2.21248 + 3.04522i −0.135402 + 0.186364i
\(268\) 13.0770i 0.798804i
\(269\) 10.5115 + 7.63708i 0.640900 + 0.465641i 0.860159 0.510026i \(-0.170364\pi\)
−0.219259 + 0.975667i \(0.570364\pi\)
\(270\) −4.32546 + 4.79623i −0.263239 + 0.291890i
\(271\) 3.82638 2.78003i 0.232436 0.168875i −0.465471 0.885063i \(-0.654115\pi\)
0.697907 + 0.716189i \(0.254115\pi\)
\(272\) −0.923708 1.27137i −0.0560080 0.0770884i
\(273\) −22.5989 + 7.34283i −1.36775 + 0.444408i
\(274\) 1.16384 0.0703101
\(275\) 5.09068 + 5.67189i 0.306979 + 0.342028i
\(276\) −6.87790 −0.414001
\(277\) −6.11474 + 1.98680i −0.367399 + 0.119375i −0.486897 0.873459i \(-0.661871\pi\)
0.119498 + 0.992834i \(0.461871\pi\)
\(278\) 4.39804 + 6.05338i 0.263777 + 0.363057i
\(279\) 13.1731 9.57084i 0.788655 0.572991i
\(280\) −20.8475 9.30179i −1.24588 0.555888i
\(281\) −15.8111 11.4874i −0.943209 0.685282i 0.00598176 0.999982i \(-0.498096\pi\)
−0.949191 + 0.314700i \(0.898096\pi\)
\(282\) 5.07915i 0.302459i
\(283\) −2.84632 + 3.91762i −0.169196 + 0.232879i −0.885192 0.465226i \(-0.845973\pi\)
0.715996 + 0.698105i \(0.245973\pi\)
\(284\) 5.87610 18.0848i 0.348682 1.07313i
\(285\) −1.65776 7.82977i −0.0981973 0.463796i
\(286\) 2.07762 + 6.39426i 0.122852 + 0.378101i
\(287\) 14.6062 + 4.74583i 0.862175 + 0.280138i
\(288\) 12.7148 + 4.13130i 0.749230 + 0.243439i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) 0.594343 1.33206i 0.0349010 0.0782214i
\(291\) −1.15881 + 3.56645i −0.0679307 + 0.209069i
\(292\) −12.6917 + 17.4686i −0.742724 + 1.02227i
\(293\) 19.7008i 1.15093i 0.817826 + 0.575465i \(0.195179\pi\)
−0.817826 + 0.575465i \(0.804821\pi\)
\(294\) 5.17851 + 3.76241i 0.302017 + 0.219428i
\(295\) 1.26728 11.9658i 0.0737839 0.696676i
\(296\) 3.45353 2.50914i 0.200733 0.145841i
\(297\) 3.91688 + 5.39113i 0.227281 + 0.312825i
\(298\) 5.06569 1.64594i 0.293447 0.0953468i
\(299\) −35.7810 −2.06927
\(300\) −6.38242 + 0.660555i −0.368489 + 0.0381372i
\(301\) 0.958785 0.0552634
\(302\) −4.33950 + 1.40999i −0.249710 + 0.0811357i
\(303\) −2.65303 3.65158i −0.152413 0.209778i
\(304\) −5.54405 + 4.02799i −0.317973 + 0.231021i
\(305\) 8.70496 + 15.1052i 0.498445 + 0.864920i
\(306\) 1.24342 + 0.903399i 0.0710817 + 0.0516439i
\(307\) 18.0701i 1.03131i 0.856796 + 0.515656i \(0.172452\pi\)
−0.856796 + 0.515656i \(0.827548\pi\)
\(308\) −6.07436 + 8.36064i −0.346119 + 0.476392i
\(309\) 4.71049 14.4974i 0.267970 0.824728i
\(310\) −10.2831 1.08907i −0.584039 0.0618548i
\(311\) −1.25019 3.84769i −0.0708918 0.218182i 0.909333 0.416069i \(-0.136592\pi\)
−0.980225 + 0.197886i \(0.936592\pi\)
\(312\) −12.2698 3.98669i −0.694638 0.225702i
\(313\) −2.31881 0.753428i −0.131067 0.0425863i 0.242749 0.970089i \(-0.421951\pi\)
−0.373816 + 0.927503i \(0.621951\pi\)
\(314\) −4.16722 12.8254i −0.235170 0.723779i
\(315\) −22.4311 2.37565i −1.26385 0.133853i
\(316\) 2.60886 8.02923i 0.146760 0.451680i
\(317\) −4.26769 + 5.87397i −0.239697 + 0.329915i −0.911870 0.410480i \(-0.865361\pi\)
0.672172 + 0.740395i \(0.265361\pi\)
\(318\) 6.98151i 0.391504i
\(319\) −1.21756 0.884607i −0.0681701 0.0495285i
\(320\) −0.730106 1.26691i −0.0408142 0.0708223i
\(321\) 4.58057 3.32798i 0.255662 0.185750i
\(322\) 9.02531 + 12.4223i 0.502961 + 0.692267i
\(323\) −4.14725 + 1.34752i −0.230759 + 0.0749782i
\(324\) 5.30116 0.294509
\(325\) −33.2034 + 3.43642i −1.84179 + 0.190618i
\(326\) −4.55576 −0.252320
\(327\) −7.62909 + 2.47884i −0.421890 + 0.137080i
\(328\) 4.90115 + 6.74585i 0.270620 + 0.372477i
\(329\) −32.8581 + 23.8728i −1.81153 + 1.31615i
\(330\) 0.194664 1.83803i 0.0107159 0.101180i
\(331\) 23.7297 + 17.2406i 1.30430 + 0.947631i 0.999988 0.00494014i \(-0.00157250\pi\)
0.304315 + 0.952571i \(0.401573\pi\)
\(332\) 26.6929i 1.46496i
\(333\) 2.47925 3.41239i 0.135862 0.186998i
\(334\) 0.499967 1.53874i 0.0273570 0.0841962i
\(335\) −7.62052 + 17.0794i −0.416354 + 0.933147i
\(336\) −1.72844 5.31958i −0.0942939 0.290207i
\(337\) −9.05066 2.94074i −0.493021 0.160192i 0.0519457 0.998650i \(-0.483458\pi\)
−0.544967 + 0.838458i \(0.683458\pi\)
\(338\) −19.8376 6.44563i −1.07902 0.350596i
\(339\) 2.31925 + 7.13793i 0.125965 + 0.387679i
\(340\) 0.724156 + 3.42026i 0.0392728 + 0.185490i
\(341\) −3.29694 + 10.1469i −0.178539 + 0.549488i
\(342\) 3.93943 5.42216i 0.213020 0.293197i
\(343\) 20.8306i 1.12475i
\(344\) 0.421141 + 0.305977i 0.0227064 + 0.0164972i
\(345\) 8.98299 + 4.00805i 0.483628 + 0.215786i
\(346\) −0.00471492 + 0.00342559i −0.000253476 + 0.000184161i
\(347\) 13.5384 + 18.6341i 0.726782 + 1.00033i 0.999271 + 0.0381705i \(0.0121530\pi\)
−0.272490 + 0.962159i \(0.587847\pi\)
\(348\) 1.20505 0.391544i 0.0645973 0.0209889i
\(349\) 7.78577 0.416763 0.208381 0.978048i \(-0.433180\pi\)
0.208381 + 0.978048i \(0.433180\pi\)
\(350\) 9.56818 + 10.6606i 0.511441 + 0.569833i
\(351\) −29.1867 −1.55787
\(352\) −8.33122 + 2.70698i −0.444055 + 0.144282i
\(353\) −2.38387 3.28111i −0.126881 0.174636i 0.740851 0.671670i \(-0.234423\pi\)
−0.867731 + 0.497034i \(0.834423\pi\)
\(354\) −2.36083 + 1.71524i −0.125476 + 0.0911640i
\(355\) −18.2133 + 20.1956i −0.966664 + 1.07187i
\(356\) −5.80072 4.21447i −0.307438 0.223366i
\(357\) 3.55922i 0.188374i
\(358\) 4.69718 6.46512i 0.248254 0.341692i
\(359\) −4.69086 + 14.4370i −0.247574 + 0.761955i 0.747628 + 0.664117i \(0.231192\pi\)
−0.995202 + 0.0978373i \(0.968808\pi\)
\(360\) −9.09461 8.20193i −0.479328 0.432280i
\(361\) 0.00478427 + 0.0147245i 0.000251804 + 0.000774972i
\(362\) −1.47731 0.480008i −0.0776458 0.0252287i
\(363\) 6.77311 + 2.20072i 0.355496 + 0.115508i
\(364\) −13.9871 43.0478i −0.733122 2.25632i
\(365\) 26.7559 15.4191i 1.40047 0.807075i
\(366\) 1.30653 4.02110i 0.0682936 0.210186i
\(367\) 4.14167 5.70053i 0.216194 0.297565i −0.687122 0.726542i \(-0.741126\pi\)
0.903315 + 0.428977i \(0.141126\pi\)
\(368\) 8.42253i 0.439055i
\(369\) 6.66548 + 4.84276i 0.346991 + 0.252104i
\(370\) −2.62055 + 0.554837i −0.136236 + 0.0288446i
\(371\) 45.1650 32.8143i 2.34485 1.70363i
\(372\) −5.27975 7.26695i −0.273742 0.376774i
\(373\) −25.1600 + 8.17499i −1.30274 + 0.423285i −0.876533 0.481342i \(-0.840149\pi\)
−0.426204 + 0.904627i \(0.640149\pi\)
\(374\) −1.00707 −0.0520742
\(375\) 8.72079 + 2.85658i 0.450340 + 0.147513i
\(376\) −22.0513 −1.13721
\(377\) 6.26904 2.03693i 0.322872 0.104907i
\(378\) 7.36197 + 10.1329i 0.378659 + 0.521179i
\(379\) −1.07072 + 0.777920i −0.0549989 + 0.0399591i −0.614945 0.788570i \(-0.710822\pi\)
0.559946 + 0.828529i \(0.310822\pi\)
\(380\) 14.9146 3.15781i 0.765105 0.161992i
\(381\) −0.379894 0.276009i −0.0194626 0.0141404i
\(382\) 4.45758i 0.228069i
\(383\) −7.80056 + 10.7366i −0.398590 + 0.548612i −0.960389 0.278661i \(-0.910109\pi\)
0.561799 + 0.827274i \(0.310109\pi\)
\(384\) 2.80572 8.63513i 0.143179 0.440659i
\(385\) 12.8056 7.37975i 0.652634 0.376107i
\(386\) −5.31477 16.3572i −0.270515 0.832559i
\(387\) 0.489183 + 0.158945i 0.0248666 + 0.00807964i
\(388\) −6.79361 2.20738i −0.344893 0.112063i
\(389\) 4.92150 + 15.1468i 0.249530 + 0.767975i 0.994858 + 0.101277i \(0.0322928\pi\)
−0.745328 + 0.666698i \(0.767707\pi\)
\(390\) 6.01175 + 5.42167i 0.304417 + 0.274537i
\(391\) 1.65619 5.09722i 0.0837569 0.257777i
\(392\) −16.3346 + 22.4827i −0.825023 + 1.13555i
\(393\) 8.93460i 0.450691i
\(394\) 3.63612 + 2.64180i 0.183185 + 0.133092i
\(395\) −8.08631 + 8.96641i −0.406867 + 0.451149i
\(396\) −4.48522 + 3.25870i −0.225391 + 0.163756i
\(397\) 16.0616 + 22.1069i 0.806108 + 1.10951i 0.991912 + 0.126925i \(0.0405108\pi\)
−0.185805 + 0.982587i \(0.559489\pi\)
\(398\) −15.0515 + 4.89053i −0.754464 + 0.245140i
\(399\) −15.5206 −0.777002
\(400\) −0.808902 7.81578i −0.0404451 0.390789i
\(401\) 10.0879 0.503765 0.251882 0.967758i \(-0.418950\pi\)
0.251882 + 0.967758i \(0.418950\pi\)
\(402\) 4.31365 1.40159i 0.215145 0.0699050i
\(403\) −27.4669 37.8050i −1.36823 1.88320i
\(404\) 6.95576 5.05366i 0.346062 0.251429i
\(405\) −6.92366 3.08921i −0.344039 0.153504i
\(406\) −2.28846 1.66266i −0.113574 0.0825166i
\(407\) 2.76375i 0.136994i
\(408\) 1.13585 1.56337i 0.0562331 0.0773983i
\(409\) −0.245210 + 0.754680i −0.0121249 + 0.0373165i −0.956936 0.290299i \(-0.906245\pi\)
0.944811 + 0.327616i \(0.106245\pi\)
\(410\) −1.08377 5.11877i −0.0535237 0.252798i
\(411\) −0.446800 1.37511i −0.0220390 0.0678291i
\(412\) 27.6156 + 8.97284i 1.36052 + 0.442060i
\(413\) −22.1926 7.21080i −1.09202 0.354820i
\(414\) 2.54548 + 7.83419i 0.125104 + 0.385029i
\(415\) 15.5551 34.8626i 0.763569 1.71134i
\(416\) 11.8562 36.4898i 0.581300 1.78906i
\(417\) 5.46382 7.52031i 0.267565 0.368271i
\(418\) 4.39149i 0.214795i
\(419\) −4.26011 3.09515i −0.208120 0.151208i 0.478843 0.877901i \(-0.341056\pi\)
−0.686963 + 0.726693i \(0.741056\pi\)
\(420\) −1.31052 + 12.3741i −0.0639471 + 0.603795i
\(421\) 0.217609 0.158102i 0.0106056 0.00770544i −0.582470 0.812852i \(-0.697914\pi\)
0.593075 + 0.805147i \(0.297914\pi\)
\(422\) 6.92111 + 9.52609i 0.336914 + 0.463723i
\(423\) −20.7222 + 6.73305i −1.00755 + 0.327372i
\(424\) 30.3105 1.47201
\(425\) 1.04734 4.88908i 0.0508034 0.237155i
\(426\) 6.59535 0.319546
\(427\) 32.1543 10.4476i 1.55606 0.505593i
\(428\) 6.33934 + 8.72535i 0.306424 + 0.421756i
\(429\) 6.75740 4.90954i 0.326250 0.237035i
\(430\) −0.163098 0.283014i −0.00786530 0.0136482i
\(431\) 7.21468 + 5.24178i 0.347519 + 0.252487i 0.747828 0.663893i \(-0.231097\pi\)
−0.400308 + 0.916380i \(0.631097\pi\)
\(432\) 6.87028i 0.330546i
\(433\) −1.20339 + 1.65632i −0.0578310 + 0.0795976i −0.836953 0.547275i \(-0.815665\pi\)
0.779122 + 0.626872i \(0.215665\pi\)
\(434\) −6.19676 + 19.0717i −0.297454 + 0.915469i
\(435\) −1.80204 0.190851i −0.0864012 0.00915063i
\(436\) −4.72185 14.5324i −0.226136 0.695974i
\(437\) −22.2273 7.22209i −1.06328 0.345479i
\(438\) −7.12259 2.31427i −0.340330 0.110580i
\(439\) −3.52005 10.8336i −0.168003 0.517059i 0.831242 0.555910i \(-0.187630\pi\)
−0.999245 + 0.0388510i \(0.987630\pi\)
\(440\) 7.97989 + 0.845139i 0.380426 + 0.0402904i
\(441\) −8.48532 + 26.1151i −0.404063 + 1.24358i
\(442\) 2.59262 3.56844i 0.123319 0.169733i
\(443\) 10.0503i 0.477506i −0.971080 0.238753i \(-0.923261\pi\)
0.971080 0.238753i \(-0.0767387\pi\)
\(444\) −1.88244 1.36768i −0.0893368 0.0649070i
\(445\) 5.12016 + 8.88470i 0.242719 + 0.421175i
\(446\) −3.27993 + 2.38301i −0.155309 + 0.112839i
\(447\) −3.88945 5.35337i −0.183965 0.253206i
\(448\) −2.69686 + 0.876263i −0.127415 + 0.0413995i
\(449\) 28.2771 1.33448 0.667241 0.744842i \(-0.267475\pi\)
0.667241 + 0.744842i \(0.267475\pi\)
\(450\) 3.11450 + 7.02535i 0.146819 + 0.331178i
\(451\) −5.39848 −0.254204
\(452\) −13.5968 + 4.41786i −0.639539 + 0.207799i
\(453\) 3.33188 + 4.58595i 0.156546 + 0.215467i
\(454\) −4.09723 + 2.97681i −0.192293 + 0.139709i
\(455\) −6.81777 + 64.3741i −0.319622 + 3.01790i
\(456\) −6.81734 4.95309i −0.319251 0.231950i
\(457\) 25.0501i 1.17179i −0.810386 0.585897i \(-0.800742\pi\)
0.810386 0.585897i \(-0.199258\pi\)
\(458\) 1.99674 2.74827i 0.0933014 0.128418i
\(459\) 1.35095 4.15781i 0.0630572 0.194070i
\(460\) −7.63478 + 17.1114i −0.355974 + 0.797821i
\(461\) 13.0070 + 40.0316i 0.605799 + 1.86446i 0.491205 + 0.871044i \(0.336556\pi\)
0.114593 + 0.993413i \(0.463444\pi\)
\(462\) −3.40894 1.10763i −0.158598 0.0515317i
\(463\) −17.5172 5.69169i −0.814095 0.264515i −0.127764 0.991805i \(-0.540780\pi\)
−0.686331 + 0.727289i \(0.740780\pi\)
\(464\) 0.479476 + 1.47568i 0.0222591 + 0.0685065i
\(465\) 2.66093 + 12.5678i 0.123398 + 0.582820i
\(466\) −3.27457 + 10.0781i −0.151691 + 0.466858i
\(467\) −0.614318 + 0.845537i −0.0284273 + 0.0391268i −0.822994 0.568050i \(-0.807698\pi\)
0.794567 + 0.607177i \(0.207698\pi\)
\(468\) 24.2822i 1.12245i
\(469\) 29.3421 + 21.3183i 1.35489 + 0.984387i
\(470\) 12.6363 + 5.63808i 0.582868 + 0.260065i
\(471\) −13.5538 + 9.84739i −0.624524 + 0.453744i
\(472\) −7.44678 10.2496i −0.342766 0.471777i
\(473\) −0.320530 + 0.104146i −0.0147380 + 0.00478866i
\(474\) 2.92819 0.134496
\(475\) −21.3197 4.56710i −0.978214 0.209553i
\(476\) 6.77983 0.310753
\(477\) 28.4836 9.25487i 1.30417 0.423752i
\(478\) −5.61094 7.72279i −0.256638 0.353232i
\(479\) −1.70346 + 1.23764i −0.0778331 + 0.0565491i −0.626021 0.779806i \(-0.715318\pi\)
0.548188 + 0.836355i \(0.315318\pi\)
\(480\) −7.06400 + 7.83283i −0.322426 + 0.357518i
\(481\) −9.79307 7.11508i −0.446526 0.324420i
\(482\) 7.03365i 0.320374i
\(483\) 11.2124 15.4326i 0.510184 0.702208i
\(484\) −4.19206 + 12.9018i −0.190548 + 0.586447i
\(485\) 7.58656 + 6.84190i 0.344488 + 0.310675i
\(486\) 3.24585 + 9.98969i 0.147235 + 0.453141i
\(487\) −25.9859 8.44333i −1.17753 0.382604i −0.346084 0.938204i \(-0.612489\pi\)
−0.831450 + 0.555600i \(0.812489\pi\)
\(488\) 17.4577 + 5.67236i 0.790275 + 0.256776i
\(489\) 1.74897 + 5.38276i 0.0790910 + 0.243417i
\(490\) 15.1088 8.70704i 0.682545 0.393344i
\(491\) −4.91501 + 15.1269i −0.221812 + 0.682666i 0.776788 + 0.629762i \(0.216848\pi\)
−0.998600 + 0.0529036i \(0.983152\pi\)
\(492\) 2.67150 3.67701i 0.120441 0.165772i
\(493\) 0.987344i 0.0444678i
\(494\) −15.5608 11.3056i −0.700114 0.508663i
\(495\) 7.75697 1.64235i 0.348650 0.0738180i
\(496\) 8.89895 6.46547i 0.399575 0.290308i
\(497\) 30.9993 + 42.6668i 1.39051 + 1.91387i
\(498\) −8.80507 + 2.86094i −0.394565 + 0.128202i
\(499\) 5.43557 0.243330 0.121665 0.992571i \(-0.461177\pi\)
0.121665 + 0.992571i \(0.461177\pi\)
\(500\) −5.44140 + 16.6119i −0.243347 + 0.742907i
\(501\) −2.01001 −0.0898004
\(502\) 3.97845 1.29268i 0.177567 0.0576950i
\(503\) −21.8353 30.0537i −0.973586 1.34003i −0.940214 0.340583i \(-0.889375\pi\)
−0.0333717 0.999443i \(-0.510625\pi\)
\(504\) −19.2140 + 13.9598i −0.855857 + 0.621817i
\(505\) −12.0297 + 2.54698i −0.535313 + 0.113339i
\(506\) −4.36659 3.17251i −0.194119 0.141035i
\(507\) 25.9132i 1.15085i
\(508\) 0.525760 0.723647i 0.0233268 0.0321066i
\(509\) 6.17623 19.0085i 0.273757 0.842536i −0.715789 0.698316i \(-0.753933\pi\)
0.989546 0.144220i \(-0.0460672\pi\)
\(510\) −1.05061 + 0.605457i −0.0465219 + 0.0268101i
\(511\) −18.5058 56.9551i −0.818650 2.51954i
\(512\) 15.6269 + 5.07750i 0.690620 + 0.224396i
\(513\) −18.1309 5.89107i −0.800497 0.260097i
\(514\) 4.55446 + 14.0172i 0.200888 + 0.618271i
\(515\) −30.8389 27.8119i −1.35892 1.22554i
\(516\) 0.0876820 0.269857i 0.00385998 0.0118798i
\(517\) 8.39161 11.5501i 0.369063 0.507971i
\(518\) 5.19460i 0.228238i
\(519\) 0.00585750 + 0.00425573i 0.000257116 + 0.000186806i
\(520\) −23.5384 + 26.1002i −1.03223 + 1.14457i
\(521\) 4.73573 3.44071i 0.207476 0.150740i −0.479195 0.877708i \(-0.659071\pi\)
0.686671 + 0.726968i \(0.259071\pi\)
\(522\) −0.891966 1.22769i −0.0390403 0.0537343i
\(523\) 21.5373 6.99790i 0.941761 0.305997i 0.202398 0.979303i \(-0.435127\pi\)
0.739363 + 0.673307i \(0.235127\pi\)
\(524\) −17.0192 −0.743487
\(525\) 8.92256 15.3977i 0.389412 0.672011i
\(526\) −0.623759 −0.0271972
\(527\) 6.65690 2.16296i 0.289979 0.0942199i
\(528\) 1.15566 + 1.59063i 0.0502937 + 0.0692233i
\(529\) 4.63127 3.36482i 0.201360 0.146296i
\(530\) −17.3691 7.74980i −0.754467 0.336630i
\(531\) −10.1275 7.35806i −0.439496 0.319313i
\(532\) 29.5646i 1.28179i
\(533\) 13.8980 19.1290i 0.601990 0.828568i
\(534\) 0.768489 2.36517i 0.0332558 0.102351i
\(535\) −3.19495 15.0901i −0.138130 0.652401i
\(536\) 6.08506 + 18.7279i 0.262834 + 0.808921i
\(537\) −9.44198 3.06788i −0.407451 0.132389i
\(538\) −8.16412 2.65268i −0.351980 0.114365i
\(539\) −5.55988 17.1115i −0.239481 0.737046i
\(540\) −6.22771 + 13.9578i −0.267998 + 0.600647i
\(541\) 11.1562 34.3352i 0.479642 1.47619i −0.359952 0.932971i \(-0.617207\pi\)
0.839594 0.543214i \(-0.182793\pi\)
\(542\) −1.83672 + 2.52803i −0.0788940 + 0.108588i
\(543\) 1.92976i 0.0828141i
\(544\) 4.64940 + 3.37798i 0.199341 + 0.144830i
\(545\) −2.30159 + 21.7318i −0.0985892 + 0.930890i
\(546\) 12.7009 9.22772i 0.543547 0.394910i
\(547\) −13.3156 18.3274i −0.569335 0.783623i 0.423141 0.906064i \(-0.360928\pi\)
−0.992476 + 0.122441i \(0.960928\pi\)
\(548\) 2.61939 0.851092i 0.111895 0.0363569i
\(549\) 18.1375 0.774089
\(550\) −4.35671 2.52460i −0.185771 0.107649i
\(551\) 4.30549 0.183420
\(552\) 9.85001 3.20046i 0.419244 0.136221i
\(553\) 13.7630 + 18.9431i 0.585261 + 0.805543i
\(554\) 3.43656 2.49681i 0.146006 0.106079i
\(555\) 1.66159 + 2.88325i 0.0705306 + 0.122387i
\(556\) 14.3252 + 10.4078i 0.607522 + 0.441391i
\(557\) 40.3585i 1.71004i 0.518591 + 0.855022i \(0.326457\pi\)
−0.518591 + 0.855022i \(0.673543\pi\)
\(558\) −6.32332 + 8.70330i −0.267687 + 0.368440i
\(559\) 0.456150 1.40388i 0.0192931 0.0593780i
\(560\) −15.1531 1.60484i −0.640334 0.0678169i
\(561\) 0.386615 + 1.18988i 0.0163229 + 0.0502367i
\(562\) 12.2802 + 3.99007i 0.518008 + 0.168311i
\(563\) −15.9363 5.17803i −0.671636 0.218228i −0.0467063 0.998909i \(-0.514872\pi\)
−0.624930 + 0.780681i \(0.714872\pi\)
\(564\) 3.71428 + 11.4314i 0.156399 + 0.481348i
\(565\) 20.3328 + 2.15341i 0.855405 + 0.0905948i
\(566\) 0.988649 3.04275i 0.0415560 0.127896i
\(567\) −8.64202 + 11.8947i −0.362931 + 0.499531i
\(568\) 28.6340i 1.20145i
\(569\) 7.24970 + 5.26721i 0.303923 + 0.220813i 0.729285 0.684210i \(-0.239853\pi\)
−0.425361 + 0.905024i \(0.639853\pi\)
\(570\) 2.64020 + 4.58138i 0.110586 + 0.191893i
\(571\) −19.0433 + 13.8358i −0.796937 + 0.579009i −0.910014 0.414577i \(-0.863929\pi\)
0.113077 + 0.993586i \(0.463929\pi\)
\(572\) 9.35200 + 12.8719i 0.391027 + 0.538202i
\(573\) 5.26675 1.71127i 0.220022 0.0714894i
\(574\) −10.1467 −0.423515
\(575\) 19.9430 17.8994i 0.831682 0.746458i
\(576\) −1.52123 −0.0633847
\(577\) −5.21609 + 1.69481i −0.217149 + 0.0705559i −0.415571 0.909561i \(-0.636418\pi\)
0.198422 + 0.980117i \(0.436418\pi\)
\(578\) 0.388341 + 0.534506i 0.0161529 + 0.0222325i
\(579\) −17.2861 + 12.5591i −0.718387 + 0.521939i
\(580\) 0.363546 3.43264i 0.0150954 0.142533i
\(581\) −59.8934 43.5151i −2.48480 1.80531i
\(582\) 2.47757i 0.102698i
\(583\) −11.5346 + 15.8761i −0.477716 + 0.657520i
\(584\) 10.0475 30.9230i 0.415768 1.27960i
\(585\) −14.1503 + 31.7142i −0.585043 + 1.31122i
\(586\) −4.02217 12.3790i −0.166154 0.511370i
\(587\) −8.54386 2.77607i −0.352643 0.114581i 0.127338 0.991859i \(-0.459357\pi\)
−0.479981 + 0.877279i \(0.659357\pi\)
\(588\) 14.4064 + 4.68092i 0.594109 + 0.193038i
\(589\) −9.43195 29.0286i −0.388637 1.19610i
\(590\) 1.64668 + 7.77743i 0.0677927 + 0.320192i
\(591\) 1.72544 5.31037i 0.0709753 0.218439i
\(592\) 1.67483 2.30520i 0.0688349 0.0947431i
\(593\) 13.5739i 0.557415i −0.960376 0.278707i \(-0.910094\pi\)
0.960376 0.278707i \(-0.0899059\pi\)
\(594\) −3.56184 2.58783i −0.146144 0.106180i
\(595\) −8.85489 3.95090i −0.363015 0.161971i
\(596\) 10.1974 7.40887i 0.417703 0.303479i
\(597\) 11.5566 + 15.9063i 0.472981 + 0.651002i
\(598\) 22.4830 7.30516i 0.919398 0.298730i
\(599\) −11.8784 −0.485340 −0.242670 0.970109i \(-0.578023\pi\)
−0.242670 + 0.970109i \(0.578023\pi\)
\(600\) 8.83305 3.91590i 0.360608 0.159866i
\(601\) 29.3035 1.19531 0.597656 0.801752i \(-0.296099\pi\)
0.597656 + 0.801752i \(0.296099\pi\)
\(602\) −0.602452 + 0.195748i −0.0245541 + 0.00797811i
\(603\) 11.4366 + 15.7411i 0.465733 + 0.641027i
\(604\) −8.73560 + 6.34678i −0.355446 + 0.258247i
\(605\) 12.9936 14.4077i 0.528263 0.585758i
\(606\) 2.41255 + 1.75282i 0.0980030 + 0.0712034i
\(607\) 24.7537i 1.00472i −0.864658 0.502361i \(-0.832465\pi\)
0.864658 0.502361i \(-0.167535\pi\)
\(608\) 14.7303 20.2745i 0.597392 0.822240i
\(609\) −1.08594 + 3.34218i −0.0440045 + 0.135432i
\(610\) −8.55368 7.71409i −0.346328 0.312335i
\(611\) 19.3229 + 59.4697i 0.781720 + 2.40589i
\(612\) 3.45915 + 1.12394i 0.139828 + 0.0454328i
\(613\) 16.9613 + 5.51105i 0.685059 + 0.222589i 0.630809 0.775938i \(-0.282723\pi\)
0.0542503 + 0.998527i \(0.482723\pi\)
\(614\) −3.68924 11.3543i −0.148886 0.458222i
\(615\) −5.63191 + 3.24561i −0.227101 + 0.130876i
\(616\) 4.80882 14.8000i 0.193753 0.596310i
\(617\) −14.1250 + 19.4414i −0.568651 + 0.782681i −0.992394 0.123102i \(-0.960716\pi\)
0.423743 + 0.905782i \(0.360716\pi\)
\(618\) 10.0711i 0.405121i
\(619\) 31.4664 + 22.8617i 1.26474 + 0.918888i 0.998980 0.0451509i \(-0.0143769\pi\)
0.265761 + 0.964039i \(0.414377\pi\)
\(620\) −23.9400 + 5.06871i −0.961454 + 0.203564i
\(621\) 18.9558 13.7722i 0.760671 0.552660i
\(622\) 1.57111 + 2.16245i 0.0629958 + 0.0867063i
\(623\) 18.9128 6.14515i 0.757726 0.246200i
\(624\) −8.61142 −0.344733
\(625\) 16.7873 18.5253i 0.671492 0.741012i
\(626\) 1.61085 0.0643824
\(627\) 5.18867 1.68590i 0.207215 0.0673284i
\(628\) −18.7579 25.8181i −0.748522 1.03025i
\(629\) 1.46687 1.06575i 0.0584881 0.0424941i
\(630\) 14.5796 3.08687i 0.580865 0.122984i
\(631\) −3.36474 2.44463i −0.133948 0.0973190i 0.518794 0.854900i \(-0.326381\pi\)
−0.652742 + 0.757581i \(0.726381\pi\)
\(632\) 12.7128i 0.505689i
\(633\) 8.59832 11.8346i 0.341753 0.470382i
\(634\) 1.48235 4.56221i 0.0588717 0.181188i
\(635\) −1.10838 + 0.638747i −0.0439846 + 0.0253479i
\(636\) −5.10545 15.7129i −0.202444 0.623059i
\(637\) 74.9466 + 24.3516i 2.96949 + 0.964847i
\(638\) 0.945656 + 0.307262i 0.0374389 + 0.0121646i
\(639\) 8.74297 + 26.9081i 0.345866 + 1.06447i
\(640\) −18.3686 16.5657i −0.726084 0.654815i
\(641\) −4.75485 + 14.6339i −0.187805 + 0.578005i −0.999985 0.00540175i \(-0.998281\pi\)
0.812180 + 0.583407i \(0.198281\pi\)
\(642\) −2.19875 + 3.02631i −0.0867776 + 0.119439i
\(643\) 2.00001i 0.0788725i 0.999222 + 0.0394363i \(0.0125562\pi\)
−0.999222 + 0.0394363i \(0.987444\pi\)
\(644\) 29.3970 + 21.3582i 1.15840 + 0.841630i
\(645\) −0.271776 + 0.301355i −0.0107012 + 0.0118659i
\(646\) 2.33081 1.69343i 0.0917043 0.0666271i
\(647\) 0.518924 + 0.714238i 0.0204010 + 0.0280796i 0.819096 0.573657i \(-0.194476\pi\)
−0.798695 + 0.601737i \(0.794476\pi\)
\(648\) −7.59192 + 2.46677i −0.298239 + 0.0969037i
\(649\) 8.20242 0.321973
\(650\) 20.1617 8.93818i 0.790808 0.350584i
\(651\) 24.9127 0.976405
\(652\) −10.2534 + 3.33154i −0.401555 + 0.130473i
\(653\) −21.4194 29.4813i −0.838206 1.15369i −0.986340 0.164725i \(-0.947326\pi\)
0.148133 0.988967i \(-0.452674\pi\)
\(654\) 4.28764 3.11516i 0.167660 0.121812i
\(655\) 22.2282 + 9.91781i 0.868526 + 0.387521i
\(656\) 4.50279 + 3.27147i 0.175804 + 0.127729i
\(657\) 32.1270i 1.25339i
\(658\) 15.7724 21.7089i 0.614874 0.846301i
\(659\) 13.6562 42.0295i 0.531970 1.63724i −0.218135 0.975919i \(-0.569997\pi\)
0.750106 0.661318i \(-0.230003\pi\)
\(660\) −0.905999 4.27913i −0.0352660 0.166565i
\(661\) 7.32242 + 22.5361i 0.284809 + 0.876552i 0.986456 + 0.164027i \(0.0524485\pi\)
−0.701647 + 0.712525i \(0.747551\pi\)
\(662\) −18.4304 5.98841i −0.716320 0.232746i
\(663\) −5.21153 1.69333i −0.202399 0.0657634i
\(664\) −12.4209 38.2275i −0.482023 1.48352i
\(665\) −17.2286 + 38.6133i −0.668095 + 1.49736i
\(666\) −0.861149 + 2.65034i −0.0333688 + 0.102699i
\(667\) −3.11038 + 4.28108i −0.120435 + 0.165764i
\(668\) 3.82879i 0.148140i
\(669\) 4.07477 + 2.96049i 0.157540 + 0.114459i
\(670\) 1.30137 12.2877i 0.0502762 0.474714i
\(671\) −9.61461 + 6.98543i −0.371168 + 0.269669i
\(672\) 12.0230 + 16.5482i 0.463797 + 0.638362i
\(673\) −12.0785 + 3.92454i −0.465592 + 0.151280i −0.532413 0.846485i \(-0.678715\pi\)
0.0668204 + 0.997765i \(0.478715\pi\)
\(674\) 6.28737 0.242180
\(675\) 16.2676 14.6006i 0.626140 0.561977i
\(676\) −49.3611 −1.89850
\(677\) 14.4488 4.69471i 0.555314 0.180432i −0.0178978 0.999840i \(-0.505697\pi\)
0.573211 + 0.819407i \(0.305697\pi\)
\(678\) −2.91460 4.01161i −0.111935 0.154065i
\(679\) 16.0279 11.6450i 0.615095 0.446893i
\(680\) −2.62861 4.56127i −0.100803 0.174917i
\(681\) 5.09013 + 3.69820i 0.195054 + 0.141715i
\(682\) 7.04893i 0.269918i
\(683\) −3.29300 + 4.53243i −0.126003 + 0.173428i −0.867358 0.497685i \(-0.834184\pi\)
0.741355 + 0.671113i \(0.234184\pi\)
\(684\) 4.90116 15.0842i 0.187400 0.576759i
\(685\) −3.91707 0.414851i −0.149663 0.0158506i
\(686\) −4.25284 13.0889i −0.162374 0.499736i
\(687\) −4.01372 1.30414i −0.153133 0.0497559i
\(688\) 0.330462 + 0.107374i 0.0125987 + 0.00409358i
\(689\) −26.5602 81.7437i −1.01186 3.11419i
\(690\) −6.46275 0.684460i −0.246033 0.0260570i
\(691\) −1.56047 + 4.80264i −0.0593632 + 0.182701i −0.976341 0.216238i \(-0.930621\pi\)
0.916978 + 0.398939i \(0.130621\pi\)
\(692\) −0.00810657 + 0.0111577i −0.000308166 + 0.000424154i
\(693\) 15.3763i 0.584097i
\(694\) −12.3113 8.94465i −0.467329 0.339534i
\(695\) −12.6445 21.9412i −0.479633 0.832277i
\(696\) −1.54358 + 1.12148i −0.0585094 + 0.0425095i
\(697\) 2.08174 + 2.86527i 0.0788516 + 0.108530i
\(698\) −4.89218 + 1.58957i −0.185172 + 0.0601660i
\(699\) 13.1647 0.497933
\(700\) 29.3305 + 16.9963i 1.10859 + 0.642398i
\(701\) −11.0138 −0.415986 −0.207993 0.978130i \(-0.566693\pi\)
−0.207993 + 0.978130i \(0.566693\pi\)
\(702\) 18.3394 5.95884i 0.692177 0.224902i
\(703\) −4.64737 6.39656i −0.175279 0.241251i
\(704\) 0.806400 0.585884i 0.0303924 0.0220813i
\(705\) 1.81046 17.0946i 0.0681860 0.643820i
\(706\) 2.16778 + 1.57499i 0.0815856 + 0.0592754i
\(707\) 23.8458i 0.896815i
\(708\) −4.05907 + 5.58683i −0.152549 + 0.209966i
\(709\) −9.97009 + 30.6848i −0.374435 + 1.15239i 0.569425 + 0.822044i \(0.307166\pi\)
−0.943859 + 0.330348i \(0.892834\pi\)
\(710\) 7.32114 16.4084i 0.274757 0.615797i
\(711\) 3.88168 + 11.9466i 0.145574 + 0.448032i
\(712\) 10.2685 + 3.33642i 0.384827 + 0.125038i
\(713\) 35.6778 + 11.5924i 1.33615 + 0.434140i
\(714\) 0.726661 + 2.23643i 0.0271946 + 0.0836964i
\(715\) −4.71330 22.2614i −0.176267 0.832528i
\(716\) 5.84390 17.9857i 0.218397 0.672156i
\(717\) −6.97065 + 9.59428i −0.260324 + 0.358305i
\(718\) 10.0292i 0.374285i
\(719\) 10.1001 + 7.33813i 0.376669 + 0.273666i 0.759971 0.649957i \(-0.225213\pi\)
−0.383302 + 0.923623i \(0.625213\pi\)
\(720\) −7.46523 3.33085i −0.278213 0.124134i
\(721\) −65.1525 + 47.3360i −2.42640 + 1.76289i
\(722\) −0.00601239 0.00827534i −0.000223758 0.000307976i
\(723\) −8.31046 + 2.70023i −0.309069 + 0.100423i
\(724\) −3.67594 −0.136615
\(725\) −2.47516 + 4.27139i −0.0919251 + 0.158636i
\(726\) −4.70518 −0.174626
\(727\) −4.68090 + 1.52092i −0.173605 + 0.0564077i −0.394530 0.918883i \(-0.629092\pi\)
0.220925 + 0.975291i \(0.429092\pi\)
\(728\) 40.0625 + 55.1413i 1.48481 + 2.04367i
\(729\) 2.32790 1.69132i 0.0862184 0.0626413i
\(730\) −13.6640 + 15.1512i −0.505728 + 0.560770i
\(731\) 0.178878 + 0.129962i 0.00661604 + 0.00480683i
\(732\) 10.0055i 0.369815i
\(733\) −12.2853 + 16.9092i −0.453767 + 0.624556i −0.973202 0.229954i \(-0.926143\pi\)
0.519435 + 0.854510i \(0.326143\pi\)
\(734\) −1.43858 + 4.42750i −0.0530990 + 0.163422i
\(735\) −16.0879 14.5088i −0.593411 0.535165i
\(736\) 9.51805 + 29.2935i 0.350840 + 1.07977i
\(737\) −12.1250 3.93964i −0.446629 0.145119i
\(738\) −5.17696 1.68210i −0.190567 0.0619189i
\(739\) 4.44023 + 13.6656i 0.163336 + 0.502698i 0.998910 0.0466811i \(-0.0148645\pi\)
−0.835574 + 0.549379i \(0.814864\pi\)
\(740\) −5.49220 + 3.16510i −0.201897 + 0.116351i
\(741\) −7.38405 + 22.7258i −0.271260 + 0.834852i
\(742\) −21.6799 + 29.8398i −0.795895 + 1.09546i
\(743\) 31.3724i 1.15094i −0.817823 0.575470i \(-0.804819\pi\)
0.817823 0.575470i \(-0.195181\pi\)
\(744\) 10.9428 + 7.95038i 0.401181 + 0.291475i
\(745\) −17.6360 + 3.73398i −0.646133 + 0.136803i
\(746\) 14.1402 10.2735i 0.517711 0.376139i
\(747\) −23.3445 32.1309i −0.854129 1.17561i
\(748\) −2.26655 + 0.736448i −0.0828734 + 0.0269272i
\(749\) −29.9124 −1.09297
\(750\) −6.06291 0.0144688i −0.221386 0.000528326i
\(751\) 14.1191 0.515213 0.257606 0.966250i \(-0.417066\pi\)
0.257606 + 0.966250i \(0.417066\pi\)
\(752\) −13.9986 + 4.54843i −0.510477 + 0.165864i
\(753\) −3.05467 4.20439i −0.111318 0.153217i
\(754\) −3.52328 + 2.55981i −0.128310 + 0.0932229i
\(755\) 15.1078 3.19870i 0.549829 0.116413i
\(756\) 23.9792 + 17.4219i 0.872115 + 0.633629i
\(757\) 50.4329i 1.83301i −0.400018 0.916507i \(-0.630996\pi\)
0.400018 0.916507i \(-0.369004\pi\)
\(758\) 0.513960 0.707406i 0.0186679 0.0256941i
\(759\) −2.07207 + 6.37719i −0.0752115 + 0.231477i
\(760\) −19.8902 + 11.4625i −0.721494 + 0.415790i
\(761\) −9.07982 27.9448i −0.329143 1.01300i −0.969535 0.244951i \(-0.921228\pi\)
0.640392 0.768048i \(-0.278772\pi\)
\(762\) 0.295057 + 0.0958699i 0.0106888 + 0.00347300i
\(763\) 40.3053 + 13.0960i 1.45915 + 0.474106i
\(764\) 3.25974 + 10.0324i 0.117933 + 0.362961i
\(765\) −3.86290 3.48374i −0.139663 0.125955i
\(766\) 2.70947 8.33889i 0.0978971 0.301296i
\(767\) −21.1166 + 29.0645i −0.762476 + 1.04946i
\(768\) 7.07218i 0.255195i
\(769\) −5.22161 3.79373i −0.188296 0.136805i 0.489643 0.871923i \(-0.337127\pi\)
−0.677940 + 0.735118i \(0.737127\pi\)
\(770\) −6.53972 + 7.25149i −0.235675 + 0.261326i
\(771\) 14.8132 10.7624i 0.533485