Properties

Label 425.2.r.a.69.13
Level $425$
Weight $2$
Character 425.69
Analytic conductor $3.394$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(69,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.13
Character \(\chi\) \(=\) 425.69
Dual form 425.2.r.a.154.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17389 + 0.381421i) q^{2} +(-1.02469 - 1.41037i) q^{3} +(-0.385489 + 0.280074i) q^{4} +(0.897862 + 2.04789i) q^{5} +(1.74082 + 1.26478i) q^{6} +2.70715i q^{7} +(1.79671 - 2.47296i) q^{8} +(-0.0120917 + 0.0372143i) q^{9} +(-1.83510 - 2.06154i) q^{10} +(0.0960804 + 0.295705i) q^{11} +(0.790016 + 0.256692i) q^{12} +(-4.63378 - 1.50561i) q^{13} +(-1.03256 - 3.17791i) q^{14} +(1.96824 - 3.36477i) q^{15} +(-0.871420 + 2.68195i) q^{16} +(0.587785 - 0.809017i) q^{17} -0.0482977i q^{18} +(1.98990 + 1.44575i) q^{19} +(-0.919677 - 0.537971i) q^{20} +(3.81808 - 2.77399i) q^{21} +(-0.225576 - 0.310479i) q^{22} +(-4.14812 + 1.34781i) q^{23} -5.32885 q^{24} +(-3.38769 + 3.67744i) q^{25} +6.01384 q^{26} +(-4.90908 + 1.59506i) q^{27} +(-0.758204 - 1.04358i) q^{28} +(-5.88501 + 4.27571i) q^{29} +(-1.02711 + 4.70061i) q^{30} +(2.74830 + 1.99676i) q^{31} +2.63278i q^{32} +(0.318600 - 0.438515i) q^{33} +(-0.381421 + 1.17389i) q^{34} +(-5.54394 + 2.43065i) q^{35} +(-0.00576157 - 0.0177323i) q^{36} +(-9.64260 - 3.13307i) q^{37} +(-2.88737 - 0.938162i) q^{38} +(2.62474 + 8.07812i) q^{39} +(6.67754 + 1.45908i) q^{40} +(-2.17215 + 6.68518i) q^{41} +(-3.42396 + 4.71267i) q^{42} -2.68539i q^{43} +(-0.119857 - 0.0870815i) q^{44} +(-0.0870674 + 0.00865097i) q^{45} +(4.35537 - 3.16436i) q^{46} +(-2.74728 - 3.78131i) q^{47} +(4.67548 - 1.51915i) q^{48} -0.328661 q^{49} +(2.57413 - 5.60906i) q^{50} -1.74331 q^{51} +(2.20796 - 0.717409i) q^{52} +(1.19539 + 1.64531i) q^{53} +(5.15435 - 3.74486i) q^{54} +(-0.519304 + 0.462264i) q^{55} +(6.69467 + 4.86396i) q^{56} -4.28793i q^{57} +(5.27753 - 7.26389i) q^{58} +(-4.07893 + 12.5537i) q^{59} +(0.183650 + 1.84834i) q^{60} +(-4.51850 - 13.9065i) q^{61} +(-3.98782 - 1.29572i) q^{62} +(-0.100745 - 0.0327340i) q^{63} +(-2.74704 - 8.45452i) q^{64} +(-1.07719 - 10.8413i) q^{65} +(-0.206744 + 0.636291i) q^{66} +(1.24381 - 1.71196i) q^{67} +0.476491i q^{68} +(6.15145 + 4.46929i) q^{69} +(5.58089 - 4.96790i) q^{70} +(-4.92386 + 3.57740i) q^{71} +(0.0703043 + 0.0967656i) q^{72} +(-8.18801 + 2.66045i) q^{73} +12.5144 q^{74} +(8.65788 + 1.00964i) q^{75} -1.17200 q^{76} +(-0.800518 + 0.260104i) q^{77} +(-6.16233 - 8.48172i) q^{78} +(6.02713 - 4.37897i) q^{79} +(-6.27476 + 0.623457i) q^{80} +(7.37488 + 5.35817i) q^{81} -8.67619i q^{82} +(3.54246 - 4.87577i) q^{83} +(-0.694903 + 2.13869i) q^{84} +(2.18453 + 0.477332i) q^{85} +(1.02426 + 3.15236i) q^{86} +(12.0606 + 3.91874i) q^{87} +(0.903895 + 0.293693i) q^{88} +(-2.85571 - 8.78896i) q^{89} +(0.0989082 - 0.0433647i) q^{90} +(4.07591 - 12.5443i) q^{91} +(1.22157 - 1.68135i) q^{92} -5.92218i q^{93} +(4.66728 + 3.39098i) q^{94} +(-1.17407 + 5.37317i) q^{95} +(3.71319 - 2.69779i) q^{96} +(-5.70529 - 7.85266i) q^{97} +(0.385813 - 0.125358i) q^{98} -0.0121662 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 40 q^{4} - 8 q^{5} + 4 q^{6} - 30 q^{8} + 36 q^{9} - 6 q^{10} + 8 q^{11} - 40 q^{12} - 20 q^{14} - 40 q^{15} - 64 q^{16} + 6 q^{19} + 2 q^{20} - 50 q^{22} + 20 q^{23} + 20 q^{24} + 32 q^{25} + 20 q^{26}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17389 + 0.381421i −0.830068 + 0.269706i −0.693074 0.720866i \(-0.743744\pi\)
−0.136994 + 0.990572i \(0.543744\pi\)
\(3\) −1.02469 1.41037i −0.591606 0.814276i 0.403301 0.915067i \(-0.367863\pi\)
−0.994908 + 0.100791i \(0.967863\pi\)
\(4\) −0.385489 + 0.280074i −0.192745 + 0.140037i
\(5\) 0.897862 + 2.04789i 0.401536 + 0.915843i
\(6\) 1.74082 + 1.26478i 0.710688 + 0.516345i
\(7\) 2.70715i 1.02321i 0.859222 + 0.511603i \(0.170948\pi\)
−0.859222 + 0.511603i \(0.829052\pi\)
\(8\) 1.79671 2.47296i 0.635233 0.874323i
\(9\) −0.0120917 + 0.0372143i −0.00403056 + 0.0124048i
\(10\) −1.83510 2.06154i −0.580311 0.651916i
\(11\) 0.0960804 + 0.295705i 0.0289693 + 0.0891584i 0.964496 0.264098i \(-0.0850743\pi\)
−0.935526 + 0.353257i \(0.885074\pi\)
\(12\) 0.790016 + 0.256692i 0.228058 + 0.0741005i
\(13\) −4.63378 1.50561i −1.28518 0.417580i −0.414778 0.909922i \(-0.636141\pi\)
−0.870402 + 0.492342i \(0.836141\pi\)
\(14\) −1.03256 3.17791i −0.275964 0.849331i
\(15\) 1.96824 3.36477i 0.508198 0.868780i
\(16\) −0.871420 + 2.68195i −0.217855 + 0.670489i
\(17\) 0.587785 0.809017i 0.142559 0.196215i
\(18\) 0.0482977i 0.0113839i
\(19\) 1.98990 + 1.44575i 0.456514 + 0.331677i 0.792162 0.610311i \(-0.208955\pi\)
−0.335648 + 0.941987i \(0.608955\pi\)
\(20\) −0.919677 0.537971i −0.205646 0.120294i
\(21\) 3.81808 2.77399i 0.833172 0.605335i
\(22\) −0.225576 0.310479i −0.0480930 0.0661944i
\(23\) −4.14812 + 1.34781i −0.864943 + 0.281037i −0.707691 0.706522i \(-0.750263\pi\)
−0.157251 + 0.987559i \(0.550263\pi\)
\(24\) −5.32885 −1.08775
\(25\) −3.38769 + 3.67744i −0.677537 + 0.735489i
\(26\) 6.01384 1.17941
\(27\) −4.90908 + 1.59506i −0.944753 + 0.306969i
\(28\) −0.758204 1.04358i −0.143287 0.197218i
\(29\) −5.88501 + 4.27571i −1.09282 + 0.793979i −0.979873 0.199622i \(-0.936029\pi\)
−0.112945 + 0.993601i \(0.536029\pi\)
\(30\) −1.02711 + 4.70061i −0.187524 + 0.858210i
\(31\) 2.74830 + 1.99676i 0.493610 + 0.358629i 0.806571 0.591137i \(-0.201321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(32\) 2.63278i 0.465415i
\(33\) 0.318600 0.438515i 0.0554611 0.0763357i
\(34\) −0.381421 + 1.17389i −0.0654132 + 0.201321i
\(35\) −5.54394 + 2.43065i −0.937097 + 0.410855i
\(36\) −0.00576157 0.0177323i −0.000960262 0.00295538i
\(37\) −9.64260 3.13307i −1.58523 0.515074i −0.621836 0.783148i \(-0.713613\pi\)
−0.963398 + 0.268074i \(0.913613\pi\)
\(38\) −2.88737 0.938162i −0.468393 0.152190i
\(39\) 2.62474 + 8.07812i 0.420295 + 1.29353i
\(40\) 6.67754 + 1.45908i 1.05581 + 0.230701i
\(41\) −2.17215 + 6.68518i −0.339232 + 1.04405i 0.625368 + 0.780330i \(0.284949\pi\)
−0.964600 + 0.263719i \(0.915051\pi\)
\(42\) −3.42396 + 4.71267i −0.528328 + 0.727181i
\(43\) 2.68539i 0.409518i −0.978812 0.204759i \(-0.934359\pi\)
0.978812 0.204759i \(-0.0656410\pi\)
\(44\) −0.119857 0.0870815i −0.0180692 0.0131280i
\(45\) −0.0870674 + 0.00865097i −0.0129792 + 0.00128961i
\(46\) 4.35537 3.16436i 0.642164 0.466560i
\(47\) −2.74728 3.78131i −0.400732 0.551560i 0.560196 0.828360i \(-0.310726\pi\)
−0.960927 + 0.276800i \(0.910726\pi\)
\(48\) 4.67548 1.51915i 0.674847 0.219271i
\(49\) −0.328661 −0.0469516
\(50\) 2.57413 5.60906i 0.364037 0.793241i
\(51\) −1.74331 −0.244112
\(52\) 2.20796 0.717409i 0.306188 0.0994867i
\(53\) 1.19539 + 1.64531i 0.164200 + 0.226001i 0.883186 0.469023i \(-0.155394\pi\)
−0.718987 + 0.695024i \(0.755394\pi\)
\(54\) 5.15435 3.74486i 0.701419 0.509610i
\(55\) −0.519304 + 0.462264i −0.0700229 + 0.0623317i
\(56\) 6.69467 + 4.86396i 0.894613 + 0.649974i
\(57\) 4.28793i 0.567950i
\(58\) 5.27753 7.26389i 0.692973 0.953796i
\(59\) −4.07893 + 12.5537i −0.531032 + 1.63435i 0.221038 + 0.975265i \(0.429055\pi\)
−0.752070 + 0.659083i \(0.770945\pi\)
\(60\) 0.183650 + 1.84834i 0.0237091 + 0.238619i
\(61\) −4.51850 13.9065i −0.578535 1.78055i −0.623813 0.781573i \(-0.714418\pi\)
0.0452784 0.998974i \(-0.485582\pi\)
\(62\) −3.98782 1.29572i −0.506454 0.164557i
\(63\) −0.100745 0.0327340i −0.0126926 0.00412409i
\(64\) −2.74704 8.45452i −0.343380 1.05681i
\(65\) −1.07719 10.8413i −0.133608 1.34470i
\(66\) −0.206744 + 0.636291i −0.0254484 + 0.0783220i
\(67\) 1.24381 1.71196i 0.151956 0.209149i −0.726252 0.687429i \(-0.758739\pi\)
0.878208 + 0.478279i \(0.158739\pi\)
\(68\) 0.476491i 0.0577830i
\(69\) 6.15145 + 4.46929i 0.740547 + 0.538039i
\(70\) 5.58089 4.96790i 0.667044 0.593778i
\(71\) −4.92386 + 3.57740i −0.584355 + 0.424559i −0.840292 0.542135i \(-0.817616\pi\)
0.255936 + 0.966694i \(0.417616\pi\)
\(72\) 0.0703043 + 0.0967656i 0.00828544 + 0.0114039i
\(73\) −8.18801 + 2.66045i −0.958334 + 0.311382i −0.746098 0.665837i \(-0.768075\pi\)
−0.212237 + 0.977218i \(0.568075\pi\)
\(74\) 12.5144 1.45477
\(75\) 8.65788 + 1.00964i 0.999726 + 0.116583i
\(76\) −1.17200 −0.134438
\(77\) −0.800518 + 0.260104i −0.0912275 + 0.0296416i
\(78\) −6.16233 8.48172i −0.697747 0.960366i
\(79\) 6.02713 4.37897i 0.678105 0.492672i −0.194623 0.980878i \(-0.562348\pi\)
0.872729 + 0.488206i \(0.162348\pi\)
\(80\) −6.27476 + 0.623457i −0.701539 + 0.0697046i
\(81\) 7.37488 + 5.35817i 0.819431 + 0.595352i
\(82\) 8.67619i 0.958125i
\(83\) 3.54246 4.87577i 0.388835 0.535186i −0.569063 0.822294i \(-0.692694\pi\)
0.957898 + 0.287108i \(0.0926939\pi\)
\(84\) −0.694903 + 2.13869i −0.0758201 + 0.233350i
\(85\) 2.18453 + 0.477332i 0.236945 + 0.0517739i
\(86\) 1.02426 + 3.15236i 0.110449 + 0.339928i
\(87\) 12.0606 + 3.91874i 1.29304 + 0.420133i
\(88\) 0.903895 + 0.293693i 0.0963555 + 0.0313078i
\(89\) −2.85571 8.78896i −0.302704 0.931628i −0.980524 0.196400i \(-0.937075\pi\)
0.677820 0.735228i \(-0.262925\pi\)
\(90\) 0.0989082 0.0433647i 0.0104258 0.00457104i
\(91\) 4.07591 12.5443i 0.427271 1.31500i
\(92\) 1.22157 1.68135i 0.127358 0.175293i
\(93\) 5.92218i 0.614102i
\(94\) 4.66728 + 3.39098i 0.481394 + 0.349753i
\(95\) −1.17407 + 5.37317i −0.120457 + 0.551275i
\(96\) 3.71319 2.69779i 0.378976 0.275342i
\(97\) −5.70529 7.85266i −0.579285 0.797317i 0.414332 0.910126i \(-0.364015\pi\)
−0.993617 + 0.112809i \(0.964015\pi\)
\(98\) 0.385813 0.125358i 0.0389730 0.0126631i
\(99\) −0.0121662 −0.00122275
\(100\) 0.275959 2.36642i 0.0275959 0.236642i
\(101\) 2.17224 0.216146 0.108073 0.994143i \(-0.465532\pi\)
0.108073 + 0.994143i \(0.465532\pi\)
\(102\) 2.04646 0.664935i 0.202630 0.0658384i
\(103\) 11.3764 + 15.6582i 1.12095 + 1.54285i 0.804216 + 0.594337i \(0.202585\pi\)
0.316732 + 0.948515i \(0.397415\pi\)
\(104\) −12.0489 + 8.75402i −1.18149 + 0.858402i
\(105\) 9.10894 + 5.32832i 0.888941 + 0.519991i
\(106\) −2.03082 1.47548i −0.197251 0.143311i
\(107\) 19.1209i 1.84848i 0.381809 + 0.924241i \(0.375301\pi\)
−0.381809 + 0.924241i \(0.624699\pi\)
\(108\) 1.44566 1.98979i 0.139109 0.191467i
\(109\) −2.93784 + 9.04174i −0.281394 + 0.866042i 0.706062 + 0.708150i \(0.250470\pi\)
−0.987456 + 0.157892i \(0.949530\pi\)
\(110\) 0.433290 0.740723i 0.0413126 0.0706251i
\(111\) 5.46191 + 16.8100i 0.518422 + 1.59554i
\(112\) −7.26045 2.35906i −0.686048 0.222911i
\(113\) 12.3629 + 4.01696i 1.16301 + 0.377884i 0.826029 0.563628i \(-0.190595\pi\)
0.336979 + 0.941512i \(0.390595\pi\)
\(114\) 1.63551 + 5.03358i 0.153179 + 0.471438i
\(115\) −6.48460 7.28474i −0.604692 0.679305i
\(116\) 1.07109 3.29648i 0.0994483 0.306071i
\(117\) 0.112060 0.154238i 0.0103600 0.0142593i
\(118\) 16.2925i 1.49984i
\(119\) 2.19013 + 1.59122i 0.200769 + 0.145867i
\(120\) −4.78458 10.9129i −0.436770 0.996206i
\(121\) 8.82098 6.40881i 0.801907 0.582620i
\(122\) 10.6085 + 14.6013i 0.960447 + 1.32194i
\(123\) 11.6543 3.78672i 1.05084 0.341437i
\(124\) −1.61868 −0.145362
\(125\) −10.5727 3.63576i −0.945648 0.325192i
\(126\) 0.130749 0.0116481
\(127\) −2.18189 + 0.708938i −0.193611 + 0.0629081i −0.404218 0.914663i \(-0.632456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(128\) 3.35444 + 4.61699i 0.296494 + 0.408088i
\(129\) −3.78738 + 2.75169i −0.333460 + 0.242273i
\(130\) 5.39960 + 12.3157i 0.473576 + 1.08016i
\(131\) 7.13168 + 5.18147i 0.623098 + 0.452707i 0.854002 0.520269i \(-0.174168\pi\)
−0.230904 + 0.972976i \(0.574168\pi\)
\(132\) 0.258275i 0.0224799i
\(133\) −3.91385 + 5.38695i −0.339374 + 0.467108i
\(134\) −0.807125 + 2.48408i −0.0697250 + 0.214591i
\(135\) −7.67418 8.62111i −0.660488 0.741987i
\(136\) −0.944586 2.90714i −0.0809976 0.249285i
\(137\) −1.57440 0.511555i −0.134510 0.0437051i 0.240988 0.970528i \(-0.422528\pi\)
−0.375499 + 0.926823i \(0.622528\pi\)
\(138\) −8.92583 2.90018i −0.759817 0.246879i
\(139\) 2.35186 + 7.23829i 0.199483 + 0.613944i 0.999895 + 0.0144944i \(0.00461387\pi\)
−0.800412 + 0.599450i \(0.795386\pi\)
\(140\) 1.45637 2.48970i 0.123085 0.210418i
\(141\) −2.51792 + 7.74935i −0.212047 + 0.652613i
\(142\) 4.41560 6.07755i 0.370549 0.510017i
\(143\) 1.51489i 0.126682i
\(144\) −0.0892702 0.0648586i −0.00743919 0.00540488i
\(145\) −14.0401 8.21283i −1.16597 0.682039i
\(146\) 8.59710 6.24616i 0.711501 0.516936i
\(147\) 0.336777 + 0.463533i 0.0277769 + 0.0382316i
\(148\) 4.59461 1.49288i 0.377675 0.122714i
\(149\) −1.72497 −0.141315 −0.0706576 0.997501i \(-0.522510\pi\)
−0.0706576 + 0.997501i \(0.522510\pi\)
\(150\) −10.5485 + 2.11709i −0.861284 + 0.172860i
\(151\) 0.794765 0.0646771 0.0323385 0.999477i \(-0.489705\pi\)
0.0323385 + 0.999477i \(0.489705\pi\)
\(152\) 7.15054 2.32335i 0.579985 0.188449i
\(153\) 0.0229997 + 0.0316564i 0.00185942 + 0.00255927i
\(154\) 0.840514 0.610669i 0.0677305 0.0492091i
\(155\) −1.62154 + 7.42104i −0.130245 + 0.596072i
\(156\) −3.27428 2.37891i −0.262153 0.190465i
\(157\) 20.8413i 1.66331i −0.555290 0.831657i \(-0.687393\pi\)
0.555290 0.831657i \(-0.312607\pi\)
\(158\) −5.40498 + 7.43932i −0.429997 + 0.591840i
\(159\) 1.09559 3.37188i 0.0868860 0.267407i
\(160\) −5.39164 + 2.36388i −0.426247 + 0.186881i
\(161\) −3.64871 11.2296i −0.287559 0.885015i
\(162\) −10.7010 3.47698i −0.840754 0.273177i
\(163\) 17.6170 + 5.72411i 1.37987 + 0.448347i 0.902626 0.430425i \(-0.141636\pi\)
0.477243 + 0.878772i \(0.341636\pi\)
\(164\) −1.03501 3.18543i −0.0808205 0.248740i
\(165\) 1.18409 + 0.258730i 0.0921812 + 0.0201421i
\(166\) −2.29874 + 7.07481i −0.178417 + 0.549112i
\(167\) −12.3156 + 16.9510i −0.953010 + 1.31171i −0.00283333 + 0.999996i \(0.500902\pi\)
−0.950177 + 0.311710i \(0.899098\pi\)
\(168\) 14.4260i 1.11299i
\(169\) 8.68787 + 6.31211i 0.668298 + 0.485547i
\(170\) −2.74647 + 0.272887i −0.210644 + 0.0209295i
\(171\) −0.0778636 + 0.0565712i −0.00595438 + 0.00432611i
\(172\) 0.752108 + 1.03519i 0.0573477 + 0.0789324i
\(173\) −4.54162 + 1.47566i −0.345293 + 0.112192i −0.476529 0.879159i \(-0.658105\pi\)
0.131236 + 0.991351i \(0.458105\pi\)
\(174\) −15.6526 −1.18662
\(175\) −9.95539 9.17097i −0.752557 0.693260i
\(176\) −0.876794 −0.0660908
\(177\) 21.8849 7.11085i 1.64497 0.534484i
\(178\) 6.70459 + 9.22808i 0.502530 + 0.691674i
\(179\) −0.459604 + 0.333922i −0.0343524 + 0.0249585i −0.604829 0.796355i \(-0.706759\pi\)
0.570477 + 0.821314i \(0.306759\pi\)
\(180\) 0.0311406 0.0277202i 0.00232109 0.00206614i
\(181\) −0.694976 0.504930i −0.0516572 0.0375311i 0.561657 0.827370i \(-0.310164\pi\)
−0.613314 + 0.789839i \(0.710164\pi\)
\(182\) 16.2804i 1.20678i
\(183\) −14.9832 + 20.6226i −1.10759 + 1.52447i
\(184\) −4.11990 + 12.6797i −0.303723 + 0.934763i
\(185\) −2.24155 22.5600i −0.164802 1.65865i
\(186\) 2.25885 + 6.95201i 0.165627 + 0.509746i
\(187\) 0.295705 + 0.0960804i 0.0216241 + 0.00702609i
\(188\) 2.11809 + 0.688211i 0.154478 + 0.0501929i
\(189\) −4.31806 13.2896i −0.314093 0.966678i
\(190\) −0.671208 6.75534i −0.0486945 0.490084i
\(191\) 0.998462 3.07295i 0.0722462 0.222351i −0.908413 0.418074i \(-0.862705\pi\)
0.980659 + 0.195723i \(0.0627053\pi\)
\(192\) −9.10911 + 12.5376i −0.657393 + 0.904824i
\(193\) 4.57315i 0.329182i −0.986362 0.164591i \(-0.947370\pi\)
0.986362 0.164591i \(-0.0526305\pi\)
\(194\) 9.69258 + 7.04207i 0.695887 + 0.505591i
\(195\) −14.1864 + 12.6282i −1.01591 + 0.904325i
\(196\) 0.126695 0.0920496i 0.00904967 0.00657497i
\(197\) 2.68644 + 3.69757i 0.191401 + 0.263441i 0.893922 0.448222i \(-0.147943\pi\)
−0.702522 + 0.711662i \(0.747943\pi\)
\(198\) 0.0142819 0.00464046i 0.00101497 0.000329783i
\(199\) 17.5439 1.24366 0.621828 0.783154i \(-0.286390\pi\)
0.621828 + 0.783154i \(0.286390\pi\)
\(200\) 3.00748 + 14.9849i 0.212661 + 1.05959i
\(201\) −3.68902 −0.260203
\(202\) −2.54998 + 0.828540i −0.179416 + 0.0582959i
\(203\) −11.5750 15.9316i −0.812405 1.11818i
\(204\) 0.672028 0.488257i 0.0470513 0.0341848i
\(205\) −15.6408 + 1.55406i −1.09240 + 0.108540i
\(206\) −19.3270 14.0419i −1.34658 0.978347i
\(207\) 0.170667i 0.0118622i
\(208\) 8.07594 11.1156i 0.559966 0.770727i
\(209\) −0.236324 + 0.727331i −0.0163469 + 0.0503105i
\(210\) −12.7253 2.78055i −0.878126 0.191876i
\(211\) −6.20296 19.0908i −0.427030 1.31426i −0.901037 0.433741i \(-0.857193\pi\)
0.474008 0.880521i \(-0.342807\pi\)
\(212\) −0.921621 0.299453i −0.0632972 0.0205665i
\(213\) 10.0909 + 3.27873i 0.691416 + 0.224655i
\(214\) −7.29310 22.4459i −0.498546 1.53437i
\(215\) 5.49937 2.41111i 0.375054 0.164436i
\(216\) −4.87569 + 15.0058i −0.331748 + 1.02102i
\(217\) −5.40553 + 7.44007i −0.366951 + 0.505065i
\(218\) 11.7346i 0.794767i
\(219\) 12.1424 + 8.82197i 0.820507 + 0.596133i
\(220\) 0.0707176 0.323642i 0.00476778 0.0218199i
\(221\) −3.94173 + 2.86384i −0.265150 + 0.192642i
\(222\) −12.8234 17.6499i −0.860651 1.18458i
\(223\) −12.0383 + 3.91148i −0.806144 + 0.261932i −0.682964 0.730452i \(-0.739309\pi\)
−0.123180 + 0.992384i \(0.539309\pi\)
\(224\) −7.12734 −0.476215
\(225\) −0.0958908 0.170537i −0.00639272 0.0113691i
\(226\) −16.0449 −1.06729
\(227\) 14.7399 4.78930i 0.978324 0.317877i 0.224153 0.974554i \(-0.428039\pi\)
0.754172 + 0.656677i \(0.228039\pi\)
\(228\) 1.20094 + 1.65295i 0.0795342 + 0.109469i
\(229\) −11.3805 + 8.26840i −0.752043 + 0.546391i −0.896459 0.443126i \(-0.853870\pi\)
0.144416 + 0.989517i \(0.453870\pi\)
\(230\) 10.3908 + 6.07815i 0.685148 + 0.400781i
\(231\) 1.18713 + 0.862498i 0.0781072 + 0.0567482i
\(232\) 22.2356i 1.45984i
\(233\) 1.78494 2.45676i 0.116935 0.160948i −0.746537 0.665344i \(-0.768285\pi\)
0.863472 + 0.504396i \(0.168285\pi\)
\(234\) −0.0727174 + 0.223801i −0.00475368 + 0.0146303i
\(235\) 5.27701 9.02121i 0.344234 0.588479i
\(236\) −1.94358 5.98171i −0.126516 0.389376i
\(237\) −12.3519 4.01338i −0.802342 0.260697i
\(238\) −3.17791 1.03256i −0.205993 0.0669312i
\(239\) −1.16487 3.58511i −0.0753493 0.231901i 0.906287 0.422663i \(-0.138904\pi\)
−0.981636 + 0.190761i \(0.938904\pi\)
\(240\) 7.30899 + 8.21086i 0.471794 + 0.530009i
\(241\) −1.66068 + 5.11105i −0.106974 + 0.329231i −0.990189 0.139737i \(-0.955374\pi\)
0.883215 + 0.468969i \(0.155374\pi\)
\(242\) −7.91043 + 10.8878i −0.508502 + 0.699893i
\(243\) 0.406619i 0.0260847i
\(244\) 5.63670 + 4.09530i 0.360853 + 0.262175i
\(245\) −0.295093 0.673061i −0.0188528 0.0430003i
\(246\) −12.2366 + 8.89042i −0.780178 + 0.566832i
\(247\) −7.04403 9.69528i −0.448201 0.616896i
\(248\) 9.87581 3.20885i 0.627115 0.203762i
\(249\) −10.5066 −0.665826
\(250\) 13.7979 + 0.235360i 0.872659 + 0.0148854i
\(251\) −6.32674 −0.399340 −0.199670 0.979863i \(-0.563987\pi\)
−0.199670 + 0.979863i \(0.563987\pi\)
\(252\) 0.0480040 0.0155974i 0.00302397 0.000982546i
\(253\) −0.797106 1.09712i −0.0501136 0.0689755i
\(254\) 2.29090 1.66444i 0.143744 0.104436i
\(255\) −1.56525 3.57010i −0.0980199 0.223568i
\(256\) 8.68490 + 6.30995i 0.542807 + 0.394372i
\(257\) 9.85114i 0.614497i 0.951629 + 0.307249i \(0.0994083\pi\)
−0.951629 + 0.307249i \(0.900592\pi\)
\(258\) 3.39643 4.67478i 0.211452 0.291039i
\(259\) 8.48169 26.1040i 0.527027 1.62202i
\(260\) 3.45161 + 3.87751i 0.214060 + 0.240473i
\(261\) −0.0879581 0.270707i −0.00544447 0.0167563i
\(262\) −10.3482 3.36232i −0.639311 0.207725i
\(263\) 24.1994 + 7.86287i 1.49220 + 0.484845i 0.937732 0.347360i \(-0.112922\pi\)
0.554468 + 0.832205i \(0.312922\pi\)
\(264\) −0.511998 1.57577i −0.0315113 0.0969819i
\(265\) −2.29612 + 3.92529i −0.141050 + 0.241129i
\(266\) 2.53975 7.81654i 0.155722 0.479263i
\(267\) −9.46944 + 13.0336i −0.579520 + 0.797641i
\(268\) 1.00830i 0.0615919i
\(269\) 12.9038 + 9.37519i 0.786761 + 0.571615i 0.907000 0.421130i \(-0.138366\pi\)
−0.120239 + 0.992745i \(0.538366\pi\)
\(270\) 12.2969 + 7.19317i 0.748368 + 0.437762i
\(271\) 0.891542 0.647743i 0.0541573 0.0393476i −0.560377 0.828237i \(-0.689344\pi\)
0.614535 + 0.788890i \(0.289344\pi\)
\(272\) 1.65754 + 2.28141i 0.100503 + 0.138331i
\(273\) −21.8687 + 7.10557i −1.32355 + 0.430048i
\(274\) 2.04330 0.123440
\(275\) −1.41293 0.648426i −0.0852028 0.0391015i
\(276\) −3.62305 −0.218082
\(277\) 2.74300 0.891256i 0.164811 0.0535504i −0.225449 0.974255i \(-0.572385\pi\)
0.390260 + 0.920705i \(0.372385\pi\)
\(278\) −5.52168 7.59994i −0.331168 0.455814i
\(279\) −0.107540 + 0.0781322i −0.00643823 + 0.00467765i
\(280\) −3.94996 + 18.0771i −0.236055 + 1.08031i
\(281\) −6.11951 4.44609i −0.365060 0.265231i 0.390100 0.920773i \(-0.372441\pi\)
−0.755159 + 0.655541i \(0.772441\pi\)
\(282\) 10.0573i 0.598903i
\(283\) −9.58958 + 13.1989i −0.570041 + 0.784594i −0.992560 0.121760i \(-0.961146\pi\)
0.422518 + 0.906354i \(0.361146\pi\)
\(284\) 0.896160 2.75810i 0.0531773 0.163663i
\(285\) 8.78120 3.84997i 0.520153 0.228053i
\(286\) 0.577812 + 1.77832i 0.0341667 + 0.105154i
\(287\) −18.0978 5.88032i −1.06828 0.347104i
\(288\) −0.0979772 0.0318347i −0.00577336 0.00187588i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) 19.6141 + 4.28581i 1.15178 + 0.251671i
\(291\) −5.22897 + 16.0931i −0.306528 + 0.943396i
\(292\) 2.41127 3.31883i 0.141109 0.194220i
\(293\) 31.4868i 1.83948i 0.392528 + 0.919740i \(0.371601\pi\)
−0.392528 + 0.919740i \(0.628399\pi\)
\(294\) −0.572141 0.415685i −0.0333680 0.0242432i
\(295\) −29.3708 + 2.91827i −1.71004 + 0.169908i
\(296\) −25.0729 + 18.2165i −1.45733 + 1.05881i
\(297\) −0.943333 1.29839i −0.0547377 0.0753400i
\(298\) 2.02493 0.657941i 0.117301 0.0381135i
\(299\) 21.2508 1.22896
\(300\) −3.62029 + 2.03565i −0.209018 + 0.117528i
\(301\) 7.26974 0.419021
\(302\) −0.932970 + 0.303140i −0.0536864 + 0.0174438i
\(303\) −2.22588 3.06366i −0.127873 0.176003i
\(304\) −5.61146 + 4.07697i −0.321839 + 0.233830i
\(305\) 24.4220 21.7395i 1.39840 1.24480i
\(306\) −0.0390737 0.0283887i −0.00223369 0.00162287i
\(307\) 27.5113i 1.57015i −0.619400 0.785076i \(-0.712624\pi\)
0.619400 0.785076i \(-0.287376\pi\)
\(308\) 0.235743 0.324472i 0.0134327 0.0184885i
\(309\) 10.4266 32.0897i 0.593148 1.82552i
\(310\) −0.927024 9.33000i −0.0526514 0.529908i
\(311\) 2.14648 + 6.60618i 0.121716 + 0.374602i 0.993288 0.115664i \(-0.0368996\pi\)
−0.871573 + 0.490266i \(0.836900\pi\)
\(312\) 24.6928 + 8.02316i 1.39795 + 0.454222i
\(313\) 27.4778 + 8.92807i 1.55314 + 0.504644i 0.954963 0.296724i \(-0.0958940\pi\)
0.598172 + 0.801368i \(0.295894\pi\)
\(314\) 7.94930 + 24.4654i 0.448605 + 1.38066i
\(315\) −0.0234195 0.235705i −0.00131954 0.0132804i
\(316\) −1.09696 + 3.37609i −0.0617087 + 0.189920i
\(317\) −3.02948 + 4.16972i −0.170153 + 0.234195i −0.885574 0.464498i \(-0.846235\pi\)
0.715421 + 0.698693i \(0.246235\pi\)
\(318\) 4.37611i 0.245400i
\(319\) −1.82978 1.32941i −0.102448 0.0744329i
\(320\) 14.8474 13.2166i 0.829997 0.738832i
\(321\) 26.9674 19.5930i 1.50517 1.09357i
\(322\) 8.56640 + 11.7906i 0.477387 + 0.657067i
\(323\) 2.33927 0.760073i 0.130160 0.0422916i
\(324\) −4.34363 −0.241313
\(325\) 21.2346 11.9399i 1.17788 0.662309i
\(326\) −22.8638 −1.26631
\(327\) 15.7626 5.12156i 0.871671 0.283223i
\(328\) 12.6295 + 17.3829i 0.697345 + 0.959813i
\(329\) 10.2366 7.43730i 0.564360 0.410031i
\(330\) −1.48868 + 0.147914i −0.0819491 + 0.00814242i
\(331\) −4.49159 3.26333i −0.246880 0.179369i 0.457463 0.889229i \(-0.348758\pi\)
−0.704343 + 0.709860i \(0.748758\pi\)
\(332\) 2.87171i 0.157606i
\(333\) 0.233190 0.320959i 0.0127787 0.0175884i
\(334\) 7.99175 24.5961i 0.437289 1.34584i
\(335\) 4.62267 + 1.01008i 0.252564 + 0.0551867i
\(336\) 4.11258 + 12.6572i 0.224360 + 0.690508i
\(337\) 30.5702 + 9.93285i 1.66526 + 0.541077i 0.981965 0.189063i \(-0.0605451\pi\)
0.683298 + 0.730140i \(0.260545\pi\)
\(338\) −12.6062 4.09601i −0.685688 0.222793i
\(339\) −7.00281 21.5524i −0.380341 1.17057i
\(340\) −0.975800 + 0.427824i −0.0529202 + 0.0232020i
\(341\) −0.326394 + 1.00454i −0.0176752 + 0.0543987i
\(342\) 0.0698262 0.0961075i 0.00377577 0.00519690i
\(343\) 18.0603i 0.975165i
\(344\) −6.64085 4.82486i −0.358051 0.260139i
\(345\) −3.62945 + 16.6103i −0.195403 + 0.894267i
\(346\) 4.76853 3.46454i 0.256358 0.186255i
\(347\) −9.14206 12.5830i −0.490771 0.675489i 0.489759 0.871858i \(-0.337085\pi\)
−0.980530 + 0.196369i \(0.937085\pi\)
\(348\) −5.74679 + 1.86724i −0.308060 + 0.100095i
\(349\) −29.1685 −1.56135 −0.780676 0.624936i \(-0.785125\pi\)
−0.780676 + 0.624936i \(0.785125\pi\)
\(350\) 15.1846 + 6.96855i 0.811650 + 0.372485i
\(351\) 25.1492 1.34236
\(352\) −0.778527 + 0.252959i −0.0414956 + 0.0134828i
\(353\) 9.17133 + 12.6232i 0.488141 + 0.671868i 0.980044 0.198782i \(-0.0636986\pi\)
−0.491903 + 0.870650i \(0.663699\pi\)
\(354\) −22.9784 + 16.6948i −1.22129 + 0.887316i
\(355\) −11.7471 6.87151i −0.623469 0.364702i
\(356\) 3.56241 + 2.58824i 0.188807 + 0.137176i
\(357\) 4.71940i 0.249777i
\(358\) 0.412161 0.567291i 0.0217834 0.0299823i
\(359\) 7.68786 23.6608i 0.405750 1.24877i −0.514518 0.857480i \(-0.672029\pi\)
0.920267 0.391290i \(-0.127971\pi\)
\(360\) −0.135041 + 0.230857i −0.00711731 + 0.0121673i
\(361\) −4.00181 12.3163i −0.210622 0.648226i
\(362\) 1.00842 + 0.327655i 0.0530014 + 0.0172212i
\(363\) −18.0776 5.87376i −0.948826 0.308292i
\(364\) 1.94213 + 5.97727i 0.101795 + 0.313294i
\(365\) −12.8000 14.3794i −0.669983 0.752653i
\(366\) 9.72281 29.9237i 0.508219 1.56414i
\(367\) −11.3166 + 15.5759i −0.590720 + 0.813056i −0.994819 0.101659i \(-0.967585\pi\)
0.404100 + 0.914715i \(0.367585\pi\)
\(368\) 12.2996i 0.641160i
\(369\) −0.222519 0.161670i −0.0115839 0.00841620i
\(370\) 11.2362 + 25.6281i 0.584143 + 1.33234i
\(371\) −4.45411 + 3.23610i −0.231246 + 0.168010i
\(372\) 1.65865 + 2.28294i 0.0859971 + 0.118365i
\(373\) −23.4416 + 7.61664i −1.21376 + 0.394375i −0.844806 0.535073i \(-0.820284\pi\)
−0.368955 + 0.929447i \(0.620284\pi\)
\(374\) −0.383773 −0.0198445
\(375\) 5.70596 + 18.6369i 0.294655 + 0.962404i
\(376\) −14.2871 −0.736800
\(377\) 33.7074 10.9522i 1.73602 0.564067i
\(378\) 10.1379 + 13.9536i 0.521437 + 0.717696i
\(379\) −0.691636 + 0.502503i −0.0355270 + 0.0258118i −0.605407 0.795916i \(-0.706990\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(380\) −1.05230 2.40013i −0.0539816 0.123124i
\(381\) 3.23563 + 2.35082i 0.165766 + 0.120436i
\(382\) 3.98815i 0.204052i
\(383\) −8.77206 + 12.0737i −0.448231 + 0.616938i −0.972016 0.234913i \(-0.924520\pi\)
0.523785 + 0.851850i \(0.324520\pi\)
\(384\) 3.07439 9.46199i 0.156889 0.482855i
\(385\) −1.25142 1.40583i −0.0637782 0.0716479i
\(386\) 1.74430 + 5.36839i 0.0887823 + 0.273244i
\(387\) 0.0999349 + 0.0324708i 0.00507997 + 0.00165058i
\(388\) 4.39866 + 1.42921i 0.223308 + 0.0725572i
\(389\) −9.27582 28.5480i −0.470303 1.44744i −0.852189 0.523233i \(-0.824726\pi\)
0.381887 0.924209i \(-0.375274\pi\)
\(390\) 11.8367 20.2352i 0.599374 1.02465i
\(391\) −1.34781 + 4.14812i −0.0681615 + 0.209779i
\(392\) −0.590509 + 0.812766i −0.0298252 + 0.0410509i
\(393\) 15.3677i 0.775198i
\(394\) −4.56392 3.31588i −0.229927 0.167052i
\(395\) 14.3792 + 8.41117i 0.723494 + 0.423212i
\(396\) 0.00468996 0.00340745i 0.000235679 0.000171231i
\(397\) −6.30516 8.67831i −0.316447 0.435552i 0.620931 0.783865i \(-0.286755\pi\)
−0.937378 + 0.348313i \(0.886755\pi\)
\(398\) −20.5947 + 6.69163i −1.03232 + 0.335421i
\(399\) 11.6081 0.581131
\(400\) −6.91064 12.2902i −0.345532 0.614511i
\(401\) 24.4193 1.21944 0.609721 0.792616i \(-0.291282\pi\)
0.609721 + 0.792616i \(0.291282\pi\)
\(402\) 4.33051 1.40707i 0.215986 0.0701782i
\(403\) −9.72871 13.3904i −0.484622 0.667024i
\(404\) −0.837377 + 0.608390i −0.0416611 + 0.0302685i
\(405\) −4.35129 + 19.9138i −0.216217 + 0.989526i
\(406\) 19.6645 + 14.2871i 0.975930 + 0.709055i
\(407\) 3.15239i 0.156258i
\(408\) −3.13222 + 4.31113i −0.155068 + 0.213433i
\(409\) 6.26658 19.2866i 0.309862 0.953659i −0.667955 0.744201i \(-0.732830\pi\)
0.977818 0.209457i \(-0.0671697\pi\)
\(410\) 17.7679 7.79002i 0.877492 0.384722i
\(411\) 0.891798 + 2.74467i 0.0439892 + 0.135385i
\(412\) −8.77095 2.84985i −0.432113 0.140402i
\(413\) −33.9847 11.0423i −1.67228 0.543355i
\(414\) 0.0650959 + 0.200345i 0.00319929 + 0.00984640i
\(415\) 13.1657 + 2.87678i 0.646278 + 0.141216i
\(416\) 3.96394 12.1997i 0.194348 0.598142i
\(417\) 7.79872 10.7340i 0.381905 0.525647i
\(418\) 0.943948i 0.0461700i
\(419\) −1.89280 1.37520i −0.0924693 0.0671829i 0.540590 0.841286i \(-0.318201\pi\)
−0.633059 + 0.774103i \(0.718201\pi\)
\(420\) −5.00373 + 0.497168i −0.244157 + 0.0242593i
\(421\) −14.3141 + 10.3998i −0.697627 + 0.506856i −0.879158 0.476530i \(-0.841895\pi\)
0.181532 + 0.983385i \(0.441895\pi\)
\(422\) 14.5632 + 20.0446i 0.708928 + 0.975755i
\(423\) 0.173938 0.0565159i 0.00845715 0.00274790i
\(424\) 6.21657 0.301903
\(425\) 0.983882 + 4.90224i 0.0477253 + 0.237794i
\(426\) −13.0962 −0.634513
\(427\) 37.6470 12.2323i 1.82187 0.591961i
\(428\) −5.35526 7.37089i −0.258856 0.356285i
\(429\) −2.13655 + 1.55230i −0.103154 + 0.0749457i
\(430\) −5.53603 + 4.92796i −0.266971 + 0.237647i
\(431\) −31.2012 22.6690i −1.50291 1.09193i −0.969204 0.246260i \(-0.920798\pi\)
−0.533707 0.845669i \(-0.679202\pi\)
\(432\) 14.5559i 0.700321i
\(433\) 9.32722 12.8378i 0.448237 0.616946i −0.523780 0.851853i \(-0.675479\pi\)
0.972018 + 0.234908i \(0.0754787\pi\)
\(434\) 3.50772 10.7956i 0.168376 0.518207i
\(435\) 2.80366 + 28.2173i 0.134425 + 1.35292i
\(436\) −1.39985 4.30831i −0.0670409 0.206331i
\(437\) −10.2029 3.31513i −0.488072 0.158584i
\(438\) −17.6188 5.72468i −0.841857 0.273536i
\(439\) 7.73662 + 23.8109i 0.369249 + 1.13643i 0.947278 + 0.320414i \(0.103822\pi\)
−0.578029 + 0.816016i \(0.696178\pi\)
\(440\) 0.210123 + 2.11477i 0.0100172 + 0.100818i
\(441\) 0.00397406 0.0122309i 0.000189241 0.000582424i
\(442\) 3.53485 4.86530i 0.168136 0.231419i
\(443\) 10.0237i 0.476242i −0.971235 0.238121i \(-0.923468\pi\)
0.971235 0.238121i \(-0.0765316\pi\)
\(444\) −6.81357 4.95035i −0.323358 0.234933i
\(445\) 15.4348 13.7394i 0.731678 0.651312i
\(446\) 12.6398 9.18332i 0.598510 0.434843i
\(447\) 1.76756 + 2.43284i 0.0836029 + 0.115070i
\(448\) 22.8876 7.43665i 1.08134 0.351349i
\(449\) −13.2950 −0.627432 −0.313716 0.949517i \(-0.601574\pi\)
−0.313716 + 0.949517i \(0.601574\pi\)
\(450\) 0.177612 + 0.163617i 0.00837271 + 0.00771300i
\(451\) −2.18554 −0.102913
\(452\) −5.89083 + 1.91405i −0.277082 + 0.0900292i
\(453\) −0.814389 1.12091i −0.0382633 0.0526650i
\(454\) −15.4764 + 11.2443i −0.726343 + 0.527719i
\(455\) 29.3490 2.91610i 1.37590 0.136709i
\(456\) −10.6039 7.70417i −0.496572 0.360781i
\(457\) 8.51249i 0.398197i 0.979979 + 0.199099i \(0.0638014\pi\)
−0.979979 + 0.199099i \(0.936199\pi\)
\(458\) 10.2057 14.0470i 0.476882 0.656372i
\(459\) −1.59506 + 4.90908i −0.0744509 + 0.229136i
\(460\) 4.54001 + 0.992020i 0.211679 + 0.0462532i
\(461\) 4.44873 + 13.6918i 0.207198 + 0.637690i 0.999616 + 0.0277115i \(0.00882197\pi\)
−0.792418 + 0.609979i \(0.791178\pi\)
\(462\) −1.72254 0.559686i −0.0801396 0.0260389i
\(463\) 33.0017 + 10.7229i 1.53372 + 0.498336i 0.949635 0.313357i \(-0.101454\pi\)
0.584084 + 0.811693i \(0.301454\pi\)
\(464\) −6.33894 19.5093i −0.294278 0.905695i
\(465\) 12.1280 5.31731i 0.562421 0.246584i
\(466\) −1.15827 + 3.56479i −0.0536559 + 0.165136i
\(467\) 6.53419 8.99354i 0.302366 0.416171i −0.630615 0.776096i \(-0.717197\pi\)
0.932982 + 0.359924i \(0.117197\pi\)
\(468\) 0.0908423i 0.00419919i
\(469\) 4.63453 + 3.36719i 0.214003 + 0.155482i
\(470\) −2.75377 + 12.6027i −0.127022 + 0.581320i
\(471\) −29.3938 + 21.3559i −1.35440 + 0.984027i
\(472\) 23.7160 + 32.6423i 1.09162 + 1.50249i
\(473\) 0.794082 0.258013i 0.0365119 0.0118635i
\(474\) 16.0306 0.736310
\(475\) −12.0578 + 2.42000i −0.553250 + 0.111037i
\(476\) −1.28993 −0.0591240
\(477\) −0.0756835 + 0.0245911i −0.00346531 + 0.00112595i
\(478\) 2.73487 + 3.76423i 0.125090 + 0.172172i
\(479\) −32.2651 + 23.4420i −1.47423 + 1.07109i −0.494870 + 0.868967i \(0.664784\pi\)
−0.979360 + 0.202123i \(0.935216\pi\)
\(480\) 8.85871 + 5.18195i 0.404343 + 0.236523i
\(481\) 39.9645 + 29.0359i 1.82223 + 1.32392i
\(482\) 6.63325i 0.302136i
\(483\) −12.0990 + 16.6529i −0.550525 + 0.757733i
\(484\) −1.60545 + 4.94106i −0.0729749 + 0.224594i
\(485\) 10.9588 18.7344i 0.497614 0.850686i
\(486\) 0.155093 + 0.477328i 0.00703517 + 0.0216520i
\(487\) −15.8228 5.14116i −0.717002 0.232968i −0.0722789 0.997384i \(-0.523027\pi\)
−0.644723 + 0.764416i \(0.723027\pi\)
\(488\) −42.5087 13.8119i −1.92428 0.625236i
\(489\) −9.97889 30.7119i −0.451261 1.38884i
\(490\) 0.603127 + 0.677548i 0.0272465 + 0.0306085i
\(491\) −6.20620 + 19.1007i −0.280082 + 0.862003i 0.707748 + 0.706465i \(0.249711\pi\)
−0.987830 + 0.155538i \(0.950289\pi\)
\(492\) −3.43206 + 4.72382i −0.154729 + 0.212966i
\(493\) 7.27427i 0.327617i
\(494\) 11.9669 + 8.69448i 0.538418 + 0.391183i
\(495\) −0.0109236 0.0249151i −0.000490980 0.00111985i
\(496\) −7.75015 + 5.63081i −0.347992 + 0.252831i
\(497\) −9.68455 13.3296i −0.434411 0.597916i
\(498\) 12.3336 4.00742i 0.552681 0.179577i
\(499\) 7.60821 0.340590 0.170295 0.985393i \(-0.445528\pi\)
0.170295 + 0.985393i \(0.445528\pi\)
\(500\) 5.09393 1.55959i 0.227808 0.0697468i
\(501\) 36.5268 1.63190
\(502\) 7.42692 2.41315i 0.331480 0.107704i
\(503\) −21.2860 29.2977i −0.949097 1.30632i −0.951927 0.306324i \(-0.900901\pi\)
0.00283060 0.999996i \(-0.499099\pi\)
\(504\) −0.261959 + 0.190324i −0.0116686 + 0.00847772i
\(505\) 1.95038 + 4.44851i 0.0867906 + 0.197956i
\(506\) 1.35418 + 0.983872i 0.0602008 + 0.0437384i
\(507\) 18.7211i 0.831431i
\(508\) 0.642539 0.884379i 0.0285081 0.0392380i
\(509\) −2.35794 + 7.25699i −0.104514 + 0.321660i −0.989616 0.143736i \(-0.954088\pi\)
0.885102 + 0.465397i \(0.154088\pi\)
\(510\) 3.19915 + 3.59390i 0.141661 + 0.159141i
\(511\) −7.20223 22.1662i −0.318608 0.980574i
\(512\) −23.4571 7.62168i −1.03667 0.336834i
\(513\) −12.0746 3.92328i −0.533108 0.173217i
\(514\) −3.75743 11.5642i −0.165733 0.510075i
\(515\) −21.8519 + 37.3565i −0.962909 + 1.64612i
\(516\) 0.689316 2.12150i 0.0303455 0.0933937i
\(517\) 0.854191 1.17569i 0.0375673 0.0517070i
\(518\) 33.8784i 1.48853i
\(519\) 6.73498 + 4.89325i 0.295633 + 0.214790i
\(520\) −28.7455 16.8148i −1.26057 0.737379i
\(521\) −18.0567 + 13.1190i −0.791080 + 0.574753i −0.908284 0.418355i \(-0.862607\pi\)
0.117204 + 0.993108i \(0.462607\pi\)
\(522\) 0.206507 + 0.284232i 0.00903856 + 0.0124405i
\(523\) −8.39118 + 2.72646i −0.366921 + 0.119220i −0.486673 0.873584i \(-0.661790\pi\)
0.119753 + 0.992804i \(0.461790\pi\)
\(524\) −4.20038 −0.183495
\(525\) −2.73324 + 23.4382i −0.119288 + 1.02293i
\(526\) −31.4066 −1.36939
\(527\) 3.23083 1.04976i 0.140737 0.0457282i
\(528\) 0.898444 + 1.23660i 0.0390997 + 0.0538162i
\(529\) −3.21707 + 2.33734i −0.139873 + 0.101623i
\(530\) 1.19821 5.48367i 0.0520471 0.238195i
\(531\) −0.417855 0.303590i −0.0181334 0.0131747i
\(532\) 3.17278i 0.137558i
\(533\) 20.1305 27.7073i 0.871949 1.20013i
\(534\) 6.14484 18.9119i 0.265913 0.818397i
\(535\) −39.1574 + 17.1679i −1.69292 + 0.742233i
\(536\) −1.99884 6.15179i −0.0863367 0.265717i
\(537\) 0.941904 + 0.306043i 0.0406462 + 0.0132067i
\(538\) −18.7236 6.08368i −0.807233 0.262286i
\(539\) −0.0315779 0.0971868i −0.00136016 0.00418613i
\(540\) 5.37287 + 1.17400i 0.231211 + 0.0505211i
\(541\) −6.50662 + 20.0253i −0.279742 + 0.860956i 0.708184 + 0.706028i \(0.249515\pi\)
−0.987926 + 0.154928i \(0.950485\pi\)
\(542\) −0.799512 + 1.10043i −0.0343420 + 0.0472677i
\(543\) 1.49757i 0.0642669i
\(544\) 2.12997 + 1.54751i 0.0913215 + 0.0663490i
\(545\) −21.1542 + 2.10187i −0.906148 + 0.0900344i
\(546\) 22.9613 16.6824i 0.982653 0.713939i
\(547\) −1.18186 1.62669i −0.0505327 0.0695523i 0.783003 0.622018i \(-0.213687\pi\)
−0.833536 + 0.552466i \(0.813687\pi\)
\(548\) 0.750189 0.243751i 0.0320465 0.0104125i
\(549\) 0.572158 0.0244191
\(550\) 1.90595 + 0.222262i 0.0812700 + 0.00947728i
\(551\) −17.8922 −0.762231
\(552\) 22.1047 7.18226i 0.940840 0.305697i
\(553\) 11.8545 + 16.3163i 0.504105 + 0.693842i
\(554\) −2.88005 + 2.09248i −0.122362 + 0.0889009i
\(555\) −29.5210 + 26.2785i −1.25310 + 1.11546i
\(556\) −2.93388 2.13159i −0.124424 0.0903995i
\(557\) 17.0724i 0.723381i −0.932298 0.361691i \(-0.882200\pi\)
0.932298 0.361691i \(-0.117800\pi\)
\(558\) 0.0964389 0.132737i 0.00408258 0.00561920i
\(559\) −4.04314 + 12.4435i −0.171007 + 0.526304i
\(560\) −1.68779 16.9867i −0.0713222 0.717819i
\(561\) −0.167498 0.515506i −0.00707177 0.0217647i
\(562\) 8.87949 + 2.88512i 0.374559 + 0.121702i
\(563\) −8.75831 2.84575i −0.369119 0.119934i 0.118583 0.992944i \(-0.462165\pi\)
−0.487702 + 0.873010i \(0.662165\pi\)
\(564\) −1.19976 3.69249i −0.0505192 0.155482i
\(565\) 2.87393 + 28.9246i 0.120907 + 1.21687i
\(566\) 6.22280 19.1518i 0.261564 0.805010i
\(567\) −14.5054 + 19.9649i −0.609168 + 0.838448i
\(568\) 18.6041i 0.780609i
\(569\) 3.54787 + 2.57768i 0.148734 + 0.108062i 0.659664 0.751561i \(-0.270699\pi\)
−0.510929 + 0.859623i \(0.670699\pi\)
\(570\) −8.83974 + 7.86880i −0.370256 + 0.329588i
\(571\) 22.9341 16.6626i 0.959761 0.697307i 0.00666545 0.999978i \(-0.497878\pi\)
0.953095 + 0.302671i \(0.0978783\pi\)
\(572\) 0.424283 + 0.583975i 0.0177401 + 0.0244172i
\(573\) −5.35711 + 1.74063i −0.223796 + 0.0727158i
\(574\) 23.4877 0.980360
\(575\) 9.09605 19.8204i 0.379332 0.826569i
\(576\) 0.347845 0.0144936
\(577\) 15.5281 5.04538i 0.646442 0.210042i 0.0325976 0.999469i \(-0.489622\pi\)
0.613845 + 0.789427i \(0.289622\pi\)
\(578\) 0.725506 + 0.998574i 0.0301771 + 0.0415352i
\(579\) −6.44982 + 4.68607i −0.268045 + 0.194746i
\(580\) 7.71251 0.766311i 0.320245 0.0318194i
\(581\) 13.1995 + 9.58996i 0.547606 + 0.397859i
\(582\) 20.8861i 0.865755i
\(583\) −0.371674 + 0.511566i −0.0153932 + 0.0211869i
\(584\) −8.13231 + 25.0287i −0.336517 + 1.03569i
\(585\) 0.416476 + 0.0910026i 0.0172192 + 0.00376249i
\(586\) −12.0097 36.9622i −0.496118 1.52689i
\(587\) 1.16852 + 0.379676i 0.0482300 + 0.0156709i 0.333033 0.942915i \(-0.391928\pi\)
−0.284803 + 0.958586i \(0.591928\pi\)
\(588\) −0.259648 0.0843646i −0.0107077 0.00347914i
\(589\) 2.58204 + 7.94670i 0.106391 + 0.327438i
\(590\) 33.3651 14.6284i 1.37362 0.602241i
\(591\) 2.46215 7.57773i 0.101279 0.311706i
\(592\) 16.8055 23.1308i 0.690702 0.950670i
\(593\) 13.5555i 0.556657i 0.960486 + 0.278329i \(0.0897805\pi\)
−0.960486 + 0.278329i \(0.910220\pi\)
\(594\) 1.60261 + 1.16436i 0.0657557 + 0.0477743i
\(595\) −1.29221 + 5.91384i −0.0529754 + 0.242444i
\(596\) 0.664958 0.483120i 0.0272377 0.0197894i
\(597\) −17.9771 24.7434i −0.735755 1.01268i
\(598\) −24.9461 + 8.10549i −1.02012 + 0.331458i
\(599\) 28.7909 1.17637 0.588183 0.808728i \(-0.299844\pi\)
0.588183 + 0.808728i \(0.299844\pi\)
\(600\) 18.0525 19.5966i 0.736990 0.800026i
\(601\) −2.55531 −0.104233 −0.0521166 0.998641i \(-0.516597\pi\)
−0.0521166 + 0.998641i \(0.516597\pi\)
\(602\) −8.53391 + 2.77283i −0.347816 + 0.113012i
\(603\) 0.0486697 + 0.0669881i 0.00198198 + 0.00272797i
\(604\) −0.306374 + 0.222593i −0.0124662 + 0.00905720i
\(605\) 21.0446 + 12.3101i 0.855583 + 0.500478i
\(606\) 3.78149 + 2.74742i 0.153613 + 0.111606i
\(607\) 6.96166i 0.282565i −0.989969 0.141282i \(-0.954877\pi\)
0.989969 0.141282i \(-0.0451226\pi\)
\(608\) −3.80633 + 5.23897i −0.154367 + 0.212468i
\(609\) −10.6086 + 32.6500i −0.429883 + 1.32304i
\(610\) −20.3769 + 34.8350i −0.825037 + 1.41043i
\(611\) 7.03714 + 21.6581i 0.284692 + 0.876192i
\(612\) −0.0177323 0.00576157i −0.000716786 0.000232898i
\(613\) 18.6779 + 6.06881i 0.754393 + 0.245117i 0.660870 0.750500i \(-0.270187\pi\)
0.0935225 + 0.995617i \(0.470187\pi\)
\(614\) 10.4934 + 32.2953i 0.423479 + 1.30333i
\(615\) 18.2188 + 20.4668i 0.734652 + 0.825301i
\(616\) −0.795072 + 2.44698i −0.0320344 + 0.0985916i
\(617\) −3.94807 + 5.43406i −0.158943 + 0.218767i −0.881060 0.473005i \(-0.843169\pi\)
0.722117 + 0.691771i \(0.243169\pi\)
\(618\) 41.6469i 1.67528i
\(619\) −6.91132 5.02137i −0.277789 0.201826i 0.440163 0.897918i \(-0.354921\pi\)
−0.717953 + 0.696092i \(0.754921\pi\)
\(620\) −1.45336 3.31488i −0.0583682 0.133129i
\(621\) 18.2136 13.2330i 0.730888 0.531021i
\(622\) −5.03947 6.93624i −0.202065 0.278118i
\(623\) 23.7930 7.73082i 0.953248 0.309729i
\(624\) −23.9524 −0.958863
\(625\) −2.04717 24.9160i −0.0818867 0.996642i
\(626\) −35.6613 −1.42531
\(627\) 1.26796 0.411986i 0.0506376 0.0164531i
\(628\) 5.83710 + 8.03409i 0.232926 + 0.320595i
\(629\) −8.20249 + 5.95945i −0.327055 + 0.237619i
\(630\) 0.117395 + 0.267759i 0.00467712 + 0.0106678i
\(631\) −30.0428 21.8274i −1.19599 0.868935i −0.202102 0.979364i \(-0.564777\pi\)
−0.993884 + 0.110430i \(0.964777\pi\)
\(632\) 22.7726i 0.905845i
\(633\) −20.5689 + 28.3106i −0.817539 + 1.12525i
\(634\) 1.96587 6.05032i 0.0780746 0.240289i
\(635\) −3.41086 3.83173i −0.135356 0.152058i
\(636\) 0.522039 + 1.60667i 0.0207002 + 0.0637086i
\(637\) 1.52295 + 0.494835i 0.0603413 + 0.0196061i
\(638\) 2.65504 + 0.862674i 0.105114 + 0.0341536i
\(639\) −0.0735927 0.226495i −0.00291128 0.00896000i
\(640\) −6.44326 + 11.0149i −0.254692 + 0.435404i
\(641\) 2.98461 9.18570i 0.117885 0.362813i −0.874653 0.484750i \(-0.838911\pi\)
0.992538 + 0.121937i \(0.0389106\pi\)
\(642\) −24.1837 + 33.2860i −0.954455 + 1.31369i
\(643\) 3.72549i 0.146919i −0.997298 0.0734595i \(-0.976596\pi\)
0.997298 0.0734595i \(-0.0234040\pi\)
\(644\) 4.55166 + 3.30697i 0.179361 + 0.130313i
\(645\) −9.03571 5.28549i −0.355781 0.208116i
\(646\) −2.45614 + 1.78449i −0.0966356 + 0.0702099i
\(647\) 19.1221 + 26.3193i 0.751766 + 1.03472i 0.997855 + 0.0654695i \(0.0208545\pi\)
−0.246089 + 0.969247i \(0.579145\pi\)
\(648\) 26.5011 8.61071i 1.04106 0.338261i
\(649\) −4.10409 −0.161100
\(650\) −20.3730 + 22.1156i −0.799095 + 0.867443i
\(651\) 16.0322 0.628353
\(652\) −8.39434 + 2.72749i −0.328748 + 0.106817i
\(653\) −17.6170 24.2477i −0.689406 0.948885i 0.310593 0.950543i \(-0.399472\pi\)
−0.999999 + 0.00165762i \(0.999472\pi\)
\(654\) −16.5501 + 12.0243i −0.647160 + 0.470189i
\(655\) −4.20780 + 19.2571i −0.164412 + 0.752438i
\(656\) −16.0365 11.6512i −0.626120 0.454903i
\(657\) 0.336881i 0.0131430i
\(658\) −9.17989 + 12.6350i −0.357870 + 0.492565i
\(659\) −0.941458 + 2.89751i −0.0366740 + 0.112871i −0.967718 0.252037i \(-0.918900\pi\)
0.931044 + 0.364908i \(0.118900\pi\)
\(660\) −0.528917 + 0.231895i −0.0205881 + 0.00902651i
\(661\) 6.36053 + 19.5757i 0.247396 + 0.761406i 0.995233 + 0.0975240i \(0.0310923\pi\)
−0.747837 + 0.663882i \(0.768908\pi\)
\(662\) 6.51736 + 2.11762i 0.253304 + 0.0823035i
\(663\) 8.07812 + 2.62474i 0.313728 + 0.101936i
\(664\) −5.69282 17.5207i −0.220924 0.679935i
\(665\) −14.5460 3.17838i −0.564069 0.123252i
\(666\) −0.151320 + 0.465715i −0.00586353 + 0.0180461i
\(667\) 18.6489 25.6680i 0.722088 0.993869i
\(668\) 9.98371i 0.386281i
\(669\) 17.8522 + 12.9704i 0.690204 + 0.501463i
\(670\) −5.81179 + 0.577457i −0.224529 + 0.0223091i
\(671\) 3.67809 2.67229i 0.141991 0.103163i
\(672\) 7.30333 + 10.0522i 0.281732 + 0.387771i
\(673\) −11.0653 + 3.59533i −0.426536 + 0.138590i −0.514415 0.857541i \(-0.671991\pi\)
0.0878794 + 0.996131i \(0.471991\pi\)
\(674\) −39.6747 −1.52821
\(675\) 10.7647 23.4564i 0.414333 0.902838i
\(676\) −5.11694 −0.196806
\(677\) 38.4375 12.4891i 1.47727 0.479995i 0.543976 0.839101i \(-0.316918\pi\)
0.933297 + 0.359106i \(0.116918\pi\)
\(678\) 16.4411 + 22.6293i 0.631417 + 0.869072i
\(679\) 21.2583 15.4451i 0.815820 0.592728i
\(680\) 5.10538 4.54462i 0.195782 0.174278i
\(681\) −21.8586 15.8812i −0.837622 0.608568i
\(682\) 1.30371i 0.0499218i
\(683\) 17.3088 23.8236i 0.662304 0.911584i −0.337251 0.941415i \(-0.609497\pi\)
0.999555 + 0.0298313i \(0.00949699\pi\)
\(684\) 0.0141714 0.0436152i 0.000541859 0.00166767i
\(685\) −0.365991 3.68351i −0.0139838 0.140740i
\(686\) −6.88859 21.2009i −0.263007 0.809454i
\(687\) 23.3230 + 7.57809i 0.889826 + 0.289122i
\(688\) 7.20208 + 2.34010i 0.274577 + 0.0892154i
\(689\) −3.06198 9.42382i −0.116652 0.359019i
\(690\) −2.07493 20.8830i −0.0789912 0.795004i
\(691\) 6.22003 19.1433i 0.236621 0.728245i −0.760281 0.649594i \(-0.774939\pi\)
0.996902 0.0786507i \(-0.0250612\pi\)
\(692\) 1.33745 1.84084i 0.0508422 0.0699783i
\(693\) 0.0329358i 0.00125113i
\(694\) 15.5312 + 11.2841i 0.589557 + 0.428338i
\(695\) −12.7116 + 11.3153i −0.482177 + 0.429216i
\(696\) 31.3603 22.7846i 1.18871 0.863649i
\(697\) 4.13167 + 5.68675i 0.156498 + 0.215401i
\(698\) 34.2407 11.1255i 1.29603 0.421105i
\(699\) −5.29395 −0.200236
\(700\) 6.40625 + 0.747063i 0.242134 + 0.0282363i
\(701\) −44.6351 −1.68584 −0.842921 0.538037i \(-0.819166\pi\)
−0.842921 + 0.538037i \(0.819166\pi\)
\(702\) −29.5224 + 9.59242i −1.11425 + 0.362043i
\(703\) −14.6582 20.1752i −0.552843 0.760924i
\(704\) 2.23611 1.62463i 0.0842764 0.0612304i
\(705\) −18.1305 + 1.80144i −0.682835 + 0.0678462i
\(706\) −15.5809 11.3202i −0.586396 0.426042i
\(707\) 5.88059i 0.221162i
\(708\) −6.44484 + 8.87057i −0.242212 + 0.333376i
\(709\) 4.56771 14.0580i 0.171544 0.527958i −0.827915 0.560854i \(-0.810473\pi\)
0.999459 + 0.0328956i \(0.0104729\pi\)
\(710\) 16.4107 + 3.58585i 0.615884 + 0.134574i
\(711\) 0.0900822 + 0.277245i 0.00337835 + 0.0103975i
\(712\) −26.8656 8.72916i −1.00683 0.327139i
\(713\) −14.0915 4.57862i −0.527733 0.171471i
\(714\) 1.80008 + 5.54008i 0.0673663 + 0.207332i
\(715\) 3.10233 1.36017i 0.116021 0.0508673i
\(716\) 0.0836494 0.257446i 0.00312613 0.00962122i
\(717\) −3.86269 + 5.31653i −0.144255 + 0.198549i
\(718\) 30.7076i 1.14600i
\(719\) 28.0820 + 20.4028i 1.04728 + 0.760896i 0.971694 0.236243i \(-0.0759163\pi\)
0.0755890 + 0.997139i \(0.475916\pi\)
\(720\) 0.0526708 0.241049i 0.00196292 0.00898338i
\(721\) −42.3892 + 30.7976i −1.57866 + 1.14696i
\(722\) 9.39540 + 12.9317i 0.349660 + 0.481266i
\(723\) 8.91014 2.89508i 0.331372 0.107669i
\(724\) 0.409324 0.0152124
\(725\) 4.21289 36.1265i 0.156463 1.34171i
\(726\) 23.4615 0.870739
\(727\) −15.2595 + 4.95812i −0.565945 + 0.183887i −0.577994 0.816041i \(-0.696164\pi\)
0.0120495 + 0.999927i \(0.496164\pi\)
\(728\) −23.6984 32.6181i −0.878322 1.20891i
\(729\) 21.5512 15.6578i 0.798191 0.579920i
\(730\) 20.5105 + 11.9977i 0.759126 + 0.444055i
\(731\) −2.17252 1.57843i −0.0803537 0.0583804i
\(732\) 12.1462i 0.448938i
\(733\) −31.1272 + 42.8430i −1.14971 + 1.58244i −0.406099 + 0.913829i \(0.633111\pi\)
−0.743611 + 0.668612i \(0.766889\pi\)
\(734\) 7.34346 22.6008i 0.271052 0.834212i
\(735\) −0.646885 + 1.10587i −0.0238607 + 0.0407906i
\(736\) −3.54848 10.9211i −0.130799 0.402557i
\(737\) 0.625741 + 0.203316i 0.0230495 + 0.00748923i
\(738\) 0.322879 + 0.104910i 0.0118853 + 0.00386178i
\(739\) 3.15502 + 9.71015i 0.116059 + 0.357194i 0.992166 0.124923i \(-0.0398683\pi\)
−0.876107 + 0.482116i \(0.839868\pi\)
\(740\) 7.18258 + 8.06885i 0.264037 + 0.296617i
\(741\) −6.45594 + 19.8693i −0.237165 + 0.729919i
\(742\) 3.99434 5.49773i 0.146637 0.201828i
\(743\) 35.1178i 1.28835i −0.764880 0.644173i \(-0.777202\pi\)
0.764880 0.644173i \(-0.222798\pi\)
\(744\) −14.6453 10.6404i −0.536923 0.390098i
\(745\) −1.54879 3.53255i −0.0567432 0.129423i
\(746\) 24.6128 17.8823i 0.901139 0.654716i
\(747\) 0.138614 + 0.190786i 0.00507164 + 0.00698051i
\(748\) −0.140901 + 0.0457815i −0.00515184 + 0.00167394i
\(749\) −51.7630 −1.89138
\(750\) −13.8067 19.7013i −0.504149 0.719391i
\(751\) 12.5728 0.458788 0.229394 0.973334i \(-0.426326\pi\)
0.229394 + 0.973334i \(0.426326\pi\)
\(752\) 12.5353 4.07297i 0.457116 0.148526i
\(753\) 6.48296 + 8.92303i 0.236252 + 0.325173i
\(754\) −35.3915 + 25.7134i −1.28888 + 0.936428i
\(755\) 0.713590 + 1.62759i 0.0259702 + 0.0592340i
\(756\) 5.38665 + 3.91363i 0.195911 + 0.142337i
\(757\) 17.4575i 0.634502i −0.948342 0.317251i \(-0.897240\pi\)
0.948342 0.317251i \(-0.102760\pi\)
\(758\) 0.620242 0.853690i 0.0225282 0.0310074i
\(759\) −0.730558 + 2.24842i −0.0265176 + 0.0816127i
\(760\) 11.1782 + 12.5575i 0.405475 + 0.455507i
\(761\) 8.88365 + 27.3411i 0.322032 + 0.991113i 0.972763 + 0.231804i \(0.0744628\pi\)
−0.650730 + 0.759309i \(0.725537\pi\)
\(762\) −4.69493 1.52548i −0.170079 0.0552622i
\(763\) −24.4773 7.95317i −0.886139 0.287924i
\(764\) 0.475758 + 1.46423i 0.0172123 + 0.0529741i
\(765\) −0.0441782 + 0.0755239i −0.00159726 + 0.00273057i
\(766\) 5.69230 17.5191i 0.205671 0.632991i
\(767\) 37.8018 52.0297i 1.36494 1.87868i
\(768\) 18.7147i 0.675307i
\(769\) −39.2929 28.5480i −1.41694 1.02947i −0.992267 0.124119i \(-0.960389\pi\)
−0.424672 0.905347i \(-0.639611\pi\)
\(770\) 2.00525 + 1.17298i 0.0722641 + 0.0422713i
\(771\) 13.8937