Properties

Label 425.2.r.a.69.12
Level $425$
Weight $2$
Character 425.69
Analytic conductor $3.394$
Analytic rank $0$
Dimension $160$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(69,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([9, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(160\)
Relative dimension: \(40\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 69.12
Character \(\chi\) \(=\) 425.69
Dual form 425.2.r.a.154.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38991 + 0.451609i) q^{2} +(1.86675 + 2.56936i) q^{3} +(0.109865 - 0.0798213i) q^{4} +(2.21373 - 0.315251i) q^{5} +(-3.75495 - 2.72813i) q^{6} +0.259005i q^{7} +(1.60137 - 2.20410i) q^{8} +(-2.18980 + 6.73951i) q^{9} +(-2.93452 + 1.43791i) q^{10} +(0.353460 + 1.08784i) q^{11} +(0.410179 + 0.133275i) q^{12} +(0.350179 + 0.113780i) q^{13} +(-0.116969 - 0.359993i) q^{14} +(4.94247 + 5.09938i) q^{15} +(-1.31430 + 4.04499i) q^{16} +(-0.587785 + 0.809017i) q^{17} -10.3562i q^{18} +(2.44657 + 1.77754i) q^{19} +(0.218047 - 0.211338i) q^{20} +(-0.665475 + 0.483496i) q^{21} +(-0.982555 - 1.35237i) q^{22} +(-2.23279 + 0.725476i) q^{23} +8.65246 q^{24} +(4.80123 - 1.39576i) q^{25} -0.538101 q^{26} +(-12.3426 + 4.01036i) q^{27} +(0.0206741 + 0.0284555i) q^{28} +(5.99815 - 4.35791i) q^{29} +(-9.17252 - 4.85561i) q^{30} +(-5.81450 - 4.22448i) q^{31} -0.766902i q^{32} +(-2.13522 + 2.93888i) q^{33} +(0.451609 - 1.38991i) q^{34} +(0.0816516 + 0.573367i) q^{35} +(0.297375 + 0.915226i) q^{36} +(-9.73573 - 3.16333i) q^{37} +(-4.20327 - 1.36572i) q^{38} +(0.361354 + 1.11213i) q^{39} +(2.85016 - 5.38411i) q^{40} +(0.123545 - 0.380232i) q^{41} +(0.706599 - 0.972551i) q^{42} -1.20039i q^{43} +(0.125665 + 0.0913012i) q^{44} +(-2.72299 + 15.6098i) q^{45} +(2.77574 - 2.01669i) q^{46} +(-4.59394 - 6.32301i) q^{47} +(-12.8465 + 4.17408i) q^{48} +6.93292 q^{49} +(-6.04294 + 4.10827i) q^{50} -3.17590 q^{51} +(0.0475543 - 0.0154513i) q^{52} +(5.64170 + 7.76513i) q^{53} +(15.3440 - 11.1481i) q^{54} +(1.12541 + 2.29675i) q^{55} +(0.570871 + 0.414762i) q^{56} +9.60433i q^{57} +(-6.36882 + 8.76593i) q^{58} +(-2.50095 + 7.69712i) q^{59} +(0.950042 + 0.165726i) q^{60} +(-0.665804 - 2.04913i) q^{61} +(9.98945 + 3.24577i) q^{62} +(-1.74556 - 0.567168i) q^{63} +(-2.28226 - 7.02406i) q^{64} +(0.811072 + 0.141484i) q^{65} +(1.64054 - 5.04907i) q^{66} +(7.79166 - 10.7243i) q^{67} +0.135800i q^{68} +(-6.03205 - 4.38254i) q^{69} +(-0.372426 - 0.760054i) q^{70} +(2.00137 - 1.45408i) q^{71} +(11.3478 + 15.6190i) q^{72} +(1.02055 - 0.331597i) q^{73} +14.9604 q^{74} +(12.5489 + 9.73054i) q^{75} +0.410677 q^{76} +(-0.281755 + 0.0915477i) q^{77} +(-1.00450 - 1.38257i) q^{78} +(1.43101 - 1.03969i) q^{79} +(-1.63432 + 9.36887i) q^{80} +(-16.1457 - 11.7305i) q^{81} +0.584282i q^{82} +(-7.49157 + 10.3113i) q^{83} +(-0.0345189 + 0.106238i) q^{84} +(-1.04616 + 1.97625i) q^{85} +(0.542109 + 1.66844i) q^{86} +(22.3941 + 7.27627i) q^{87} +(2.96372 + 0.962970i) q^{88} +(0.317468 + 0.977065i) q^{89} +(-3.26482 - 22.9260i) q^{90} +(-0.0294695 + 0.0906979i) q^{91} +(-0.187396 + 0.257928i) q^{92} -22.8256i q^{93} +(9.24069 + 6.71375i) q^{94} +(5.97643 + 3.16371i) q^{95} +(1.97045 - 1.43161i) q^{96} +(-8.37484 - 11.5270i) q^{97} +(-9.63613 + 3.13097i) q^{98} -8.10550 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 160 q + 40 q^{4} - 8 q^{5} + 4 q^{6} - 30 q^{8} + 36 q^{9} - 6 q^{10} + 8 q^{11} - 40 q^{12} - 20 q^{14} - 40 q^{15} - 64 q^{16} + 6 q^{19} + 2 q^{20} - 50 q^{22} + 20 q^{23} + 20 q^{24} + 32 q^{25} + 20 q^{26}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38991 + 0.451609i −0.982815 + 0.319336i −0.755978 0.654597i \(-0.772838\pi\)
−0.226837 + 0.973933i \(0.572838\pi\)
\(3\) 1.86675 + 2.56936i 1.07777 + 1.48342i 0.861956 + 0.506984i \(0.169240\pi\)
0.215811 + 0.976435i \(0.430760\pi\)
\(4\) 0.109865 0.0798213i 0.0549323 0.0399107i
\(5\) 2.21373 0.315251i 0.990012 0.140985i
\(6\) −3.75495 2.72813i −1.53295 1.11376i
\(7\) 0.259005i 0.0978946i 0.998801 + 0.0489473i \(0.0155866\pi\)
−0.998801 + 0.0489473i \(0.984413\pi\)
\(8\) 1.60137 2.20410i 0.566169 0.779265i
\(9\) −2.18980 + 6.73951i −0.729933 + 2.24650i
\(10\) −2.93452 + 1.43791i −0.927977 + 0.454708i
\(11\) 0.353460 + 1.08784i 0.106572 + 0.327995i 0.990096 0.140390i \(-0.0448358\pi\)
−0.883524 + 0.468386i \(0.844836\pi\)
\(12\) 0.410179 + 0.133275i 0.118408 + 0.0384732i
\(13\) 0.350179 + 0.113780i 0.0971221 + 0.0315569i 0.357175 0.934037i \(-0.383740\pi\)
−0.260053 + 0.965594i \(0.583740\pi\)
\(14\) −0.116969 0.359993i −0.0312612 0.0962122i
\(15\) 4.94247 + 5.09938i 1.27614 + 1.31665i
\(16\) −1.31430 + 4.04499i −0.328575 + 1.01125i
\(17\) −0.587785 + 0.809017i −0.142559 + 0.196215i
\(18\) 10.3562i 2.44099i
\(19\) 2.44657 + 1.77754i 0.561282 + 0.407795i 0.831928 0.554884i \(-0.187237\pi\)
−0.270646 + 0.962679i \(0.587237\pi\)
\(20\) 0.218047 0.211338i 0.0487568 0.0472566i
\(21\) −0.665475 + 0.483496i −0.145219 + 0.105508i
\(22\) −0.982555 1.35237i −0.209481 0.288326i
\(23\) −2.23279 + 0.725476i −0.465568 + 0.151272i −0.532401 0.846492i \(-0.678710\pi\)
0.0668336 + 0.997764i \(0.478710\pi\)
\(24\) 8.65246 1.76618
\(25\) 4.80123 1.39576i 0.960247 0.279153i
\(26\) −0.538101 −0.105530
\(27\) −12.3426 + 4.01036i −2.37534 + 0.771794i
\(28\) 0.0206741 + 0.0284555i 0.00390704 + 0.00537757i
\(29\) 5.99815 4.35791i 1.11383 0.809244i 0.130567 0.991440i \(-0.458320\pi\)
0.983262 + 0.182196i \(0.0583204\pi\)
\(30\) −9.17252 4.85561i −1.67466 0.886509i
\(31\) −5.81450 4.22448i −1.04432 0.758740i −0.0731924 0.997318i \(-0.523319\pi\)
−0.971123 + 0.238578i \(0.923319\pi\)
\(32\) 0.766902i 0.135570i
\(33\) −2.13522 + 2.93888i −0.371695 + 0.511594i
\(34\) 0.451609 1.38991i 0.0774503 0.238368i
\(35\) 0.0816516 + 0.573367i 0.0138016 + 0.0969168i
\(36\) 0.297375 + 0.915226i 0.0495625 + 0.152538i
\(37\) −9.73573 3.16333i −1.60054 0.520048i −0.633302 0.773905i \(-0.718301\pi\)
−0.967242 + 0.253857i \(0.918301\pi\)
\(38\) −4.20327 1.36572i −0.681860 0.221550i
\(39\) 0.361354 + 1.11213i 0.0578629 + 0.178084i
\(40\) 2.85016 5.38411i 0.450650 0.851303i
\(41\) 0.123545 0.380232i 0.0192945 0.0593823i −0.940946 0.338558i \(-0.890061\pi\)
0.960240 + 0.279175i \(0.0900610\pi\)
\(42\) 0.706599 0.972551i 0.109031 0.150068i
\(43\) 1.20039i 0.183058i −0.995802 0.0915292i \(-0.970825\pi\)
0.995802 0.0915292i \(-0.0291755\pi\)
\(44\) 0.125665 + 0.0913012i 0.0189448 + 0.0137642i
\(45\) −2.72299 + 15.6098i −0.405920 + 2.32697i
\(46\) 2.77574 2.01669i 0.409260 0.297345i
\(47\) −4.59394 6.32301i −0.670095 0.922306i 0.329668 0.944097i \(-0.393063\pi\)
−0.999763 + 0.0217908i \(0.993063\pi\)
\(48\) −12.8465 + 4.17408i −1.85423 + 0.602476i
\(49\) 6.93292 0.990417
\(50\) −6.04294 + 4.10827i −0.854601 + 0.580997i
\(51\) −3.17590 −0.444715
\(52\) 0.0475543 0.0154513i 0.00659460 0.00214272i
\(53\) 5.64170 + 7.76513i 0.774947 + 1.06662i 0.995822 + 0.0913210i \(0.0291089\pi\)
−0.220874 + 0.975302i \(0.570891\pi\)
\(54\) 15.3440 11.1481i 2.08806 1.51706i
\(55\) 1.12541 + 2.29675i 0.151750 + 0.309694i
\(56\) 0.570871 + 0.414762i 0.0762858 + 0.0554249i
\(57\) 9.60433i 1.27212i
\(58\) −6.36882 + 8.76593i −0.836267 + 1.15102i
\(59\) −2.50095 + 7.69712i −0.325595 + 1.00208i 0.645576 + 0.763696i \(0.276617\pi\)
−0.971171 + 0.238383i \(0.923383\pi\)
\(60\) 0.950042 + 0.165726i 0.122650 + 0.0213952i
\(61\) −0.665804 2.04913i −0.0852474 0.262365i 0.899342 0.437246i \(-0.144046\pi\)
−0.984590 + 0.174881i \(0.944046\pi\)
\(62\) 9.98945 + 3.24577i 1.26866 + 0.412213i
\(63\) −1.74556 0.567168i −0.219920 0.0714565i
\(64\) −2.28226 7.02406i −0.285282 0.878008i
\(65\) 0.811072 + 0.141484i 0.100601 + 0.0175490i
\(66\) 1.64054 5.04907i 0.201937 0.621497i
\(67\) 7.79166 10.7243i 0.951902 1.31018i 0.00122494 0.999999i \(-0.499610\pi\)
0.950677 0.310182i \(-0.100390\pi\)
\(68\) 0.135800i 0.0164682i
\(69\) −6.03205 4.38254i −0.726174 0.527596i
\(70\) −0.372426 0.760054i −0.0445134 0.0908439i
\(71\) 2.00137 1.45408i 0.237519 0.172568i −0.462658 0.886537i \(-0.653104\pi\)
0.700177 + 0.713969i \(0.253104\pi\)
\(72\) 11.3478 + 15.6190i 1.33736 + 1.84071i
\(73\) 1.02055 0.331597i 0.119446 0.0388104i −0.248684 0.968585i \(-0.579998\pi\)
0.368130 + 0.929774i \(0.379998\pi\)
\(74\) 14.9604 1.73911
\(75\) 12.5489 + 9.73054i 1.44902 + 1.12359i
\(76\) 0.410677 0.0471079
\(77\) −0.281755 + 0.0915477i −0.0321090 + 0.0104328i
\(78\) −1.00450 1.38257i −0.113737 0.156546i
\(79\) 1.43101 1.03969i 0.161002 0.116975i −0.504367 0.863489i \(-0.668274\pi\)
0.665369 + 0.746515i \(0.268274\pi\)
\(80\) −1.63432 + 9.36887i −0.182722 + 1.04747i
\(81\) −16.1457 11.7305i −1.79397 1.30339i
\(82\) 0.584282i 0.0645232i
\(83\) −7.49157 + 10.3113i −0.822307 + 1.13181i 0.166999 + 0.985957i \(0.446592\pi\)
−0.989306 + 0.145852i \(0.953408\pi\)
\(84\) −0.0345189 + 0.106238i −0.00376632 + 0.0115915i
\(85\) −1.04616 + 1.97625i −0.113472 + 0.214354i
\(86\) 0.542109 + 1.66844i 0.0584571 + 0.179912i
\(87\) 22.3941 + 7.27627i 2.40090 + 0.780098i
\(88\) 2.96372 + 0.962970i 0.315933 + 0.102653i
\(89\) 0.317468 + 0.977065i 0.0336515 + 0.103569i 0.966471 0.256774i \(-0.0826597\pi\)
−0.932820 + 0.360343i \(0.882660\pi\)
\(90\) −3.26482 22.9260i −0.344142 2.41661i
\(91\) −0.0294695 + 0.0906979i −0.00308925 + 0.00950773i
\(92\) −0.187396 + 0.257928i −0.0195373 + 0.0268909i
\(93\) 22.8256i 2.36690i
\(94\) 9.24069 + 6.71375i 0.953104 + 0.692471i
\(95\) 5.97643 + 3.16371i 0.613169 + 0.324590i
\(96\) 1.97045 1.43161i 0.201108 0.146113i
\(97\) −8.37484 11.5270i −0.850336 1.17039i −0.983789 0.179332i \(-0.942607\pi\)
0.133453 0.991055i \(-0.457393\pi\)
\(98\) −9.63613 + 3.13097i −0.973396 + 0.316276i
\(99\) −8.10550 −0.814633
\(100\) 0.416074 0.536586i 0.0416074 0.0536586i
\(101\) 17.7828 1.76946 0.884730 0.466104i \(-0.154343\pi\)
0.884730 + 0.466104i \(0.154343\pi\)
\(102\) 4.41421 1.43427i 0.437072 0.142013i
\(103\) −7.29047 10.0345i −0.718352 0.988726i −0.999577 0.0290845i \(-0.990741\pi\)
0.281225 0.959642i \(-0.409259\pi\)
\(104\) 0.811547 0.589624i 0.0795788 0.0578174i
\(105\) −1.32076 + 1.28012i −0.128893 + 0.124927i
\(106\) −11.3483 8.24499i −1.10224 0.800825i
\(107\) 5.23562i 0.506146i 0.967447 + 0.253073i \(0.0814413\pi\)
−0.967447 + 0.253073i \(0.918559\pi\)
\(108\) −1.03591 + 1.42580i −0.0996800 + 0.137198i
\(109\) 5.18707 15.9642i 0.496831 1.52909i −0.317253 0.948341i \(-0.602760\pi\)
0.814084 0.580747i \(-0.197240\pi\)
\(110\) −2.60145 2.68404i −0.248039 0.255913i
\(111\) −10.0464 30.9197i −0.953564 2.93477i
\(112\) −1.04767 0.340409i −0.0989957 0.0321657i
\(113\) 8.27551 + 2.68888i 0.778494 + 0.252948i 0.671197 0.741279i \(-0.265780\pi\)
0.107297 + 0.994227i \(0.465780\pi\)
\(114\) −4.33740 13.3491i −0.406235 1.25026i
\(115\) −4.71408 + 2.30990i −0.439591 + 0.215399i
\(116\) 0.311130 0.957561i 0.0288877 0.0889073i
\(117\) −1.53364 + 2.11088i −0.141785 + 0.195151i
\(118\) 11.8278i 1.08883i
\(119\) −0.209539 0.152239i −0.0192084 0.0139557i
\(120\) 19.1542 2.72770i 1.74853 0.249004i
\(121\) 7.84073 5.69662i 0.712794 0.517875i
\(122\) 1.85081 + 2.54743i 0.167565 + 0.230633i
\(123\) 1.20758 0.392366i 0.108884 0.0353785i
\(124\) −0.976012 −0.0876485
\(125\) 10.1886 4.60345i 0.911299 0.411745i
\(126\) 2.68231 0.238960
\(127\) −6.74357 + 2.19112i −0.598395 + 0.194430i −0.592524 0.805552i \(-0.701869\pi\)
−0.00587048 + 0.999983i \(0.501869\pi\)
\(128\) 7.24581 + 9.97300i 0.640445 + 0.881497i
\(129\) 3.08424 2.24083i 0.271552 0.197294i
\(130\) −1.19121 + 0.169637i −0.104476 + 0.0148782i
\(131\) 17.7804 + 12.9182i 1.55348 + 1.12867i 0.941108 + 0.338107i \(0.109786\pi\)
0.612377 + 0.790566i \(0.290214\pi\)
\(132\) 0.493315i 0.0429376i
\(133\) −0.460391 + 0.633673i −0.0399209 + 0.0549464i
\(134\) −5.98651 + 18.4246i −0.517156 + 1.59164i
\(135\) −26.0590 + 12.7689i −2.24280 + 1.09897i
\(136\) 0.841890 + 2.59107i 0.0721914 + 0.222182i
\(137\) 5.95869 + 1.93610i 0.509085 + 0.165412i 0.552286 0.833655i \(-0.313756\pi\)
−0.0432009 + 0.999066i \(0.513756\pi\)
\(138\) 10.3632 + 3.36721i 0.882174 + 0.286636i
\(139\) 4.24912 + 13.0774i 0.360405 + 1.10921i 0.952808 + 0.303572i \(0.0981793\pi\)
−0.592403 + 0.805642i \(0.701821\pi\)
\(140\) 0.0547376 + 0.0564753i 0.00462617 + 0.00477303i
\(141\) 7.67036 23.6069i 0.645960 1.98806i
\(142\) −2.12505 + 2.92488i −0.178330 + 0.245450i
\(143\) 0.421154i 0.0352187i
\(144\) −24.3832 17.7154i −2.03194 1.47629i
\(145\) 11.9045 11.5382i 0.988613 0.958194i
\(146\) −1.26872 + 0.921779i −0.105000 + 0.0762870i
\(147\) 12.9420 + 17.8131i 1.06744 + 1.46920i
\(148\) −1.32211 + 0.429581i −0.108677 + 0.0353113i
\(149\) −3.46162 −0.283587 −0.141794 0.989896i \(-0.545287\pi\)
−0.141794 + 0.989896i \(0.545287\pi\)
\(150\) −21.8362 7.85737i −1.78292 0.641552i
\(151\) −7.41033 −0.603044 −0.301522 0.953459i \(-0.597495\pi\)
−0.301522 + 0.953459i \(0.597495\pi\)
\(152\) 7.83573 2.54598i 0.635561 0.206506i
\(153\) −4.16524 5.73297i −0.336740 0.463483i
\(154\) 0.350270 0.254486i 0.0282256 0.0205071i
\(155\) −14.2035 7.51885i −1.14086 0.603929i
\(156\) 0.128472 + 0.0933403i 0.0102860 + 0.00747321i
\(157\) 14.2668i 1.13861i 0.822126 + 0.569306i \(0.192788\pi\)
−0.822126 + 0.569306i \(0.807212\pi\)
\(158\) −1.51945 + 2.09134i −0.120881 + 0.166378i
\(159\) −9.41977 + 28.9911i −0.747037 + 2.29914i
\(160\) −0.241767 1.69772i −0.0191134 0.134216i
\(161\) −0.187902 0.578302i −0.0148087 0.0455766i
\(162\) 27.7387 + 9.01284i 2.17936 + 0.708116i
\(163\) 10.3695 + 3.36925i 0.812201 + 0.263900i 0.685530 0.728045i \(-0.259571\pi\)
0.126671 + 0.991945i \(0.459571\pi\)
\(164\) −0.0167774 0.0516356i −0.00131010 0.00403206i
\(165\) −3.80033 + 7.17903i −0.295855 + 0.558887i
\(166\) 5.75595 17.7150i 0.446748 1.37495i
\(167\) 12.3594 17.0112i 0.956396 1.31637i 0.00776920 0.999970i \(-0.497527\pi\)
0.948627 0.316397i \(-0.102473\pi\)
\(168\) 2.24103i 0.172899i
\(169\) −10.4075 7.56152i −0.800580 0.581656i
\(170\) 0.561571 3.21926i 0.0430706 0.246906i
\(171\) −17.3372 + 12.5962i −1.32581 + 0.963258i
\(172\) −0.0958171 0.131881i −0.00730598 0.0100558i
\(173\) −17.9554 + 5.83405i −1.36512 + 0.443555i −0.897749 0.440507i \(-0.854799\pi\)
−0.467371 + 0.884061i \(0.654799\pi\)
\(174\) −34.4118 −2.60875
\(175\) 0.361510 + 1.24354i 0.0273276 + 0.0940029i
\(176\) −4.86485 −0.366702
\(177\) −24.4453 + 7.94275i −1.83742 + 0.597014i
\(178\) −0.882502 1.21466i −0.0661464 0.0910426i
\(179\) −8.39092 + 6.09636i −0.627167 + 0.455663i −0.855418 0.517939i \(-0.826699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(180\) 0.946835 + 1.93232i 0.0705729 + 0.144027i
\(181\) 5.83050 + 4.23611i 0.433378 + 0.314867i 0.782998 0.622024i \(-0.213689\pi\)
−0.349620 + 0.936891i \(0.613689\pi\)
\(182\) 0.139371i 0.0103308i
\(183\) 4.02207 5.53590i 0.297320 0.409226i
\(184\) −1.97650 + 6.08303i −0.145709 + 0.448447i
\(185\) −22.5495 3.93357i −1.65788 0.289202i
\(186\) 10.3082 + 31.7255i 0.755837 + 2.32623i
\(187\) −1.08784 0.353460i −0.0795506 0.0258475i
\(188\) −1.00942 0.327981i −0.0736197 0.0239205i
\(189\) −1.03870 3.19680i −0.0755544 0.232533i
\(190\) −9.73546 1.69826i −0.706284 0.123205i
\(191\) −0.0778776 + 0.239683i −0.00563502 + 0.0173428i −0.953834 0.300333i \(-0.902902\pi\)
0.948199 + 0.317676i \(0.102902\pi\)
\(192\) 13.7869 18.9761i 0.994986 1.36948i
\(193\) 16.8794i 1.21501i 0.794316 + 0.607504i \(0.207829\pi\)
−0.794316 + 0.607504i \(0.792171\pi\)
\(194\) 16.8460 + 12.2393i 1.20947 + 0.878731i
\(195\) 1.15054 + 2.34805i 0.0823921 + 0.168147i
\(196\) 0.761682 0.553395i 0.0544059 0.0395282i
\(197\) −12.0232 16.5485i −0.856615 1.17903i −0.982366 0.186967i \(-0.940134\pi\)
0.125752 0.992062i \(-0.459866\pi\)
\(198\) 11.2659 3.66052i 0.800633 0.260142i
\(199\) 10.2139 0.724042 0.362021 0.932170i \(-0.382087\pi\)
0.362021 + 0.932170i \(0.382087\pi\)
\(200\) 4.61215 12.8175i 0.326128 0.906335i
\(201\) 42.0996 2.96948
\(202\) −24.7166 + 8.03090i −1.73905 + 0.565052i
\(203\) 1.12872 + 1.55355i 0.0792206 + 0.109038i
\(204\) −0.348919 + 0.253505i −0.0244292 + 0.0177489i
\(205\) 0.153627 0.880680i 0.0107298 0.0615094i
\(206\) 14.6648 + 10.6546i 1.02174 + 0.742339i
\(207\) 16.6365i 1.15632i
\(208\) −0.920479 + 1.26693i −0.0638237 + 0.0878458i
\(209\) −1.06891 + 3.28976i −0.0739379 + 0.227557i
\(210\) 1.25763 2.37572i 0.0867844 0.163941i
\(211\) 1.64807 + 5.07225i 0.113458 + 0.349188i 0.991622 0.129171i \(-0.0412317\pi\)
−0.878164 + 0.478359i \(0.841232\pi\)
\(212\) 1.23965 + 0.402786i 0.0851393 + 0.0276634i
\(213\) 7.47211 + 2.42783i 0.511980 + 0.166352i
\(214\) −2.36445 7.27704i −0.161631 0.497448i
\(215\) −0.378426 2.65735i −0.0258084 0.181230i
\(216\) −10.9259 + 33.6264i −0.743412 + 2.28799i
\(217\) 1.09416 1.50598i 0.0742765 0.102233i
\(218\) 24.5313i 1.66147i
\(219\) 2.75710 + 2.00315i 0.186307 + 0.135360i
\(220\) 0.306972 + 0.162500i 0.0206961 + 0.0109558i
\(221\) −0.297880 + 0.216422i −0.0200376 + 0.0145581i
\(222\) 27.9272 + 38.4385i 1.87435 + 2.57983i
\(223\) −24.3194 + 7.90184i −1.62855 + 0.529147i −0.973936 0.226821i \(-0.927167\pi\)
−0.654609 + 0.755967i \(0.727167\pi\)
\(224\) 0.198631 0.0132716
\(225\) −1.10697 + 35.4144i −0.0737977 + 2.36096i
\(226\) −12.7165 −0.845891
\(227\) −13.6979 + 4.45071i −0.909161 + 0.295404i −0.726013 0.687681i \(-0.758629\pi\)
−0.183148 + 0.983085i \(0.558629\pi\)
\(228\) 0.766630 + 1.05518i 0.0507713 + 0.0698807i
\(229\) 20.5739 14.9478i 1.35956 0.987779i 0.361088 0.932532i \(-0.382405\pi\)
0.998473 0.0552473i \(-0.0175947\pi\)
\(230\) 5.50898 5.33947i 0.363251 0.352075i
\(231\) −0.761184 0.553033i −0.0500822 0.0363869i
\(232\) 20.1991i 1.32614i
\(233\) 6.52152 8.97610i 0.427239 0.588044i −0.540078 0.841615i \(-0.681605\pi\)
0.967317 + 0.253571i \(0.0816052\pi\)
\(234\) 1.17833 3.62654i 0.0770300 0.237074i
\(235\) −12.1631 12.5492i −0.793433 0.818621i
\(236\) 0.339629 + 1.04527i 0.0221079 + 0.0680413i
\(237\) 5.34268 + 1.73594i 0.347044 + 0.112762i
\(238\) 0.359993 + 0.116969i 0.0233349 + 0.00758196i
\(239\) 1.63488 + 5.03164i 0.105752 + 0.325470i 0.989906 0.141725i \(-0.0452648\pi\)
−0.884155 + 0.467194i \(0.845265\pi\)
\(240\) −27.1228 + 13.2902i −1.75077 + 0.857877i
\(241\) 0.0681714 0.209810i 0.00439130 0.0135150i −0.948837 0.315767i \(-0.897738\pi\)
0.953228 + 0.302252i \(0.0977383\pi\)
\(242\) −8.32526 + 11.4587i −0.535168 + 0.736596i
\(243\) 24.4486i 1.56838i
\(244\) −0.236713 0.171982i −0.0151540 0.0110100i
\(245\) 15.3476 2.18561i 0.980524 0.139634i
\(246\) −1.50123 + 1.09071i −0.0957149 + 0.0695410i
\(247\) 0.654489 + 0.900827i 0.0416441 + 0.0573182i
\(248\) −18.6223 + 6.05076i −1.18252 + 0.384224i
\(249\) −40.4782 −2.56520
\(250\) −12.0823 + 10.9997i −0.764153 + 0.695679i
\(251\) −7.69008 −0.485393 −0.242697 0.970102i \(-0.578032\pi\)
−0.242697 + 0.970102i \(0.578032\pi\)
\(252\) −0.237048 + 0.0770215i −0.0149326 + 0.00485190i
\(253\) −1.57840 2.17248i −0.0992331 0.136583i
\(254\) 8.38342 6.09091i 0.526023 0.382178i
\(255\) −7.03060 + 1.00121i −0.440273 + 0.0626980i
\(256\) −2.62487 1.90708i −0.164054 0.119192i
\(257\) 18.7288i 1.16827i −0.811657 0.584135i \(-0.801434\pi\)
0.811657 0.584135i \(-0.198566\pi\)
\(258\) −3.27484 + 4.50743i −0.203882 + 0.280620i
\(259\) 0.819317 2.52160i 0.0509099 0.156685i
\(260\) 0.100402 0.0491967i 0.00622664 0.00305105i
\(261\) 16.2354 + 49.9675i 1.00495 + 3.09291i
\(262\) −30.5472 9.92539i −1.88721 0.613193i
\(263\) −10.6989 3.47627i −0.659720 0.214356i −0.0400249 0.999199i \(-0.512744\pi\)
−0.619695 + 0.784843i \(0.712744\pi\)
\(264\) 3.05830 + 9.41247i 0.188225 + 0.579297i
\(265\) 14.9372 + 15.4114i 0.917584 + 0.946714i
\(266\) 0.353729 1.08867i 0.0216885 0.0667504i
\(267\) −1.91780 + 2.63962i −0.117367 + 0.161542i
\(268\) 1.80016i 0.109962i
\(269\) 10.9694 + 7.96975i 0.668817 + 0.485924i 0.869629 0.493706i \(-0.164358\pi\)
−0.200812 + 0.979630i \(0.564358\pi\)
\(270\) 30.4531 29.5161i 1.85332 1.79629i
\(271\) −17.9276 + 13.0251i −1.08902 + 0.791221i −0.979234 0.202734i \(-0.935017\pi\)
−0.109788 + 0.993955i \(0.535017\pi\)
\(272\) −2.49994 3.44088i −0.151581 0.208634i
\(273\) −0.288048 + 0.0935923i −0.0174334 + 0.00566446i
\(274\) −9.15640 −0.553159
\(275\) 3.21541 + 4.72961i 0.193896 + 0.285207i
\(276\) −1.01253 −0.0609471
\(277\) 2.37413 0.771403i 0.142648 0.0463491i −0.236823 0.971553i \(-0.576106\pi\)
0.379471 + 0.925204i \(0.376106\pi\)
\(278\) −11.8118 16.2575i −0.708423 0.975061i
\(279\) 41.2035 29.9361i 2.46679 1.79223i
\(280\) 1.39451 + 0.738205i 0.0833379 + 0.0441162i
\(281\) −2.91579 2.11845i −0.173942 0.126376i 0.497408 0.867517i \(-0.334285\pi\)
−0.671350 + 0.741141i \(0.734285\pi\)
\(282\) 36.2755i 2.16017i
\(283\) 18.2516 25.1212i 1.08495 1.49330i 0.230988 0.972956i \(-0.425804\pi\)
0.853957 0.520343i \(-0.174196\pi\)
\(284\) 0.103813 0.319504i 0.00616018 0.0189591i
\(285\) 3.02778 + 21.2614i 0.179350 + 1.25942i
\(286\) −0.190197 0.585367i −0.0112466 0.0346134i
\(287\) 0.0984819 + 0.0319987i 0.00581320 + 0.00188882i
\(288\) 5.16855 + 1.67936i 0.304559 + 0.0989574i
\(289\) −0.309017 0.951057i −0.0181775 0.0559445i
\(290\) −11.3354 + 21.4132i −0.665637 + 1.25743i
\(291\) 13.9832 43.0359i 0.819710 2.52281i
\(292\) 0.0856538 0.117892i 0.00501251 0.00689913i
\(293\) 8.89986i 0.519935i −0.965617 0.259968i \(-0.916288\pi\)
0.965617 0.259968i \(-0.0837119\pi\)
\(294\) −26.0328 18.9139i −1.51826 1.10308i
\(295\) −3.10990 + 17.8278i −0.181065 + 1.03797i
\(296\) −22.5628 + 16.3928i −1.31143 + 0.952813i
\(297\) −8.72524 12.0093i −0.506290 0.696848i
\(298\) 4.81135 1.56330i 0.278714 0.0905596i
\(299\) −0.864419 −0.0499906
\(300\) 2.15539 + 0.0673720i 0.124441 + 0.00388972i
\(301\) 0.310908 0.0179204
\(302\) 10.2997 3.34657i 0.592680 0.192574i
\(303\) 33.1961 + 45.6905i 1.90706 + 2.62485i
\(304\) −10.4057 + 7.56015i −0.596805 + 0.433604i
\(305\) −2.11990 4.32634i −0.121385 0.247725i
\(306\) 8.37838 + 6.08725i 0.478960 + 0.347985i
\(307\) 13.8368i 0.789709i −0.918744 0.394855i \(-0.870795\pi\)
0.918744 0.394855i \(-0.129205\pi\)
\(308\) −0.0236474 + 0.0325479i −0.00134744 + 0.00185459i
\(309\) 12.1727 37.4637i 0.692480 2.13123i
\(310\) 23.1372 + 4.03608i 1.31411 + 0.229234i
\(311\) −9.08306 27.9548i −0.515053 1.58517i −0.783186 0.621788i \(-0.786407\pi\)
0.268133 0.963382i \(-0.413593\pi\)
\(312\) 3.02991 + 0.984477i 0.171535 + 0.0557350i
\(313\) −33.4875 10.8808i −1.89283 0.615017i −0.976912 0.213643i \(-0.931467\pi\)
−0.915915 0.401373i \(-0.868533\pi\)
\(314\) −6.44300 19.8295i −0.363600 1.11904i
\(315\) −4.04301 0.705268i −0.227798 0.0397373i
\(316\) 0.0742282 0.228451i 0.00417566 0.0128514i
\(317\) 2.45777 3.38283i 0.138042 0.189998i −0.734399 0.678718i \(-0.762536\pi\)
0.872441 + 0.488720i \(0.162536\pi\)
\(318\) 44.5490i 2.49819i
\(319\) 6.86081 + 4.98467i 0.384131 + 0.279088i
\(320\) −7.26665 14.8299i −0.406218 0.829018i
\(321\) −13.4522 + 9.77357i −0.750827 + 0.545508i
\(322\) 0.522333 + 0.718929i 0.0291085 + 0.0400644i
\(323\) −2.87612 + 0.934507i −0.160031 + 0.0519974i
\(324\) −2.71019 −0.150566
\(325\) 1.84010 + 0.0575170i 0.102070 + 0.00319047i
\(326\) −15.9342 −0.882515
\(327\) 50.7005 16.4736i 2.80375 0.910992i
\(328\) −0.640227 0.881197i −0.0353506 0.0486560i
\(329\) 1.63769 1.18985i 0.0902887 0.0655986i
\(330\) 2.04000 11.6945i 0.112298 0.643759i
\(331\) 4.62835 + 3.36269i 0.254397 + 0.184830i 0.707673 0.706540i \(-0.249745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(332\) 1.73083i 0.0949917i
\(333\) 42.6386 58.6869i 2.33658 3.21603i
\(334\) −9.49599 + 29.2256i −0.519597 + 1.59916i
\(335\) 13.8678 26.1971i 0.757679 1.43130i
\(336\) −1.08111 3.32730i −0.0589792 0.181519i
\(337\) −18.2081 5.91619i −0.991861 0.322275i −0.232252 0.972656i \(-0.574610\pi\)
−0.759609 + 0.650380i \(0.774610\pi\)
\(338\) 17.8804 + 5.80969i 0.972565 + 0.316006i
\(339\) 8.53960 + 26.2822i 0.463807 + 1.42745i
\(340\) 0.0428112 + 0.300625i 0.00232176 + 0.0163037i
\(341\) 2.54036 7.81842i 0.137568 0.423391i
\(342\) 18.4086 25.3373i 0.995424 1.37008i
\(343\) 3.60869i 0.194851i
\(344\) −2.64578 1.92227i −0.142651 0.103642i
\(345\) −14.7350 7.80017i −0.793303 0.419947i
\(346\) 22.3216 16.2176i 1.20002 0.871864i
\(347\) 7.54035 + 10.3784i 0.404787 + 0.557141i 0.961937 0.273270i \(-0.0881053\pi\)
−0.557150 + 0.830412i \(0.688105\pi\)
\(348\) 3.04112 0.988119i 0.163021 0.0529687i
\(349\) −22.0051 −1.17791 −0.588953 0.808167i \(-0.700460\pi\)
−0.588953 + 0.808167i \(0.700460\pi\)
\(350\) −1.06406 1.56515i −0.0568764 0.0836608i
\(351\) −4.77842 −0.255053
\(352\) 0.834265 0.271069i 0.0444665 0.0144480i
\(353\) −9.69068 13.3381i −0.515783 0.709914i 0.469098 0.883146i \(-0.344579\pi\)
−0.984881 + 0.173232i \(0.944579\pi\)
\(354\) 30.3897 22.0794i 1.61519 1.17351i
\(355\) 3.97210 3.84988i 0.210817 0.204331i
\(356\) 0.112869 + 0.0820042i 0.00598205 + 0.00434621i
\(357\) 0.822573i 0.0435352i
\(358\) 8.90945 12.2628i 0.470879 0.648110i
\(359\) 5.10134 15.7003i 0.269239 0.828631i −0.721448 0.692469i \(-0.756523\pi\)
0.990687 0.136163i \(-0.0434769\pi\)
\(360\) 30.0450 + 30.9988i 1.58351 + 1.63378i
\(361\) −3.04525 9.37233i −0.160277 0.493280i
\(362\) −10.0169 3.25470i −0.526478 0.171063i
\(363\) 29.2733 + 9.51148i 1.53645 + 0.499223i
\(364\) 0.00400197 + 0.0123168i 0.000209760 + 0.000645575i
\(365\) 2.15469 1.05580i 0.112782 0.0552629i
\(366\) −3.09025 + 9.51080i −0.161530 + 0.497138i
\(367\) −7.35972 + 10.1298i −0.384174 + 0.528770i −0.956684 0.291127i \(-0.905970\pi\)
0.572510 + 0.819898i \(0.305970\pi\)
\(368\) 9.98509i 0.520509i
\(369\) 2.29204 + 1.66526i 0.119319 + 0.0866902i
\(370\) 33.1183 4.71628i 1.72174 0.245188i
\(371\) −2.01121 + 1.46123i −0.104417 + 0.0758631i
\(372\) −1.82197 2.50772i −0.0944646 0.130019i
\(373\) 11.5376 3.74878i 0.597392 0.194104i 0.00531507 0.999986i \(-0.498308\pi\)
0.592077 + 0.805881i \(0.298308\pi\)
\(374\) 1.67162 0.0864375
\(375\) 30.8475 + 17.5848i 1.59296 + 0.908073i
\(376\) −21.2931 −1.09811
\(377\) 2.59627 0.843579i 0.133715 0.0434465i
\(378\) 2.88740 + 3.97417i 0.148512 + 0.204409i
\(379\) −25.1263 + 18.2553i −1.29065 + 0.937711i −0.999818 0.0190631i \(-0.993932\pi\)
−0.290831 + 0.956775i \(0.593932\pi\)
\(380\) 0.909130 0.129466i 0.0466374 0.00664149i
\(381\) −18.2183 13.2364i −0.933352 0.678120i
\(382\) 0.368307i 0.0188442i
\(383\) −20.9647 + 28.8554i −1.07125 + 1.47444i −0.202436 + 0.979295i \(0.564886\pi\)
−0.868809 + 0.495147i \(0.835114\pi\)
\(384\) −12.0981 + 37.2341i −0.617379 + 1.90010i
\(385\) −0.594870 + 0.291486i −0.0303174 + 0.0148555i
\(386\) −7.62291 23.4609i −0.387996 1.19413i
\(387\) 8.09007 + 2.62862i 0.411241 + 0.133620i
\(388\) −1.84020 0.597916i −0.0934218 0.0303546i
\(389\) 2.48426 + 7.64577i 0.125957 + 0.387656i 0.994074 0.108703i \(-0.0346699\pi\)
−0.868117 + 0.496359i \(0.834670\pi\)
\(390\) −2.65955 2.74398i −0.134672 0.138947i
\(391\) 0.725476 2.23279i 0.0366889 0.112917i
\(392\) 11.1022 15.2808i 0.560744 0.771797i
\(393\) 69.7994i 3.52091i
\(394\) 24.1845 + 17.5711i 1.21840 + 0.885219i
\(395\) 2.84012 2.75273i 0.142902 0.138505i
\(396\) −0.890507 + 0.646991i −0.0447497 + 0.0325125i
\(397\) −19.5469 26.9040i −0.981032 1.35028i −0.936271 0.351277i \(-0.885747\pi\)
−0.0447610 0.998998i \(-0.514253\pi\)
\(398\) −14.1963 + 4.61267i −0.711599 + 0.231212i
\(399\) −2.48757 −0.124534
\(400\) −0.664391 + 21.2554i −0.0332196 + 1.06277i
\(401\) −20.6693 −1.03218 −0.516088 0.856536i \(-0.672612\pi\)
−0.516088 + 0.856536i \(0.672612\pi\)
\(402\) −58.5146 + 19.0126i −2.91844 + 0.948260i
\(403\) −1.55545 2.14090i −0.0774827 0.106646i
\(404\) 1.95371 1.41945i 0.0972005 0.0706203i
\(405\) −39.4403 20.8783i −1.95981 1.03745i
\(406\) −2.27042 1.64955i −0.112679 0.0818660i
\(407\) 11.7090i 0.580394i
\(408\) −5.08579 + 6.99999i −0.251784 + 0.346551i
\(409\) 4.46704 13.7481i 0.220881 0.679801i −0.777803 0.628508i \(-0.783666\pi\)
0.998684 0.0512929i \(-0.0163342\pi\)
\(410\) 0.184196 + 1.29345i 0.00909678 + 0.0638787i
\(411\) 6.14885 + 18.9242i 0.303300 + 0.933462i
\(412\) −1.60193 0.520499i −0.0789214 0.0256431i
\(413\) −1.99359 0.647756i −0.0980981 0.0318740i
\(414\) 7.51320 + 23.1233i 0.369254 + 1.13645i
\(415\) −13.3337 + 25.1881i −0.654526 + 1.23644i
\(416\) 0.0872582 0.268553i 0.00427818 0.0131669i
\(417\) −25.6686 + 35.3298i −1.25700 + 1.73011i
\(418\) 5.05520i 0.247258i
\(419\) −13.9728 10.1518i −0.682615 0.495949i 0.191609 0.981471i \(-0.438629\pi\)
−0.874224 + 0.485523i \(0.838629\pi\)
\(420\) −0.0429239 + 0.246065i −0.00209447 + 0.0120068i
\(421\) −20.9181 + 15.1979i −1.01949 + 0.740700i −0.966178 0.257878i \(-0.916977\pi\)
−0.0533091 + 0.998578i \(0.516977\pi\)
\(422\) −4.58135 6.30568i −0.223016 0.306956i
\(423\) 52.6738 17.1148i 2.56109 0.832148i
\(424\) 26.1495 1.26993
\(425\) −1.69290 + 4.70469i −0.0821175 + 0.228211i
\(426\) −11.4820 −0.556304
\(427\) 0.530735 0.172446i 0.0256841 0.00834526i
\(428\) 0.417914 + 0.575209i 0.0202006 + 0.0278038i
\(429\) −1.08210 + 0.786188i −0.0522441 + 0.0379575i
\(430\) 1.72606 + 3.52258i 0.0832381 + 0.169874i
\(431\) 28.9533 + 21.0358i 1.39463 + 1.01326i 0.995339 + 0.0964371i \(0.0307447\pi\)
0.399294 + 0.916823i \(0.369255\pi\)
\(432\) 55.1966i 2.65565i
\(433\) 6.97062 9.59424i 0.334987 0.461070i −0.607982 0.793951i \(-0.708021\pi\)
0.942969 + 0.332881i \(0.108021\pi\)
\(434\) −0.840669 + 2.58731i −0.0403534 + 0.124195i
\(435\) 51.8683 + 9.04797i 2.48690 + 0.433817i
\(436\) −0.704405 2.16793i −0.0337349 0.103825i
\(437\) −6.75223 2.19393i −0.323003 0.104950i
\(438\) −4.73676 1.53907i −0.226331 0.0735394i
\(439\) −5.91506 18.2047i −0.282310 0.868862i −0.987192 0.159537i \(-0.949000\pi\)
0.704882 0.709325i \(-0.251000\pi\)
\(440\) 6.86446 + 1.19744i 0.327250 + 0.0570859i
\(441\) −15.1817 + 46.7244i −0.722938 + 2.22497i
\(442\) 0.316288 0.435333i 0.0150443 0.0207067i
\(443\) 4.12083i 0.195787i −0.995197 0.0978933i \(-0.968790\pi\)
0.995197 0.0978933i \(-0.0312104\pi\)
\(444\) −3.57180 2.59506i −0.169510 0.123156i
\(445\) 1.01081 + 2.06288i 0.0479170 + 0.0977898i
\(446\) 30.2332 21.9657i 1.43158 1.04011i
\(447\) −6.46198 8.89415i −0.305641 0.420679i
\(448\) 1.81927 0.591115i 0.0859522 0.0279276i
\(449\) −6.32711 −0.298595 −0.149297 0.988792i \(-0.547701\pi\)
−0.149297 + 0.988792i \(0.547701\pi\)
\(450\) −14.4549 49.7227i −0.681410 2.34395i
\(451\) 0.457299 0.0215334
\(452\) 1.12382 0.365150i 0.0528598 0.0171752i
\(453\) −13.8332 19.0398i −0.649941 0.894567i
\(454\) 17.0289 12.3722i 0.799204 0.580655i
\(455\) −0.0366451 + 0.210071i −0.00171795 + 0.00984830i
\(456\) 21.1689 + 15.3801i 0.991322 + 0.720238i
\(457\) 27.7724i 1.29914i 0.760304 + 0.649568i \(0.225050\pi\)
−0.760304 + 0.649568i \(0.774950\pi\)
\(458\) −21.8453 + 30.0675i −1.02076 + 1.40496i
\(459\) 4.01036 12.3426i 0.187188 0.576104i
\(460\) −0.333532 + 0.630061i −0.0155510 + 0.0293767i
\(461\) 8.08848 + 24.8938i 0.376718 + 1.15942i 0.942312 + 0.334735i \(0.108647\pi\)
−0.565594 + 0.824684i \(0.691353\pi\)
\(462\) 1.30773 + 0.424908i 0.0608412 + 0.0197685i
\(463\) 22.9019 + 7.44127i 1.06434 + 0.345825i 0.788281 0.615316i \(-0.210971\pi\)
0.276059 + 0.961141i \(0.410971\pi\)
\(464\) 9.74437 + 29.9901i 0.452371 + 1.39225i
\(465\) −7.19579 50.5297i −0.333697 2.34326i
\(466\) −5.01063 + 15.4211i −0.232113 + 0.714371i
\(467\) −4.72904 + 6.50896i −0.218834 + 0.301199i −0.904293 0.426912i \(-0.859601\pi\)
0.685459 + 0.728111i \(0.259601\pi\)
\(468\) 0.354328i 0.0163788i
\(469\) 2.77764 + 2.01807i 0.128260 + 0.0931860i
\(470\) 22.5729 + 11.9493i 1.04121 + 0.551181i
\(471\) −36.6564 + 26.6324i −1.68904 + 1.22716i
\(472\) 12.9602 + 17.8383i 0.596544 + 0.821072i
\(473\) 1.30583 0.424291i 0.0600423 0.0195089i
\(474\) −8.20981 −0.377089
\(475\) 14.2276 + 5.11954i 0.652806 + 0.234900i
\(476\) −0.0351729 −0.00161215
\(477\) −64.6874 + 21.0182i −2.96183 + 0.962357i
\(478\) −4.54467 6.25520i −0.207868 0.286106i
\(479\) 2.62811 1.90943i 0.120081 0.0872443i −0.526124 0.850408i \(-0.676355\pi\)
0.646205 + 0.763164i \(0.276355\pi\)
\(480\) 3.91072 3.79040i 0.178499 0.173007i
\(481\) −3.04932 2.21546i −0.139037 0.101016i
\(482\) 0.322404i 0.0146851i
\(483\) 1.13510 1.56233i 0.0516488 0.0710884i
\(484\) 0.406707 1.25171i 0.0184867 0.0568961i
\(485\) −22.1735 22.8775i −1.00685 1.03881i
\(486\) 11.0412 + 33.9813i 0.500839 + 1.54142i
\(487\) 16.1794 + 5.25700i 0.733158 + 0.238218i 0.651719 0.758461i \(-0.274048\pi\)
0.0814395 + 0.996678i \(0.474048\pi\)
\(488\) −5.58268 1.81392i −0.252716 0.0821125i
\(489\) 10.7004 + 32.9324i 0.483889 + 1.48926i
\(490\) −20.3448 + 9.96893i −0.919084 + 0.450350i
\(491\) −1.79091 + 5.51185i −0.0808226 + 0.248746i −0.983300 0.181990i \(-0.941746\pi\)
0.902478 + 0.430736i \(0.141746\pi\)
\(492\) 0.101351 0.139498i 0.00456926 0.00628904i
\(493\) 7.41412i 0.333915i
\(494\) −1.31650 0.956495i −0.0592322 0.0430347i
\(495\) −17.9434 + 2.55527i −0.806496 + 0.114851i
\(496\) 24.7300 17.9674i 1.11041 0.806760i
\(497\) 0.376614 + 0.518364i 0.0168934 + 0.0232518i
\(498\) 56.2610 18.2803i 2.52112 0.819161i
\(499\) −0.286848 −0.0128411 −0.00642055 0.999979i \(-0.502044\pi\)
−0.00642055 + 0.999979i \(0.502044\pi\)
\(500\) 0.751917 1.31903i 0.0336268 0.0589887i
\(501\) 66.7797 2.98349
\(502\) 10.6885 3.47291i 0.477052 0.155003i
\(503\) 9.12512 + 12.5597i 0.406869 + 0.560007i 0.962451 0.271454i \(-0.0875046\pi\)
−0.555582 + 0.831462i \(0.687505\pi\)
\(504\) −4.04538 + 2.93914i −0.180196 + 0.130920i
\(505\) 39.3665 5.60607i 1.75179 0.249467i
\(506\) 3.17495 + 2.30673i 0.141144 + 0.102547i
\(507\) 40.8561i 1.81448i
\(508\) −0.565982 + 0.779007i −0.0251114 + 0.0345628i
\(509\) −0.104840 + 0.322664i −0.00464694 + 0.0143018i −0.953353 0.301857i \(-0.902393\pi\)
0.948706 + 0.316159i \(0.102393\pi\)
\(510\) 9.31974 4.56667i 0.412685 0.202215i
\(511\) 0.0858851 + 0.264327i 0.00379933 + 0.0116931i
\(512\) −18.9383 6.15344i −0.836965 0.271946i
\(513\) −37.3257 12.1278i −1.64797 0.535457i
\(514\) 8.45809 + 26.0313i 0.373070 + 1.14819i
\(515\) −19.3025 19.9153i −0.850572 0.877574i
\(516\) 0.159983 0.492376i 0.00704285 0.0216757i
\(517\) 5.25464 7.23239i 0.231099 0.318080i
\(518\) 3.87481i 0.170249i
\(519\) −48.5079 35.2430i −2.12926 1.54700i
\(520\) 1.61067 1.56111i 0.0706326 0.0684593i
\(521\) 9.46116 6.87394i 0.414501 0.301153i −0.360920 0.932597i \(-0.617537\pi\)
0.775422 + 0.631444i \(0.217537\pi\)
\(522\) −45.1316 62.1183i −1.97536 2.71884i
\(523\) 31.8360 10.3442i 1.39209 0.452318i 0.485467 0.874255i \(-0.338650\pi\)
0.906625 + 0.421937i \(0.138650\pi\)
\(524\) 2.98459 0.130383
\(525\) −2.52026 + 3.25022i −0.109993 + 0.141851i
\(526\) 16.4404 0.716834
\(527\) 6.83536 2.22094i 0.297753 0.0967458i
\(528\) −9.08144 12.4995i −0.395219 0.543972i
\(529\) −14.1484 + 10.2794i −0.615147 + 0.446930i
\(530\) −27.7213 14.6747i −1.20414 0.637427i
\(531\) −46.3982 33.7103i −2.01351 1.46290i
\(532\) 0.106367i 0.00461161i
\(533\) 0.0865256 0.119092i 0.00374784 0.00515846i
\(534\) 1.47349 4.53493i 0.0637640 0.196245i
\(535\) 1.65054 + 11.5903i 0.0713589 + 0.501091i
\(536\) −11.1601 34.3471i −0.482041 1.48357i
\(537\) −31.3275 10.1789i −1.35188 0.439252i
\(538\) −18.8457 6.12334i −0.812496 0.263996i
\(539\) 2.45051 + 7.54189i 0.105551 + 0.324852i
\(540\) −1.84373 + 3.48291i −0.0793416 + 0.149881i
\(541\) −1.82888 + 5.62872i −0.0786298 + 0.241998i −0.982643 0.185507i \(-0.940607\pi\)
0.904013 + 0.427505i \(0.140607\pi\)
\(542\) 19.0354 26.2000i 0.817641 1.12539i
\(543\) 22.8884i 0.982234i
\(544\) 0.620437 + 0.450774i 0.0266010 + 0.0193268i
\(545\) 6.45007 36.9756i 0.276290 1.58386i
\(546\) 0.358093 0.260170i 0.0153250 0.0111342i
\(547\) −12.0797 16.6263i −0.516492 0.710890i 0.468505 0.883461i \(-0.344793\pi\)
−0.984997 + 0.172571i \(0.944793\pi\)
\(548\) 0.809191 0.262922i 0.0345669 0.0112315i
\(549\) 15.2681 0.651628
\(550\) −6.60507 5.12163i −0.281641 0.218387i
\(551\) 22.4213 0.955178
\(552\) −19.3191 + 6.27715i −0.822275 + 0.267173i
\(553\) 0.269285 + 0.370639i 0.0114512 + 0.0157612i
\(554\) −2.95146 + 2.14436i −0.125396 + 0.0911052i
\(555\) −31.9876 65.2808i −1.35780 2.77102i
\(556\) 1.51069 + 1.09758i 0.0640674 + 0.0465477i
\(557\) 0.761791i 0.0322781i −0.999870 0.0161391i \(-0.994863\pi\)
0.999870 0.0161391i \(-0.00513744\pi\)
\(558\) −43.7498 + 60.2164i −1.85208 + 2.54916i
\(559\) 0.136581 0.420353i 0.00577675 0.0177790i
\(560\) −2.42658 0.423296i −0.102542 0.0178875i
\(561\) −1.12255 3.45486i −0.0473942 0.145864i
\(562\) 5.00940 + 1.62765i 0.211309 + 0.0686583i
\(563\) 16.7006 + 5.42637i 0.703848 + 0.228694i 0.639006 0.769201i \(-0.279346\pi\)
0.0648419 + 0.997896i \(0.479346\pi\)
\(564\) −1.04164 3.20582i −0.0438608 0.134990i
\(565\) 19.1674 + 3.34359i 0.806381 + 0.140666i
\(566\) −14.0231 + 43.1588i −0.589436 + 1.81410i
\(567\) 3.03826 4.18181i 0.127595 0.175619i
\(568\) 6.73973i 0.282793i
\(569\) 6.44807 + 4.68480i 0.270317 + 0.196397i 0.714683 0.699448i \(-0.246571\pi\)
−0.444366 + 0.895845i \(0.646571\pi\)
\(570\) −13.8102 28.1841i −0.578445 1.18050i
\(571\) −13.6029 + 9.88312i −0.569266 + 0.413596i −0.834838 0.550495i \(-0.814439\pi\)
0.265573 + 0.964091i \(0.414439\pi\)
\(572\) 0.0336171 + 0.0462700i 0.00140560 + 0.00193464i
\(573\) −0.761208 + 0.247331i −0.0317999 + 0.0103324i
\(574\) −0.151332 −0.00631647
\(575\) −9.70753 + 6.59962i −0.404832 + 0.275223i
\(576\) 52.3364 2.18068
\(577\) −20.6419 + 6.70697i −0.859334 + 0.279215i −0.705351 0.708859i \(-0.749210\pi\)
−0.153984 + 0.988073i \(0.549210\pi\)
\(578\) 0.859012 + 1.18233i 0.0357302 + 0.0491784i
\(579\) −43.3693 + 31.5096i −1.80237 + 1.30950i
\(580\) 0.386887 2.21787i 0.0160646 0.0920920i
\(581\) −2.67067 1.94035i −0.110798 0.0804994i
\(582\) 66.1309i 2.74122i
\(583\) −6.45309 + 8.88192i −0.267260 + 0.367851i
\(584\) 0.903406 2.78040i 0.0373832 0.115054i
\(585\) −2.72962 + 5.15640i −0.112856 + 0.213191i
\(586\) 4.01926 + 12.3700i 0.166034 + 0.511000i
\(587\) −1.58879 0.516230i −0.0655764 0.0213071i 0.276045 0.961145i \(-0.410976\pi\)
−0.341622 + 0.939838i \(0.610976\pi\)
\(588\) 2.84374 + 0.923986i 0.117274 + 0.0381045i
\(589\) −6.71642 20.6710i −0.276745 0.851734i
\(590\) −3.72871 26.1835i −0.153509 1.07796i
\(591\) 20.0747 61.7836i 0.825763 2.54144i
\(592\) 25.5913 35.2234i 1.05180 1.44767i
\(593\) 9.01124i 0.370047i −0.982734 0.185024i \(-0.940764\pi\)
0.982734 0.185024i \(-0.0592362\pi\)
\(594\) 17.5508 + 12.7514i 0.720118 + 0.523196i
\(595\) −0.511857 0.270959i −0.0209841 0.0111083i
\(596\) −0.380310 + 0.276311i −0.0155781 + 0.0113182i
\(597\) 19.0667 + 26.2431i 0.780348 + 1.07406i
\(598\) 1.20146 0.390379i 0.0491315 0.0159638i
\(599\) −3.99167 −0.163095 −0.0815476 0.996669i \(-0.525986\pi\)
−0.0815476 + 0.996669i \(0.525986\pi\)
\(600\) 41.5425 12.0768i 1.69596 0.493033i
\(601\) −46.4077 −1.89301 −0.946505 0.322690i \(-0.895413\pi\)
−0.946505 + 0.322690i \(0.895413\pi\)
\(602\) −0.432134 + 0.140409i −0.0176125 + 0.00572263i
\(603\) 55.2143 + 75.9960i 2.24850 + 3.09480i
\(604\) −0.814133 + 0.591502i −0.0331266 + 0.0240679i
\(605\) 15.5614 15.0826i 0.632662 0.613195i
\(606\) −66.7738 48.5140i −2.71250 1.97075i
\(607\) 29.1889i 1.18474i 0.805666 + 0.592370i \(0.201807\pi\)
−0.805666 + 0.592370i \(0.798193\pi\)
\(608\) 1.36320 1.87628i 0.0552850 0.0760933i
\(609\) −1.88459 + 5.80017i −0.0763674 + 0.235035i
\(610\) 4.90029 + 5.05585i 0.198407 + 0.204706i
\(611\) −0.889267 2.73688i −0.0359759 0.110722i
\(612\) −0.915226 0.297375i −0.0369958 0.0120207i
\(613\) 14.6465 + 4.75895i 0.591568 + 0.192212i 0.589476 0.807786i \(-0.299334\pi\)
0.00209166 + 0.999998i \(0.499334\pi\)
\(614\) 6.24884 + 19.2319i 0.252182 + 0.776138i
\(615\) 2.54956 1.24929i 0.102808 0.0503760i
\(616\) −0.249414 + 0.767617i −0.0100492 + 0.0309282i
\(617\) −23.7900 + 32.7442i −0.957750 + 1.31823i −0.00975291 + 0.999952i \(0.503104\pi\)
−0.947997 + 0.318278i \(0.896896\pi\)
\(618\) 57.5684i 2.31574i
\(619\) −27.0619 19.6616i −1.08771 0.790268i −0.108700 0.994075i \(-0.534669\pi\)
−0.979011 + 0.203807i \(0.934669\pi\)
\(620\) −2.16063 + 0.307689i −0.0867730 + 0.0123571i
\(621\) 24.6490 17.9085i 0.989130 0.718645i
\(622\) 25.2493 + 34.7526i 1.01240 + 1.39345i
\(623\) −0.253064 + 0.0822256i −0.0101388 + 0.00329430i
\(624\) −4.97350 −0.199099
\(625\) 21.1037 13.4028i 0.844147 0.536111i
\(626\) 51.4585 2.05669
\(627\) −10.4479 + 3.39474i −0.417251 + 0.135573i
\(628\) 1.13879 + 1.56741i 0.0454428 + 0.0625466i
\(629\) 8.28170 6.01701i 0.330213 0.239914i
\(630\) 5.93793 0.845603i 0.236573 0.0336896i
\(631\) 9.97594 + 7.24794i 0.397136 + 0.288536i 0.768373 0.640002i \(-0.221066\pi\)
−0.371237 + 0.928538i \(0.621066\pi\)
\(632\) 4.81902i 0.191690i
\(633\) −9.95588 + 13.7031i −0.395711 + 0.544649i
\(634\) −1.88836 + 5.81177i −0.0749963 + 0.230815i
\(635\) −14.2377 + 6.97647i −0.565006 + 0.276853i
\(636\) 1.27921 + 3.93699i 0.0507238 + 0.156112i
\(637\) 2.42776 + 0.788827i 0.0961914 + 0.0312545i
\(638\) −11.7870 3.82984i −0.466653 0.151625i
\(639\) 5.41719 + 16.6724i 0.214301 + 0.659550i
\(640\) 19.1843 + 19.7933i 0.758326 + 0.782400i
\(641\) 7.35223 22.6278i 0.290395 0.893745i −0.694334 0.719653i \(-0.744301\pi\)
0.984729 0.174092i \(-0.0556991\pi\)
\(642\) 14.2835 19.6595i 0.563724 0.775899i
\(643\) 9.81816i 0.387190i −0.981081 0.193595i \(-0.937985\pi\)
0.981081 0.193595i \(-0.0620148\pi\)
\(644\) −0.0668046 0.0485363i −0.00263247 0.00191260i
\(645\) 6.12126 5.93292i 0.241024 0.233608i
\(646\) 3.57551 2.59776i 0.140677 0.102208i
\(647\) 8.70320 + 11.9789i 0.342158 + 0.470940i 0.945070 0.326867i \(-0.105993\pi\)
−0.602912 + 0.797808i \(0.705993\pi\)
\(648\) −51.7104 + 16.8017i −2.03138 + 0.660034i
\(649\) −9.25720 −0.363377
\(650\) −2.58355 + 0.751063i −0.101335 + 0.0294591i
\(651\) 5.91193 0.231707
\(652\) 1.40818 0.457545i 0.0551485 0.0179188i
\(653\) −4.13332 5.68902i −0.161749 0.222629i 0.720448 0.693509i \(-0.243936\pi\)
−0.882197 + 0.470880i \(0.843936\pi\)
\(654\) −63.0296 + 45.7937i −2.46465 + 1.79067i
\(655\) 43.4337 + 22.9923i 1.69709 + 0.898382i
\(656\) 1.37566 + 0.999477i 0.0537106 + 0.0390230i
\(657\) 7.60413i 0.296665i
\(658\) −1.73889 + 2.39338i −0.0677891 + 0.0933037i
\(659\) 5.53519 17.0356i 0.215620 0.663612i −0.783489 0.621406i \(-0.786562\pi\)
0.999109 0.0422052i \(-0.0134383\pi\)
\(660\) 0.155518 + 1.09207i 0.00605354 + 0.0425087i
\(661\) 5.07381 + 15.6156i 0.197348 + 0.607375i 0.999941 + 0.0108483i \(0.00345319\pi\)
−0.802593 + 0.596527i \(0.796547\pi\)
\(662\) −7.95161 2.58363i −0.309048 0.100416i
\(663\) −1.11213 0.361354i −0.0431917 0.0140338i
\(664\) 10.7302 + 33.0243i 0.416414 + 1.28159i
\(665\) −0.819416 + 1.54792i −0.0317756 + 0.0600259i
\(666\) −32.7602 + 100.826i −1.26943 + 3.90691i
\(667\) −10.2310 + 14.0818i −0.396147 + 0.545249i
\(668\) 2.85547i 0.110481i
\(669\) −65.7008 47.7344i −2.54014 1.84552i
\(670\) −7.44416 + 42.6744i −0.287593 + 1.64865i
\(671\) 1.99379 1.44857i 0.0769694 0.0559215i
\(672\) 0.370794 + 0.510355i 0.0143037 + 0.0196874i
\(673\) 22.3012 7.24609i 0.859647 0.279316i 0.154166 0.988045i \(-0.450731\pi\)
0.705481 + 0.708729i \(0.250731\pi\)
\(674\) 27.9795 1.07773
\(675\) −53.6623 + 36.4821i −2.06546 + 1.40420i
\(676\) −1.74699 −0.0671920
\(677\) 26.1808 8.50665i 1.00621 0.326937i 0.240865 0.970559i \(-0.422569\pi\)
0.765344 + 0.643622i \(0.222569\pi\)
\(678\) −23.7386 32.6733i −0.911674 1.25481i
\(679\) 2.98554 2.16912i 0.114574 0.0832432i
\(680\) 2.68056 + 5.47053i 0.102795 + 0.209785i
\(681\) −37.0060 26.8864i −1.41807 1.03029i
\(682\) 12.0142i 0.460046i
\(683\) −0.844571 + 1.16245i −0.0323166 + 0.0444800i −0.824870 0.565323i \(-0.808751\pi\)
0.792553 + 0.609803i \(0.208751\pi\)
\(684\) −0.899300 + 2.76776i −0.0343856 + 0.105828i
\(685\) 13.8013 + 2.40752i 0.527321 + 0.0919865i
\(686\) −1.62972 5.01575i −0.0622229 0.191502i
\(687\) 76.8125 + 24.9579i 2.93058 + 0.952203i
\(688\) 4.85559 + 1.57768i 0.185118 + 0.0601483i
\(689\) 1.09209 + 3.36110i 0.0416052 + 0.128048i
\(690\) 24.0029 + 4.18709i 0.913774 + 0.159400i
\(691\) 6.44952 19.8496i 0.245351 0.755113i −0.750227 0.661180i \(-0.770056\pi\)
0.995578 0.0939333i \(-0.0299440\pi\)
\(692\) −1.50698 + 2.07418i −0.0572867 + 0.0788483i
\(693\) 2.09936i 0.0797481i
\(694\) −15.1674 11.0197i −0.575746 0.418304i
\(695\) 13.5291 + 27.6104i 0.513188 + 1.04732i
\(696\) 51.8988 37.7067i 1.96722 1.42927i
\(697\) 0.234996 + 0.323445i 0.00890112 + 0.0122513i
\(698\) 30.5851 9.93771i 1.15766 0.376148i
\(699\) 35.2368 1.33278
\(700\) 0.138978 + 0.107765i 0.00525288 + 0.00407314i
\(701\) −29.3643 −1.10907 −0.554536 0.832159i \(-0.687104\pi\)
−0.554536 + 0.832159i \(0.687104\pi\)
\(702\) 6.64158 2.15798i 0.250670 0.0814477i
\(703\) −18.1962 25.0449i −0.686283 0.944588i
\(704\) 6.83435 4.96545i 0.257579 0.187142i
\(705\) 9.53801 54.6775i 0.359222 2.05928i
\(706\) 19.4928 + 14.1623i 0.733620 + 0.533006i
\(707\) 4.60584i 0.173220i
\(708\) −2.05167 + 2.82388i −0.0771065 + 0.106128i
\(709\) −0.191889 + 0.590572i −0.00720653 + 0.0221794i −0.954595 0.297906i \(-0.903712\pi\)
0.947389 + 0.320086i \(0.103712\pi\)
\(710\) −3.78222 + 7.14483i −0.141944 + 0.268141i
\(711\) 3.87338 + 11.9210i 0.145263 + 0.447074i
\(712\) 2.66193 + 0.864912i 0.0997599 + 0.0324140i
\(713\) 16.0473 + 5.21408i 0.600976 + 0.195269i
\(714\) 0.371481 + 1.14330i 0.0139023 + 0.0427870i
\(715\) 0.132769 + 0.932323i 0.00496530 + 0.0348669i
\(716\) −0.435246 + 1.33955i −0.0162659 + 0.0500613i
\(717\) −9.87617 + 13.5934i −0.368832 + 0.507654i
\(718\) 24.1258i 0.900369i
\(719\) −1.89648 1.37787i −0.0707267 0.0513859i 0.551860 0.833937i \(-0.313918\pi\)
−0.622587 + 0.782551i \(0.713918\pi\)
\(720\) −59.5628 31.5304i −2.21977 1.17507i
\(721\) 2.59898 1.88827i 0.0967909 0.0703227i
\(722\) 8.46526 + 11.6514i 0.315044 + 0.433621i
\(723\) 0.666335 0.216505i 0.0247813 0.00805192i
\(724\) 0.978697 0.0363730
\(725\) 22.7159 29.2954i 0.843648 1.08800i
\(726\) −44.9827 −1.66947
\(727\) −23.8191 + 7.73931i −0.883403 + 0.287035i −0.715370 0.698746i \(-0.753742\pi\)
−0.168033 + 0.985781i \(0.553742\pi\)
\(728\) 0.152715 + 0.210195i 0.00566001 + 0.00779033i
\(729\) 14.3800 10.4477i 0.532594 0.386952i
\(730\) −2.51802 + 2.44054i −0.0931959 + 0.0903284i
\(731\) 0.971139 + 0.705574i 0.0359189 + 0.0260966i
\(732\) 0.929246i 0.0343459i
\(733\) 18.4289 25.3652i 0.680687 0.936886i −0.319255 0.947669i \(-0.603433\pi\)
0.999942 + 0.0107834i \(0.00343252\pi\)
\(734\) 5.65464 17.4032i 0.208717 0.642364i
\(735\) 34.2658 + 35.3536i 1.26391 + 1.30404i
\(736\) 0.556369 + 1.71233i 0.0205080 + 0.0631173i
\(737\) 14.4203 + 4.68545i 0.531180 + 0.172591i
\(738\) −3.93778 1.27946i −0.144952 0.0470976i
\(739\) 8.96697 + 27.5975i 0.329855 + 1.01519i 0.969201 + 0.246271i \(0.0792053\pi\)
−0.639346 + 0.768919i \(0.720795\pi\)
\(740\) −2.79138 + 1.36777i −0.102613 + 0.0502804i
\(741\) −1.09278 + 3.36323i −0.0401443 + 0.123551i
\(742\) 2.13549 2.93925i 0.0783964 0.107903i
\(743\) 44.1135i 1.61837i 0.587555 + 0.809184i \(0.300091\pi\)
−0.587555 + 0.809184i \(0.699909\pi\)
\(744\) −50.3098 36.5522i −1.84445 1.34007i
\(745\) −7.66312 + 1.09128i −0.280755 + 0.0399815i
\(746\) −14.3432 + 10.4209i −0.525141 + 0.381537i
\(747\) −53.0878 73.0691i −1.94238 2.67346i
\(748\) −0.147729 + 0.0479999i −0.00540149 + 0.00175505i
\(749\) −1.35605 −0.0495490
\(750\) −50.8167 10.5102i −1.85556 0.383779i
\(751\) −24.1661 −0.881834 −0.440917 0.897548i \(-0.645347\pi\)
−0.440917 + 0.897548i \(0.645347\pi\)
\(752\) 31.6144 10.2721i 1.15286 0.374586i
\(753\) −14.3554 19.7585i −0.523141 0.720041i
\(754\) −3.22761 + 2.34500i −0.117543 + 0.0853998i
\(755\) −16.4045 + 2.33612i −0.597021 + 0.0850200i
\(756\) −0.369289 0.268304i −0.0134309 0.00975813i
\(757\) 35.4949i 1.29008i 0.764148 + 0.645041i \(0.223160\pi\)
−0.764148 + 0.645041i \(0.776840\pi\)
\(758\) 26.6790 36.7205i 0.969024 1.33375i
\(759\) 2.63541 8.11094i 0.0956592 0.294409i
\(760\) 16.5436 8.10635i 0.600099 0.294048i
\(761\) 9.17812 + 28.2473i 0.332707 + 1.02397i 0.967841 + 0.251564i \(0.0809448\pi\)
−0.635134 + 0.772402i \(0.719055\pi\)
\(762\) 31.2995 + 10.1698i 1.13386 + 0.368413i
\(763\) 4.13479 + 1.34347i 0.149689 + 0.0486370i
\(764\) 0.0105758 + 0.0325489i 0.000382619 + 0.00117758i
\(765\) −11.0281 11.3782i −0.398721 0.411378i
\(766\) 16.1077 49.5743i 0.581993 1.79119i
\(767\) −1.75156 + 2.41081i −0.0632450 + 0.0870493i
\(768\) 10.3043i 0.371823i
\(769\) −2.69518 1.95816i −0.0971907 0.0706132i 0.538129 0.842863i \(-0.319131\pi\)
−0.635319 + 0.772250i \(0.719131\pi\)
\(770\) 0.695178 0.673788i 0.0250525 0.0242816i
\(771\) 48.1209 34.9619i 1.73303