Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [425,2,Mod(69,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([9, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.69");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.r (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.39364208590\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 | −2.60604 | + | 0.846752i | −1.86275 | − | 2.56385i | 4.45640 | − | 3.23776i | 0.0540158 | + | 2.23542i | 7.02533 | + | 5.10420i | − | 2.47810i | −5.65071 | + | 7.77753i | −2.17645 | + | 6.69843i | −2.03361 | − | 5.77983i | |
69.2 | −2.55039 | + | 0.828673i | −0.0154746 | − | 0.0212989i | 4.19977 | − | 3.05131i | 2.16953 | + | 0.541436i | 0.0571160 | + | 0.0414972i | 2.17034i | −5.03006 | + | 6.92328i | 0.926837 | − | 2.85251i | −5.98182 | + | 0.416954i | ||
69.3 | −2.47862 | + | 0.805352i | 1.68980 | + | 2.32581i | 3.87693 | − | 2.81675i | −1.39512 | + | 1.74746i | −6.06145 | − | 4.40390i | 3.88508i | −4.27721 | + | 5.88707i | −1.62691 | + | 5.00711i | 2.05065 | − | 5.45486i | ||
69.4 | −2.42763 | + | 0.788786i | −0.379903 | − | 0.522892i | 3.65319 | − | 2.65420i | −1.95346 | − | 1.08812i | 1.33472 | + | 0.969728i | 1.82616i | −3.77429 | + | 5.19486i | 0.797961 | − | 2.45587i | 5.60057 | + | 1.10071i | ||
69.5 | −2.20587 | + | 0.716731i | −0.551084 | − | 0.758502i | 2.73413 | − | 1.98646i | 1.11977 | − | 1.93549i | 1.75926 | + | 1.27818i | − | 3.09233i | −1.88077 | + | 2.58866i | 0.655419 | − | 2.01717i | −1.08286 | + | 5.07201i | |
69.6 | −2.14124 | + | 0.695730i | 1.08145 | + | 1.48849i | 2.48282 | − | 1.80387i | −0.133284 | + | 2.23209i | −3.35124 | − | 2.43482i | − | 4.38149i | −1.41458 | + | 1.94701i | −0.119019 | + | 0.366304i | −1.26754 | − | 4.87217i | |
69.7 | −1.85902 | + | 0.604031i | −1.84553 | − | 2.54016i | 1.47306 | − | 1.07024i | −1.33190 | − | 1.79612i | 4.96521 | + | 3.60744i | 3.19704i | 0.205893 | − | 0.283388i | −2.11936 | + | 6.52273i | 3.56094 | + | 2.53450i | ||
69.8 | −1.80321 | + | 0.585900i | 0.0268065 | + | 0.0368959i | 1.29027 | − | 0.937434i | 0.943879 | + | 2.02709i | −0.0699551 | − | 0.0508253i | − | 0.426178i | 0.451510 | − | 0.621450i | 0.926408 | − | 2.85119i | −2.88969 | − | 3.10226i | |
69.9 | −1.63738 | + | 0.532018i | −1.52304 | − | 2.09629i | 0.779945 | − | 0.566663i | 2.20989 | − | 0.341170i | 3.60906 | + | 2.62214i | − | 0.996248i | 1.04832 | − | 1.44289i | −1.14771 | + | 3.53228i | −3.43692 | + | 1.73433i | |
69.10 | −1.50815 | + | 0.490028i | 0.441680 | + | 0.607920i | 0.416355 | − | 0.302500i | 1.21824 | − | 1.87507i | −0.964016 | − | 0.700399i | 4.59462i | 1.38448 | − | 1.90558i | 0.752565 | − | 2.31616i | −0.918447 | + | 3.42486i | ||
69.11 | −1.46986 | + | 0.477587i | −1.10052 | − | 1.51474i | 0.314369 | − | 0.228403i | −2.19230 | + | 0.440256i | 2.34104 | + | 1.70086i | − | 4.04029i | 1.46385 | − | 2.01482i | −0.156235 | + | 0.480841i | 3.01211 | − | 1.69413i | |
69.12 | −1.38991 | + | 0.451609i | 1.86675 | + | 2.56936i | 0.109865 | − | 0.0798213i | 2.21373 | − | 0.315251i | −3.75495 | − | 2.72813i | 0.259005i | 1.60137 | − | 2.20410i | −2.18980 | + | 6.73951i | −2.93452 | + | 1.43791i | ||
69.13 | −1.17389 | + | 0.381421i | −1.02469 | − | 1.41037i | −0.385489 | + | 0.280074i | 0.897862 | + | 2.04789i | 1.74082 | + | 1.26478i | 2.70715i | 1.79671 | − | 2.47296i | −0.0120917 | + | 0.0372143i | −1.83510 | − | 2.06154i | ||
69.14 | −1.07215 | + | 0.348362i | 0.792633 | + | 1.09097i | −0.589886 | + | 0.428578i | −1.75044 | + | 1.39139i | −1.22987 | − | 0.893554i | 3.55811i | 1.80840 | − | 2.48904i | 0.365112 | − | 1.12370i | 1.39202 | − | 2.10156i | ||
69.15 | −1.03358 | + | 0.335830i | 0.604115 | + | 0.831493i | −0.662529 | + | 0.481355i | −2.14816 | + | 0.620799i | −0.903642 | − | 0.656534i | − | 1.04210i | 1.80070 | − | 2.47845i | 0.600625 | − | 1.84853i | 2.01182 | − | 1.36306i | |
69.16 | −0.628349 | + | 0.204163i | 0.482449 | + | 0.664034i | −1.26489 | + | 0.918999i | 2.18757 | − | 0.463165i | −0.438718 | − | 0.318747i | − | 4.33633i | 1.38385 | − | 1.90471i | 0.718867 | − | 2.21244i | −1.28000 | + | 0.737651i | |
69.17 | −0.419745 | + | 0.136383i | 1.18389 | + | 1.62948i | −1.46045 | + | 1.06108i | −0.544497 | − | 2.16876i | −0.719166 | − | 0.522504i | − | 3.59659i | 0.987136 | − | 1.35868i | −0.326569 | + | 1.00508i | 0.524333 | + | 0.836067i | |
69.18 | −0.292236 | + | 0.0949534i | −0.973705 | − | 1.34019i | −1.54165 | + | 1.12007i | 1.39711 | − | 1.74587i | 0.411808 | + | 0.299196i | 1.62592i | 0.705395 | − | 0.970893i | 0.0790435 | − | 0.243271i | −0.242510 | + | 0.642869i | ||
69.19 | −0.256860 | + | 0.0834589i | −1.58231 | − | 2.17787i | −1.55902 | + | 1.13270i | −2.05873 | + | 0.872706i | 0.588195 | + | 0.427349i | 2.44071i | 0.623414 | − | 0.858055i | −1.31234 | + | 4.03896i | 0.455972 | − | 0.395983i | ||
69.20 | −0.248853 | + | 0.0808572i | −0.408373 | − | 0.562077i | −1.56264 | + | 1.13533i | −1.61719 | − | 1.54424i | 0.147073 | + | 0.106855i | 1.76904i | 0.604668 | − | 0.832255i | 0.777889 | − | 2.39410i | 0.527307 | + | 0.253527i | ||
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 425.2.r.a | ✓ | 160 |
25.e | even | 10 | 1 | inner | 425.2.r.a | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.r.a | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
425.2.r.a | ✓ | 160 | 25.e | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(425, [\chi])\).