Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [425,2,Mod(84,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([7, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.84");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.q (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.39364208590\) |
Analytic rank: | \(0\) |
Dimension: | \(176\) |
Relative dimension: | \(44\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
84.1 | −1.61286 | + | 2.21990i | −0.861202 | − | 2.65051i | −1.70864 | − | 5.25866i | 0.297302 | − | 2.21622i | 7.27287 | + | 2.36310i | 1.90625 | 9.21020 | + | 2.99258i | −3.85647 | + | 2.80189i | 4.44028 | + | 4.23442i | ||
84.2 | −1.61286 | + | 2.21990i | 0.861202 | + | 2.65051i | −1.70864 | − | 5.25866i | −0.297302 | + | 2.21622i | −7.27287 | − | 2.36310i | −1.90625 | 9.21020 | + | 2.99258i | −3.85647 | + | 2.80189i | −4.44028 | − | 4.23442i | ||
84.3 | −1.47509 | + | 2.03029i | −0.532962 | − | 1.64029i | −1.32814 | − | 4.08760i | 0.886990 | + | 2.05262i | 4.11642 | + | 1.33751i | −3.49211 | 5.48463 | + | 1.78207i | 0.0205526 | − | 0.0149323i | −5.47580 | − | 1.22696i | ||
84.4 | −1.47509 | + | 2.03029i | 0.532962 | + | 1.64029i | −1.32814 | − | 4.08760i | −0.886990 | − | 2.05262i | −4.11642 | − | 1.33751i | 3.49211 | 5.48463 | + | 1.78207i | 0.0205526 | − | 0.0149323i | 5.47580 | + | 1.22696i | ||
84.5 | −1.39460 | + | 1.91951i | −0.152608 | − | 0.469678i | −1.12155 | − | 3.45179i | 1.97789 | − | 1.04304i | 1.11438 | + | 0.362083i | −1.83697 | 3.67682 | + | 1.19467i | 2.22974 | − | 1.62000i | −0.756252 | + | 5.25121i | ||
84.6 | −1.39460 | + | 1.91951i | 0.152608 | + | 0.469678i | −1.12155 | − | 3.45179i | −1.97789 | + | 1.04304i | −1.11438 | − | 0.362083i | 1.83697 | 3.67682 | + | 1.19467i | 2.22974 | − | 1.62000i | 0.756252 | − | 5.25121i | ||
84.7 | −1.27397 | + | 1.75347i | −0.347412 | − | 1.06922i | −0.833625 | − | 2.56564i | −2.16832 | − | 0.546269i | 2.31745 | + | 0.752985i | −2.57428 | 1.43812 | + | 0.467275i | 1.40451 | − | 1.02043i | 3.72024 | − | 3.10615i | ||
84.8 | −1.27397 | + | 1.75347i | 0.347412 | + | 1.06922i | −0.833625 | − | 2.56564i | 2.16832 | + | 0.546269i | −2.31745 | − | 0.752985i | 2.57428 | 1.43812 | + | 0.467275i | 1.40451 | − | 1.02043i | −3.72024 | + | 3.10615i | ||
84.9 | −1.14277 | + | 1.57289i | −0.782761 | − | 2.40909i | −0.550027 | − | 1.69281i | 1.07788 | + | 1.95913i | 4.68376 | + | 1.52185i | 3.64131 | −0.406932 | − | 0.132220i | −2.76396 | + | 2.00813i | −4.31327 | − | 0.543447i | ||
84.10 | −1.14277 | + | 1.57289i | 0.782761 | + | 2.40909i | −0.550027 | − | 1.69281i | −1.07788 | − | 1.95913i | −4.68376 | − | 1.52185i | −3.64131 | −0.406932 | − | 0.132220i | −2.76396 | + | 2.00813i | 4.31327 | + | 0.543447i | ||
84.11 | −0.857096 | + | 1.17969i | −0.707067 | − | 2.17613i | −0.0390246 | − | 0.120105i | −1.58143 | − | 1.58085i | 3.17318 | + | 1.03103i | 2.12040 | −2.59849 | − | 0.844299i | −1.80854 | + | 1.31398i | 3.22035 | − | 0.510657i | ||
84.12 | −0.857096 | + | 1.17969i | 0.707067 | + | 2.17613i | −0.0390246 | − | 0.120105i | 1.58143 | + | 1.58085i | −3.17318 | − | 1.03103i | −2.12040 | −2.59849 | − | 0.844299i | −1.80854 | + | 1.31398i | −3.22035 | + | 0.510657i | ||
84.13 | −0.753629 | + | 1.03728i | −0.0324420 | − | 0.0998462i | 0.110039 | + | 0.338664i | 0.863935 | − | 2.06243i | 0.128018 | + | 0.0415955i | −3.13290 | −2.87301 | − | 0.933498i | 2.41813 | − | 1.75688i | 1.48823 | + | 2.45045i | ||
84.14 | −0.753629 | + | 1.03728i | 0.0324420 | + | 0.0998462i | 0.110039 | + | 0.338664i | −0.863935 | + | 2.06243i | −0.128018 | − | 0.0415955i | 3.13290 | −2.87301 | − | 0.933498i | 2.41813 | − | 1.75688i | −1.48823 | − | 2.45045i | ||
84.15 | −0.677444 | + | 0.932422i | −1.03346 | − | 3.18065i | 0.207554 | + | 0.638786i | 2.01329 | − | 0.972965i | 3.66582 | + | 1.19110i | −4.10770 | −2.92848 | − | 0.951521i | −6.62147 | + | 4.81078i | −0.456678 | + | 2.53636i | ||
84.16 | −0.677444 | + | 0.932422i | 1.03346 | + | 3.18065i | 0.207554 | + | 0.638786i | −2.01329 | + | 0.972965i | −3.66582 | − | 1.19110i | 4.10770 | −2.92848 | − | 0.951521i | −6.62147 | + | 4.81078i | 0.456678 | − | 2.53636i | ||
84.17 | −0.568609 | + | 0.782624i | −0.724084 | − | 2.22850i | 0.328851 | + | 1.01210i | −1.46866 | + | 1.68613i | 2.15580 | + | 0.700461i | −0.961359 | −2.81914 | − | 0.915994i | −2.01486 | + | 1.46388i | −0.484512 | − | 2.10816i | ||
84.18 | −0.568609 | + | 0.782624i | 0.724084 | + | 2.22850i | 0.328851 | + | 1.01210i | 1.46866 | − | 1.68613i | −2.15580 | − | 0.700461i | 0.961359 | −2.81914 | − | 0.915994i | −2.01486 | + | 1.46388i | 0.484512 | + | 2.10816i | ||
84.19 | −0.453067 | + | 0.623593i | −0.240491 | − | 0.740156i | 0.434435 | + | 1.33705i | 2.23529 | − | 0.0588141i | 0.570514 | + | 0.185371i | 2.18212 | −2.49676 | − | 0.811247i | 1.93706 | − | 1.40735i | −0.976061 | + | 1.42056i | ||
84.20 | −0.453067 | + | 0.623593i | 0.240491 | + | 0.740156i | 0.434435 | + | 1.33705i | −2.23529 | + | 0.0588141i | −0.570514 | − | 0.185371i | −2.18212 | −2.49676 | − | 0.811247i | 1.93706 | − | 1.40735i | 0.976061 | − | 1.42056i | ||
See next 80 embeddings (of 176 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
25.e | even | 10 | 1 | inner |
425.q | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 425.2.q.a | ✓ | 176 |
17.b | even | 2 | 1 | inner | 425.2.q.a | ✓ | 176 |
25.e | even | 10 | 1 | inner | 425.2.q.a | ✓ | 176 |
425.q | even | 10 | 1 | inner | 425.2.q.a | ✓ | 176 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.q.a | ✓ | 176 | 1.a | even | 1 | 1 | trivial |
425.2.q.a | ✓ | 176 | 17.b | even | 2 | 1 | inner |
425.2.q.a | ✓ | 176 | 25.e | even | 10 | 1 | inner |
425.2.q.a | ✓ | 176 | 425.q | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(425, [\chi])\).